
Journal of Theoretical and Applied Information Technology
 20th October 2013. Vol. 56 No.2

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

244

 A SEARCH ALGORITHM ON A RELATIONAL DATASET
CONTAINING ALGORITHMS TO FACILITATE REAL TIME

CODE GENERATION

1 SENTHIL JAYAVEL 2 S ARUMUGAM 3PRATIK SHAH 4RAHUL DE
1 Senior Asstt Prof., Department of Computer Science And Engineering, VIT University, Vellore, India

2 Assoc. Prof., Nandha University, Erode, Tamil Nadu, India
3 Student, School of Computer Science And Engineering, VIT University. Vellore, India
4 Student, School of Computer Science And Engineering, VIT University., Vellore, India

E-mail: 1senthil.j.vit@gmail.com 2arumugamdote@yahoo.co.in 3 prats110892@gmail.com
4rahul080327@gmail.com

ABSTRACT

The world of computation originates from 1’s, 0’s and the algorithms that work on sequences of these bits
to generate outputs. Over the past half a century the world of computation has seen numerous algorithms
and these algorithms have helped us solve our problems. These problems that we face are of a repetitive
nature and we use these same algorithms to solve them repeatedly. We tend to always store the data that is
essential to us and these algorithms are one of the most essentials things that help us get through day-to-day
lives. This paper deals with the construction of a collection of algorithms in a structured relational database
pattern to help us store the algorithms in an intuitive way and along with that this paper also deals with a
search algorithm that works on this collection to give algorithms as output. These output algorithms can
later be put to use in a number of domains as mentioned in the applications section of this paper.

Keywords: Relational Database, Algorithm, Search, Relevance Factor, Graphs, Weights, Nodes, Edges.

1. INTRODUCTION

Before we go to the search algorithm we shall
talk about the construction of the collection of the
algorithms into a relational database. For all
purposes this collection will be further called as a
dataset. The dataset is a connected graph in which
the nodes consist the algorithms and other
parameters and the connected nodes have an edge
with one or multiple weights. Once the dataset has
been constructed new nodes can be added and
modified and replaced easily.

The major feature of this dataset is that it can
continuously grow and it can be continuously
updated as at the very base of this dataset is
nothing but a graph which can be vey easily
changed, modified and updated and by making the
dataset open, the very same operations can be
performed on the dataset by anyone in this world.
This makes it readily available to every one for use
as well as provides a ready base for making one’s
algorithm available to everyone for use.

The search algorithm works on this dataset and
based on the input keywords it searches for one or
more algorithms that have the greatest relevance
hit in the solving the problem that is defined by the

input keywords. These algorithms are given as the
output of the search, which can be put to further
use. The search algorithm also takes constraints of
the algorithms into considerations and the total
relevance hit is calculated and based on it the
algorithm is searched and given as the input.

2. DATASET

The dataset i.e. the collection of all the algorithms

in a relational model must be constructed, as
the dataset on its own is one of the inputs to
the search algorithm that will give a relevant
algorithm as the output. The construction of
the dataset uses the concepts of graphs and
thus invariably uses nodes and edges. The
nodes are used to store all the information and
the edges which shall be weighted and
undirected will be used to store the relationship
between two nodes or rather two algorithms.

The relational dataset is an undirected tree, which

can be defined mathematically as follows

G = {V, E, W} where,
V = {vi; 1 ≤ i ≤ n}

http://www.jatit.org/
mailto:1senthil.j.vit@gmail.com
mailto:2arumugamdote@yahoo.co.in
mailto:prats110892@gmail.com
mailto:rahul080327@gmail.com

Journal of Theoretical and Applied Information Technology
 20th October 2013. Vol. 56 No.2

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

245

Where n is the total number of vertices present
inside the dataset.

E = {ei; 1 ≤ i ≤ n-1: ∀ei, ei.v1∈V & ei.v2∈V}
Where v1 is start node for that edge and v2 is the

node on which that edge is incident.
W = {wi; 1 ≤ i ≤ n-1: ∀wi, wi ← e i.w}
Where each wi is a set of keywords.

2.1. Structure Of The Nodes Vi
Before going into the structure of the dataset we
must first define the structure of the nodes that the
dataset will contain. The nodes will consist of two
entities, the algorithm file and the names of the
authors. The algorithms must all be present in a
readable text file and they must all be written in
the structure provided below.

• Each algorithm must begin with ‘Start’ as
the first step and ‘Stop’ as the last step.

• Each step must be given sequential
numbers without any special characters.
E.g. ‘1’, ‘2’, ‘3’ etc.

• Each sub-step must be given roman
numbering in lower case without any
special characters e.g. ‘i’, ‘ii’ etc.

General rules that must be followed in the
algorithm file are

• The algorithm should be written in clear,
crisp steps.

• There should be no ambiguity in the
algorithm.

• All the definitions and the declarations
must be properly given.

The combination of the author names and the file
that contains the algorithm forms the contents of a
particular node in the graph.

2.2 Structure Of The Edges
The nodes are connected using edges. These edges
are weighted but not with numerical weights. The
weights on a particular edge will be the keywords
that form the relation from one node to the other.
With the formal definition given above for the
edge set of G
E = {ei; 1 ≤ i ≤ n-1: ∀ei, ei.v1∈V & ei.v2∈V}
Where v1 is start node for that edge and v2 is the
node on which that edge is incident.
We can clearly see that every edge ei will consist
of three parameters, which are v1, v2 and the
pointer to the set of weights wi.

The keywords that are present in wi are the
keywords that join v1 to v2. This relation states
that the algorithm solved by v2 solves some more
additional problems described by the keywords in
wi than v1.
Each edge represents a unique relation and all
edges are unique. The intersection of weights of
different edges may or may not be disjoint and
each and every node represents a single algorithm.
Before we move on to the algorithm for the
creation of the dataset or the search algorithm on
the dataset we will first have a look at three
functions which play a significant role in both the
algorithm for creation of the dataset as well as the
algorithm to search for an algorithm stored inside
the dataset.

2.3 Working Of The Dataset
For the dataset to be created as well as to be
searched we need keywords. These keywords are
nothing but a specific set of words that define the
problem that is to be added to the dataset or it
defines the problem for which an algorithm is
being searched from the dataset. This set of
keywords can be denoted mathematically as

K = {ki; 1 ≤ i ≤ m}

Using these keywords the entire dataset will be
searched to find the place to add the new algorithm
or to find the node/nodes that contain the
algorithm/s that will be used to solve the problem
defined by the keywords.

The three major functions that are called in
sequence to find that place or the nodes are as
follows.

2.3.1 Function to extract the subgraphs from

the dataset
This function does the following jobs

• It finds all the edges from the tree G such
that at least one of the weights on each
edge matched with at least one keyword.

• From the set of edges that have been
computed from step one it stiches these
edges into one or multiple subgraphs.

This function uses many sets that have been
defined below,

K = {ki; 1 ≤ i ≤ m} – This is the set of the input
keys that have been given by the users where m is
some positive integer.

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 20th October 2013. Vol. 56 No.2

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

246

S = {ei; 1 ≤ i < n-1 | (∃ki ∈ K) ∈ ei.w} – This set
is the set of all the edges in G such that at least one
of the weights on each of those edges has at least
matching keyword in K.

G’ = {Gi’; ∀Gi’ = {V’, E’} | Gi’ ⊆ G} – This is a
set of all the subgraphs that are formed form the
edges that are present in S

A = {vi | ∀vi, vi = ei.v2 where ei ∈ S} – This is the
set of all the vertices that have the edges of S as
their incident edges. These vertices contain the
algorithm that is able to define the problem
defined by K at least partially as each and every
one of those vertices has at least one of the
keywords matching with K.

B’ = {Bi}; Bi = {{longest}, {klist}}, where longest
= the longest relevance path in the Gi’ subgraph &
klist = the list of all the keywords on the path on
longest

The algorithm to find the subgraphs can be defined
as follows

extractSubgraphs()
{
 S’ = {};
 ∀Gi’, Gi’.V’ = {}, Gi’.E’ = {};
 V’’ = {};

ex = e1 //e1 is
the first edge in the set
S

j = 1;
do
{
 vx = ex.v1;
 Gj’.V’ = Gj’.V’ ∪ {vx};
 for ∀vi ∈ Gj’.V’ && ∀vi ∉ V’’
 {

S’ = {el; 1 ≤ l < n-1 |
el.v1 = vx, ∀ei ∈ S };

 Gj’.E’ = Gj’.E’ ∪ S’;

 Gj’.V’ =
Gj’.V’ ∪ {vl : vl =
el.v2};

 S = S – S’;
 S’ = {};
 }
 V’’ = Gj’.V’ ∪ V’’;

 ex = {e| e.v2 = vx};
 if(ex = Φ & |S| ≠ 0)
 {
 headj = vx
 j++;
 ex = e1;
 }
}while(|S| ≠ 0);

}

2.3.1.1 Tme complextity
The above algorithm forms a crucial part of all the
algorithms for the dataset and thus its time
complexity lends a significant part to the time
complexity of those other algorithms and thus the
time complexity of the above algorithm must be
calculated.

To calculate the worst case time complexity we
will assume that at every for all factors that can
contribute to the runtime of the above algorithm
the size of that factor is N which is very large.

• We know that every ∀ will take O(N)
time complexity

• We know that every ∪ will take O(N2)
time complexity as in every addition to
the set we must first ensure that it does
not already exist in the set to which it
being added.

Using the above two rules and the standard rules
of finding the time complexity in the worst case
we can calculate the total worst-case time
complexity.

The above algorithm has the time complexity as
calculated below

• do - while loop – O(N)
• for - loop – O(N)
• A block of statements – O(1)

O(1) + (O(N) * (O(1) + O(N) + (O(N) * (O(1) +
O(N2) + O(N2))) + O(N2) + O(1))) (1)

= O(1) + (O(N) * (O(N) + (O(N) * O(N2)) +
O(N2)))
= O(1) + ((O(N) * O(N3)) + O(N2)
= O(1) + O(N4) + O(N2)
= O(N4) (Result 1)

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 20th October 2013. Vol. 56 No.2

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

247

Thus we can conclude that even in the worst case
scenario the algorithm runs in polynomial time
complexity.

2.3.1.2 Explanation
In the above algorithm the edges that have weights
that match the keywords that have been given by
the user are computed and then these edges are
used to create the subgraphs.

• The first computed edge is taken
• The first node of this edge is taken as the

initial node in the subgraph
• All the computed nodes are searched for

the edges that have the same first node as
the initial node.

• All these edges along with their second
nodes are added to the subgraph

• This process is repeated for all the nodes
that are in the subgraph.

• Once out of the for loop we calculate if
the subgraph is yet to be complete by
checking if the initial node is the second
node for any of the edge in the set of
computed edges. If yes then the first node
of that node becomes the initial node and
the process is repeated. Else if there are
still some edges left in the computed set
of edges then we make the next subgraph.

We repeat all the above steps till the computed
edge is not empty.

2.3.2 Function to find the longest chain in the
 graph
The second algorithm that is used in all the
algorithms for the data set is given below.
longestChain()
{
 for ∀Gi’ ∈ G’
 {
 DFS(Gi’.head, i);
 }
}
DFS(start, i)
{
 list = {};
 count = 0, last = 0;
 for ∀child ∈ start.children
 {
 list.append(child);
 if(child.children = Φ)
 {

 if(count>last)
 {
 Bi.longest=list;
 last = count;
 count = 0;
 }

else
{

count+=max(K,child,i)
 DFS(child.children);
}

 }
}
max(K, child, i)
{
 c = 0;
 for ∀ki ∈ K
 {
 for ∀k ∈ child.keywords
 {
 if(k == ki)
 {
 if(!Bi.klist.contain(k|”same”)){

 Bi.klist.append(k);
 c++;}
 }
 }
 }
 return c;
}

2.3.2.1 Time complexity
To calculate the time complexity we need to
calculate the time complexity of the DFS() and to
calculate the time complexity of DFS() we need to
calculate the time complexity of the max function.

The time complexity of the max() function
O(1) + (O(N)*O(1)) (2)

= O(1) + O(N)
= O(N)

(Result 2)

The time complexity of the DFS() function
O(N) * (O(1) + (O(N)*(O(1) + (max(O(1),
(O(N))) (3)
= O(N) * (O(1) + O(N2))
= O(N) * O(N2) = O(N3)

(Result 3)

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 20th October 2013. Vol. 56 No.2

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

248

As the recursive call happens N times the entire
time complexity is multiplied by O(N) and thus we
get O(N3)

The time complexity of the longestChain()
function is
O(N)*O(N3) = O(N4)

Thus we can conclude that longestChain() has a
polynomial time worst case time complexity.

2.3.2.2 Explanation
In the function for longestChain() a depth first
search is run on each of the subgraphs that we
computed to calculate the longest weighted path in
them. Here the weights would be the total number
weights in the path that match with the keywords.
This function results in two sets; one, which
contains the vertices of the path and the other
contains all the keywords encountered in that path.

2.3.3 Function to sort the paths that have been
found
The third function is described below

sortPaths()
{
 for ∀Bi ∈ B’
 {
 for ∀Bj ∈ B’ – {Bi}
 {

 if(|Bi.klist|<|Bj.klist|)
 Bi ↔ Bj
 }
 }
}

2.3.3.1 Time complexity
O(N)*(O(N)*(O(1)) (4)
= O(N)*O(N)
= O(N2)

(Result 4)

Thus the function sortPaths() has a polynomial
time worst case run time complexity.

2.3.3.2 Explanation
This function is used to sort the longest paths of all
the subgraphs in descending order.

2.4 Creation Of The Dataset
The dataset creation is one of the most important
processes related to the dataset as it includes
adding new algorithms, or replacing previous
algorithms etc. Since both these processes are
processes that will still take place even after the
dataset is created hence this algorithm plays a
major role. Apart from that this algorithm helps in
building the entire tree that is the dataset.
In this algorithm an input node is provided along
with a set of keywords that best define the problem
that is solved by the algorithm given in the input
node.

2.4.1 The algorithm
create()
{
 extractSubgraphs();
 longestChain();
 sortPaths();
 K = K – B1.klist;
 Vs = B1.longest[|longest|-1];
 Vi = getInput();
 if(K = Φ)
 {
 if(Vi.author = Vs.author)
 Vi ↔ Vs
 else
 {
 V = V ∪ {Vi};

E = E ∪ {e| e.V1 = Vs
& e.V2 = Vi & e.w =
“same”};

 }
}

 else
 {
 V = V ∪ {Vi};

E = E ∪ {e| e.V1 = Vs & e.V2 =
Vi & e.w = K};

 W = W ∪ {wi = K};
 }

}
2.4.1.1 Time complexity
Using the results for of time complexity calculated
for the previous functions we can calculate the
time complexity of this function. Also in this
function the union operation is taking place with
just one input hence it will take only O(N) as it
needs to only search the set to check if it has
already been added or not before adding it.

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 20th October 2013. Vol. 56 No.2

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

249

O(N4) + O(N4) + O(N2) + max(O(1), O(N) +
O(N), O(N) + O(N) + O(N)) (5)
= O(N4) + O(N)
= O(N4).

(Result 5)

Thus we can conclude that create() function has a
polynomial time run time complexity in its worst
case scenario. Thus each and every operation of
addition of a node or modification of a node in the
dataset takes polynomial time to execute and since
the creation of the dataset is a collection of these
polynomial operations the creation of the entire
dataset also takes polynomial time complexity
hence the creation of the dataset belongs the P
problem.

2.4.1.2 Explanation
In this algorithm the previously defined functions
are used to find the place where the input node will
be attached. Once we get the longest chains of all
the subgraphs we sort it in a way such that the first
longest chain is the chain that has matched the
maximum number of keywords with the keywords
given in the input and thus the new node has to be
attached to this very chain. If all the keywords have
been matched then it must mean that the input node
contains another version of the algorithm that
already exists in the dataset. If the author of the last
node in the chain and the author of the new node is
the same then it means that the author has uploaded
a new version of his/her algorithm and thus it is
replaced else if it is from a different author then it
is considered as a different version of the algorithm
and added to the last node of the longest chain with
the edge having the keyword as same which states
that the algorithm is similar to its parent. If all the
keyword have not been matched then we add the
node to the end of the chain.

2.5 Searching In The Dataset
The main purpose of creating such a dataset is so
that it can provide various applications by
providing us with algorithms that can help us solve
many problems. However for that to work we need
a searching algorithm on this dataset that given a
set of keywords that define the problem that the
user is having the using those set of keywords the
search algorithm must be able to give a number of
plausible solutions in the form of algorithms and
all these solutions must be ranked to make it user
friendly.

The proposition of one such algorithm is given
below. It takes a set of input keywords and thereby
with the help of that it searches for the algorithms.

2.5.1 Ehe algorithm
search(K)
{
 extractSubgraphs();
 longestChain();
 sortPaths();
 for ∀Bi ∈ B’
 {
 output(Rank i, Bi.longest);
 }
 output(lowest_rank, A);
}

2.5.2 Time complexity
Using the results for of time complexity calculated
for the previous functions we can calculate the
time complexity of this function.

O(N4) + O(N4) + O(N2) + O(N) + O(1) (6)
= O(N4)

(Result 6)
Thus we can conclude that the search function
takes polynomial time complexity in the worst-
case scenario. Thus the problem of finding an
algorithm from the dataset belongs to the P class
of the problem.

2.5.1.2 Explanation
To search the algorithm we need to find the nodes
that match the constraints that are set by the
keywords. The functions defined previously help
us in achieving the exact same thing. As we get
the longest chains consisting of nodes that satisfy
the maximum number matches with the given
keywords and also the function sortPaths() sorts
all the paths such that the first path is the one that
has the maximum matches with the given inputs.
The final set A is also given as output as the set A
consists of all the nodes that match at least one of
the constraints set forth by the keywords.

In this manner the dataset is created and the search
can be also used to get the algorithms as the
output.

3. APPLICATION

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 20th October 2013. Vol. 56 No.2

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

250

This kind of dataset provides a lot of applications
however in this paper we shall deal only with two
of the major applications.

3.1. A Search Engine for Algorithms
This application is one of the most evident
applications of this kind of the dataset. This
dataset provides one of the first and unique search
engines specifically for algorithms as you can add
as well as search for algorithms using this kinds of
dataset.

3.2. Real Time Generative Programming
The major feature of this kind of application is that
it provides algorithms as output. In a real time
generative programming model provided in a
paper “Real Time Code Generation using
Generative Programming Paradigm” in the
European Journal of Scientific Research the author
provides a model for metaprogramming that is
used to code the problem after an algorithm for
that problem has been received, Using this
algorithm the metaprogramming module codes
step by step the entire code to the problem. The
constraints given in this paper for writing the
algorithm are for this singular purpose as that way
of writing the algorithm helps the
metaprogramming module to code the program for
the problem given by the user.

FIGURE 1. [GIVEN IN THE ANNEXURE]

4. CONCLUSION

The creation of a relational dataset that can hold
the algorithm is one of the first works that
provides the basis to move in a direction in which
we can reach a place where machines can solve
problems by interacting with them as we interact
with each other on a daily basis. By using many
paradigms such as Natural Language Processing,
Generative Programming and the dataset we can
build machines that are able to interact with us in
the most human way possible. Other than that, this
dataset and the algorithms provides one of the first
search engines for algorithms and thus a common
platform to spread algorithms as well as a common
platform to search for algorithms that can help
developers and coders everywhere to develop
better code.

REFRENCES:

[1] Levandoski, J.J., RDF Data-Centric Storage in
Web Services, 2009. ICWS 2009. IEEE
International Conference on   6-10 July 2009.
Appears in pages 911 – 918.

 [2] Senthil, J., Arumugam, S., Shah, Pratik., Real

Time Code Generation Using Generative
Programming Paradigm in European Journal
of Scientific Research Volume 78, Issue 4, June
2012, Pages 581-587.

[3] Bollegala, D., A supervised ranking approach
for detecting relationally similar word pairs in
Information and Automation for Sustainability
(ICIAFs), 2010 5th International Conference
on 17-19 Dec. 2010, appears in pages 323 –
328.

[4] Liang Zhu, Yong Zhu, Qin Ma, Chinese
Keyword Search over Relational Databases in
Software Engineering (WCSE), 2010 Second
World Congress on, 19-20 Dec. 2010, appears
in pages 217 - 220

[5] Liang Zhu, Shen-Da Ji, Wen-Zhu Yang, Chun-
Nian Liu, Keyword search based on
knowledge base in relational databases in
Machine Learning and Cybernetics, 2009
International Conference on 12-15 July 2009
appears in pages 1528 – 1533.

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 20th October 2013. Vol. 56 No.2

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

251

5. ANNEXURE

Figure 1. A Model Of Real Time Generative Programming Given In European Journal Of Scientific Research
VOLUME 78, ISSUE 4, JUNE 2012, PAGES 581-587.

http://www.jatit.org/
http://www.scopus.com/source/sourceInfo.url?sourceId=4400151716&origin=recordpage

	1 SENTHIL JAYAVEL 2 S ARUMUGAM 3PRATIK SHAH 4RAHUL DE

