
Journal of Theoretical and Applied Information Technology
 10th October 2013. Vol. 56 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

146

USING ANSWER SET PROGRAMMING TO FIND
MAXIMUM HEIGHT SPANNING TREES

MARCO MANNA
University of Calabria, Department of Mathematics and Informatics, 87036 – Rende, IT

E-mail: manna@mat.unical.it

ABSTRACT

The max tree-height of an undirected graph is the longest possible length of a path among all spanning trees
of the graph. A maximum height spanning tree of an undirected graph is a spanning tree that has a path of
length equal to the max tree-height of the graph. Finding the max tree-height of a graph, or similarly some
spanning tree of maximum height, is an NP-hard optimization problem for which efficient optimal
procedures have been proposed only for special classes of graphs, and which is not polynomially
approximable within any constant factor unless PTIME = NP. The paper presents an elegant yet efficient and
succinct logic program in Answer Set Programming for the identification of both the max tree-height and
the maximum height spanning trees of a graph.

Keywords: Answer Set Programming, Declarative Problem Solving, Artificial Intelligence, Spanning
Trees, Optimization Problems

1. INTRODUCTION

Problems on graphs are at the basis of many real-

world applications in every field of Computer
Science [18]. Some of these problems are tractable
and others are computationally hard. In both cases,
most of the research effort has been devoted to the
design of more and more scalable algorithms that
are able to deal with graphs of large size. However,
in the former case, such algorithms are exact,
namely they always find the best answer.
Conversely, in the latter case, the designed
algorithms either work correctly only if suitable
restrictions are imposed on the instances of the
problem, or they are usually heuristics that find
suboptimal solutions. This is the case of the
problem of finding the max tree-height of an
undirected graph, namely the longest possible
length of a path among all spanning trees of the
graph. This is an NP-hard optimization problem for
which efficient optimal procedures have been
proposed only for very special classes of graphs
(see, e.g., [7]), and which is not polynomially
approximable within any constant factor unless
PTIME = NP [12].

Consider the graph G depicted in Figure 1, which
consists of 9 vertices and 12 edges. It is not difficult
to see that G has a max tree-height of 4. In fact, a
witness spanning tree T exhibiting this bound can
be obtained from G by removing the dashed edges,
namely {1,2}, {1,4}, {6,7}, and {8,9}. Moreover,

due to the special structure of G, it is not possible to
find any spanning tree of G with a path of length
greater than 4. For this reason, tree T is said to be a
maximum height spanning tree of G.

Figure 1: Cactus Graph.

The graph of Figure 1 is actually a cactus graph,
namely a connected undirected graph in which
every block is either an edge or a cycle. For such
graphs, for instance, the problem of identifying the
max tree-height is tractable and, in particular, it is
doable in liner time with respect to the number of
vertices of the graph [7].

Unfortunately, there are contexts in which
suboptimal solutions have to be avoided as much as
possible, especially for those NP-hard optimization
problems where no polynomial approximation
within any constant factor is guaranteed. As an
example, we mention the context of Ontology
Based Data Access [6], a novel field of research in
which the objective is to provide access to data
stored in heterogeneous data sources trough a
semantic layer in the form of an ontology. In

http://www.jatit.org/
mailto:manna@mat.unical.it

Journal of Theoretical and Applied Information Technology
 10th October 2013. Vol. 56 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

147

particular, we consider the case in which a query
has to be evaluated over a database paired with a set
of ontological axioms. In this setting, given a
database D, a set of axioms Σ, and a conjunctive
query q, the key decision problem is to determine
whether q is entailed by D and Σ (namely, whether
D ⋃ Σ ⊨ q). However, in case Σ is a set of shy rules
[20, 3], the unique deductive procedure that has
been designed so far to solve this problem relies on
the size of q. More specifically, this procedure
performs a number k of macro iterations which, to
ensure correctness, must be at least equal to the
max tree-height of the primal graph [15] associated
with q. Since the time required by this procedure
grows exponentially with k, it is clear that k must be
as small as possible, namely it should desirably
coincide with the max tree-height of the primal
graph associated with q.

To easily identify both the max tree-height and
the maximum height spanning trees of a graph, we
design a disjunctive logic program with constraints
in Answer Set Programming (ASP), a fully
declarative language for Knowledge Representation
and Reasoning. ASP has been developed in the
field of logic programming and nonmonotonic
reasoning, and has been already exploited for
solving complex knowledge-based problems in
many areas of Knowledge Management, such as
Artificial Intelligence and Information Integration
(see, e.g., [16, 17, 23, 24, 26]).

The proposed approach has at least three
strengths. First, it computes optimal solutions.
Second, the designed program is quite elegant and
succinct; and this is important especially in contexts
where specific adaptations are required. Third,
implementation issues are completely demanded to
efficient ASP solvers (see, e.g., cmodels [22],
DLV [21, 25], clasp [13], and WASP [8, 9]) that
have been developed in the last few years to
represent and manipulate complex knowledge (see,
e.g., [5] for an in-depth comparison among these
solvers and [11] for an Integrated Development
Environment for ASP supporting the entire life-
cycle of ASP development).

2. TECHNICAL BACKGROUND

2.1 Maximum Height Spanning Trees

An undirected graph (hereafter just graph) G is a

pair (V,E) where V are the vertices and E are the
edges of G. Without loss of generality, we assume
that vertices are positive integers and that edges are
sets of two distinct vertices. Consider a graph G =

(V,E). A path in G, from a vertex a∈V to another
vertex b∈V, is any non-empty sequence S of edges
such that: (i) both a and b appear in exactly one
edge of S; (ii) any two successive edges in the
sequence S share a vertex; (iii) any vertex of G
other than a and b appears either in exactly two
edges of S or in none of the edges of S. The length
of S is given by the number of its edges. Graph G is
connected if there is a path between each pair of its
vertices, and it is called a tree if there is exactly one
path between each pair of its vertices. In the latter
case, for a given tree T, the length of the path
between two vertices a and b is denoted by
lenT(a,b), which of course is equivalent to
lenT(b,a). By definition, lenT(a,a) = 0.

The height (also known as diameter) of a tree T
over a set V of vertices, denoted by height(T), is the
length of the longest path of T. More precisely, it is
defined as follows: height(T) = max({lenT(a,b) |
a,b∈V}). A spanning tree of G is a tree T = (V,K)
that shares with G the same set of vertices and
where K ⊆ E. We are now ready to introduce the
notion of maximum height spanning tree of a graph.

Definition 1. Consider a connected graph G. A
spanning tree T of G is said to be a maximum height
spanning tree of G if, for each spanning tree T' of
G, it holds that height(T) ≥ height(T'). ☐

Using the previous definition, we can also
introduce the notion of max tree-height of a graph.

Definition 2. The max tree-height of a connected
graph G is the height of any of the maximum height
spanning trees of G. ☐

2.2 Height of a Tree

Any algorithm for determining the max tree-

height of a graph, unavoidably, has to rely on some
subroutine that determines the height of a tree.
Hence, the design a good algorithm for the first
problem should use some efficient subroutine. To
this regard, we describe an algorithm that has the
status of folklore in the literature, but to the best of
our knowledge it has never been explicitly stated.
Such an algorithm, called tree-height-finder, is
described at the end of this section.

Proposition 1. Consider a tree T with n vertices.
Algorithm tree-height-finder correctly finds the
height of T in time O(n) on a real computer.

Proof. Let u be a vertex of T, v be one of the
farthest vertex from u, and w be one of the farthest
vertex from v. Assume now that there exists another
path from a to b such that:

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 10th October 2013. Vol. 56 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

148

 lenT(v,w) < lenT(a,b). (1)
First, observe that such a path contains a vertex c
(not necessarily distinct from u) which is reachable
from u, and that appears both in the path from u to
a and the one from u to b (see Figure 2). Without
loss of generality, assume that lenT(c,a) ≥ lenT(c,b).
Expression (1) can now be rewritten as follows:
 lenT(u,v) + lenT(u,w) < lenT(c,a) + lenT(c,b). (2)
Moreover, to comply with the hypothesis stating
that w is one of the farthest vertex from v, also the
following inequality must hold (see Figure 2):
 lenT(u,c) + lenT(c,a) ≤ lenT(u,w). (3)
In fact, otherwise, if expression (3) were not true,
we would have lenT(v,w) < lenT(v,a). Now, by
combining expression (2) and (3), we have:
 lenT(u,v) < lenT(c,b) – lenT(u,c),
which is a contradiction since we know that
lenT(c,b) ≤ lenT(u,v). Therefore, such a path from a
to b cannot exists.
To conclude the proof, since the number of edges
of a tree is linear in the number of nodes, each of
the two traversals of T is doable in linear time with
respect to the number of vertices of T. ☐

Figure 2: Height of a tree.

Remark. Proposition 1 actually says that to
determine the height of a tree T, it is not necessary
to consider all the possible O(|V |2) paths of T, but it
suffices to consider only 2∙|V | such paths.

2.3 Answer Set Programming

In this section, we recall some basic notion of

ASP [3, 4, 10, 14, 19]. We assume sets of
variables, constants, and predicates to be given,
variables to be strings starting with uppercase
letters, and constants to be non-negative integers or
strings starting with lowercase letters. Predicates
are strings starting with lowercase letters. An arity
(non-negative integer) is associated with each
predicate. Moreover, the language allows for using
built-in predicates (i.e., predicates with a fixed
meaning) for the common arithmetic operations.

A term is either a variable or a constant. A
standard atom is an expression p(t1,…,tk), where p
is a predicate of arity k and t1,…,tk are terms. If
t1,…,tk are constants, then p(t1,…,tk) is a ground
standard atom. A set term is either a symbolic set
or a ground set. A symbolic set is a pair
{Terms :Conj}, where Terms is a list of terms, and
Conj is a conjunction of standard atoms. Intuitively,
a set term X :a(X,Y),b(Y) stands for the set of X-
values making the conjunction a(X,Y),b(Y) true,
namely {X | ∃Y s.t. a(X,Y), b(Y) is true}. A ground
set is a set of pairs of the form 〈consts :conj〉, where
consts is a list of constants and conj is a
conjunction of ground standard atoms.

An aggregate function is of the form f(S), where
S is a set term and f is an aggregate function
symbol. Intuitively, an aggregate function can be
thought of as a function, mapping multisets of
constants to constants. Hereinafter, we will adopt
the following notation of the DLV system [21] for
representing aggregate functions: #min (minimal
term); #max (maximal term); and #count (number
of terms). An aggregate atom is a structure of the
form f(S) ⊙ T, where f(S) is an aggregate function,
⊙ is a comparison operator, and T is a term. If T is
a constant and S is a ground set term, then f(S) ⊙ T
is a ground aggregate atom. A literal is a standard
atom, or a standard atom preceded by the negation
as failure symbol not, or an aggregate atom.

A rule r is an expression of the form:

α1 ∨ … ∨ αn :– l1, …, lm ,
where α1, …, αn are standard atoms and l1, …,

lm are literals. The disjunction α1 ∨ … ∨ αn is
referred to as the head of r, while the conjunction
l1, …, lm is the body of r. We denote by H(r) the
set of head atoms and by B(r) the set of body
literals. If H(r) and all the literals in B(r) are
ground, then r is a ground rule. A ground rule r is a
fact if both B(r) is empty and H(r) is a singleton. If

ALGORITHM tree-height-finder

Input: A tree T.

Output: The height of T.

1. Pick an arbitrary vertex u of T;
2. Perform a traversal of T from vertex u to compute the

distance between u and every other vertex of T;
3. Pick one of the farthest vertex from u, say v;

4. Perform another traversal of T from v to compute the
distance between v and every other vertex of T;

5. Return the maximum distance between v and the
other vertices of T.

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 10th October 2013. Vol. 56 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

149

H(r) is empty, then r is said to be a strong
constraint. A program P is a set of rules; if all rules
of P are ground, then P is a ground program.

A program P can be also equipped with a set of
weak constraints to formulate optimization
problems in an easy and natural way. While strong
constraints always have to be satisfied, weak
constraints express desiderata, i.e., they should be
satisfied if it is possible. A weak constraint is an
expression of the form:

 :~ l1, …, lm. [W],
where l1, …, lm are literals, and W is a term
representing the weight of the constraint.

2.4 Answer Set Semantics

Consider an ASP program P (with no weak

constraint). Before defining the semantics of P, we
assume that every constraint γ of P of the form :-
l1, …, lm has been replaced by a rule of the form
coγ :– l1, …, lm, not coγ, where coγ is a
symbol that does not occur in any other rule of P.
The universe of P, denoted by UP, is the set of
constants appearing in P. The base of P, denoted by
BP, is the set of standard atoms constructible from
predicates of P with constants in UP. A substitution
is a mapping from a set of variables to UP. Given a
substitution σ and any structure s containing atoms,
the structure obtained by replacing each variable X
of s with σ(X) is denoted by σ(s). A substitution
over the set of global variables of rule r is a global
substitution for r; a substitution over the set of local
variables of a set term S is a local substitution for S.
Given a set term S={Terms :Conj} without global
variables, the instantiation of S, denoted by inst(S),
is the ground set term {〈σ(Terms) :σ(Conj)〉 | σ is a
local substitution for S}. A ground instance of a
rule r is obtained in two steps: first, a global
substitution σ for r is applied; then, every set term S
in σ(r) is replaced by its instantiation inst(S). The
instantiation Ground(P) of program P is the set of
instances of all rules in P.

An interpretation I for a program P is a subset of
BP. A standard ground atom α is true with respect
to I if α ∈ I; otherwise, α is false with respect to I. A
negative standard ground literal not α is true with
respect to I if α ∉ I; otherwise, not α is true with
respect to I. Consider a set term S. Let SI denote the
set {〈t1,…,tk〉 | 〈t1,…,tk :Conj〉 ∈ S, and all the
atoms of Conj are true with respect to I}. The
evaluation of S with respect to I is the multiset I(S)
= {t1 | 〈t1,…,tk〉 ∈ SI} obtained as the projection of
the tuples of SI on their first constant. The

evaluation I(f(S)) of an aggregate function f(S) with
respect to I is the result of the application of f on
I(S). If the multiset I(S) is not in the domain of f,
I(f(S))=⊥ (where ⊥ is a fixed symbol not occurring
in P). A ground aggregate atom f(S) ⊙ k is true
with respect to I if both I(f(S))≠⊥ and I(f(S))–k
hold; otherwise, f(S)–k is false.

Given an interpretation I, a rule r is satisfied with
respect to I if some head atom is true with respect
to I whenever all body literals are true with respect
to I. An interpretation M is a model of a program P
if all the rules r of Ground(P) are satisfied with
respect to M. A model M of P is (subset) minimal if
no model N of P exists such that N⊂M. Let P be a
ground program, I be an interpretation, and PI
denote the transformed program obtained from P by
deleting all rules in which a body literal is false
with respect to I. An interpretation M is an answer
set of P if it is a minimal model of Ground(P)M.
Finally, the answer sets of P plus a set of weak
constraints Ω are those answer sets of P which
minimize the sum of the weights of the violated
weak constraints.

3. ASP-BASED ENCODING

We now propose an ASP-based encoding for the

identification of both the max tree-height and the
maximum height spanning trees of a graph. More
specifically, we define a mapping µ that encodes a
graph as a set of facts, and we design a program P
and a weak constraint ω such that, for every graph
G, T is a maximum height spanning tree of G if and
only if T is encoded by an answer set of program
µ(G) ⋃ P ⋃ {ω}. Moreover, we show how to
determine the max tree-height of G from µ(G) ⋃ P
⋃ {ω}. For the rest of this section, let G = (V,E)
denote a connected graph.

First, we start by defining the mapping µ, which
associates a fact to each edge of G as follows: µ(G)
= {edge(u,v) | {u,v}∈E, u<v}. Then, we
construct program P by gradually introducing its
rules according to role they play.

We start with two rules that derive the vertices of
G by exploiting its edges, namely they infer the set
of atoms {vertex(v) | v ∈ V} (observe that, since
G is assumed to be connected, each vertex of G
appears in at least one edge of G):

vertex(U) :- edge(U,V).

vertex(V) :- edge(U,V).

Once we have the vertices of G, we can count
them by using the built-in aggregate #count to

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 10th October 2013. Vol. 56 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

150

derive the atom size(n), where n = |V |. This can
be obtained via the following rule:

size(N) :- #count{V:vertex(V)} = N.

Moreover, it will result useful to fix a node of the
graph that will play the role of root in the spanning
trees that we are going to construct. Without loss of
generality, we choose the smallest node of V (recall
that vertices are positive integers). This can be
achieved by the following rule, which uses the
aggregate function #min to derive the atom
first(ur), where ur = min(V):

first(Ur) :- #min{V:vertex(V)} = Ur.

All the atoms derived so far are obtained
deterministically, and they are part of every answer
set of µ(G) ⋃ P ⋃ {ω}. Conversely, to identify all
maximum height spanning trees of G, we need to
derive different sets of atoms, each of which
consists of the edges of some maximum height
spanning tree of G, and all of which give rise to the
answer sets of µ(G) ⋃ P ⋃ {ω}. To this end, we
introduce the next disjunctive rule to pick (or guess)
from E different sets of edges, each of which forms
a candidate maximum height spanning tree of G:

pick(U,V) ∨ discard(U,V) :- edge(U,V).

Note that we used the term “candidate” since for
an arbitrary set of edges, say S, the graph (V,S)
could be neither a maximum height spanning tree,
nor even a tree of G. Hence, it is clear that we need
further rules to check whether S satisfies or not our
desiderata. In the former case, S gives rise to one of
the answer sets of µ(G) ⋃ P ⋃ {ω}. In the latter
case, S will be ignored instead. Let us now fix one
possible set of edges S and consider the set
{pick(u,v) | {u,v}∈S, u<v} consisting of the
atoms associated with S that are derived by the
above disjunctive rule. We are going to introduce
suitable rules and constraints to determine whether
graph C = (V,S) is a maximum height spanning tree
of G or whether the set S has to be ignored without
being part of any answer set of µ(G) ⋃ P ⋃ {ω}.

By using the three recursive rules below, we can
collect all the nodes that are reachable in C from the
node ur = min(V).

reachable(Ur) :- first(Ur).

reachable(V) :- reachable(U), pick(U,V).

reachable(U) :- reachable(V), pick(U,V).

A first reason to ignore S is that C is actually not
a tree due to some vertex of V that is not reachable
from ur. To identify such situations, we add to
program P the following strong constraint, saying

that it is not possible that v is a vertex and v is not
reachable from ur:

:- vertex(V), not reachable(V).

Moreover, it could also be the case that C is not a
tree since the cardinality of S is greater than n–1.
(Note that if each vertex of V is reachable from ur,
then the cardinality of S is at least n–1.) This can
be checked by adding to P also the following strong
constraint:

:- size(N), #count{U,V:pick(U,V)} >= N.

Up to this point we have guaranteed that C is
actually a spanning tree of G. Now, it remains to
enforce that the height of C is equal to the max tree-
height of G. To this end, we propose a declarative
version of the technique described in Section 2.2 to
find the height of a tree. For convenience, for each
edge {u,v}∈S, the next rules derive the two atoms
sEdge(u,v) and sEdge(v,u), which allow us to
treat each edge of C as a set of two vertices:

sEdge(U,V) :- pick(U,V).

sEdge(V,U) :- pick(U,V).

The following rules simulate a traversal of C
from ur to determine the distance between ur and
every other vertex of C:

trv1(Ur,V,1) :- first(Ur), sEdge(Ur,V).

trv1(V,W,D1) :- trv1(U,V,D), sEdge(V,W),
 U<>W, D1 = D + 1.

In particular, the meaning of each atom of the
form trv1(u,v,d) is that the distance between ur
and v is d, namely d = lenC(ur,v). Moreover, u is the
vertex that precedes v in the path from ur to v. Note
that it is important to keep the predecessor of each
vertex to avoid, in the second rule, that the traversal
extends to vertices that have already been visited.

The next rule selects one of the farthest vertex
from ur:

far1(Vr) :- Dr = #max{D:trv1(_,_,D)},
 Vr = #min{V:dist1(_,V,Dr)}.

Actually, this rule first determines the maximum
distance, say dr, from ur to any other vertex. Then,
it picks the minimum vertex, call it vr, that is at
distance dr from ur.

At this point, the following two rules simulate a
second traversal of C from vr to determine the
distance between vr and every other vertex of C:

trv2(Vr,V,1) :- far1(Vr), sEdge(Vr,V).

trv2(V,W,D1) :- trv2(U,V,D), sEdge(V,W),
 U<>W, D1 = D + 1.

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 10th October 2013. Vol. 56 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

151

Similarly to the first traversal, the meaning of
each atom of the form trv2(u,v,d) is that the
distance between vr and v is d and that u is the
vertex that precedes v in the path from vr to v.

The next rule selects the maximum distance,
say dm, between vr and the other vertices of C:

maxDist(Dm) :- Dm = #max{D:trv2(_,_,D)}.

Finally, we define the weak constraint ω, which
guarantees that S (and therefore C) is not ignored
only if its height dm is the max tree-height of G.
Actually, ω allows us to ignores S if the value n–
dm is not the minimum one over all possible
different sets of edged guessed by the only
disjunctive rule of P:

:~ size(N), maxDist(Dm), V=N-Dm. [V]

As previously stated, the answer sets of the
program µ(G) ⋃ P enhanced with ω are
representative of all the maximum height spanning
tree of G. However, a run of any ASP solver over
this program can also return the valued dm that
appears in each answer set that satisfies the weak
constraint. In fact, all the maximum height
spanning trees of G share the same value for the
height dm. Hence, it suffices to ask for at least one
answer set of µ(G) ⋃ P ⋃ {ω}, which necessarily
contains the atom maxDist(dm).

4. DISCUSSION

We have presented a succinct yet elegant ASP

program for the identification of both the max tree-
height and the maximum height spanning trees of a
graph, which are both NP-hard optimization
problem for which efficient optimal procedures
have been proposed only for special classes of
graphs and which are not polynomially
approximable within any constant factor unless
PTIME = NP.

The approach has been profitably applied in the
context of Ontology Based Data Access, to
determine the max tree-height of the primal graph
associated with a conjunctive query. In this setting,
due to the size of real-world conjunctive queries,
which may give rise to graphs with few dozens of
vertices, the time required by any ASP solver which
interprets the presented program to identify the max
tree-height of the graph associated with a
conjunctive query is negligible when compared
with the time required to evaluate the conjunctive
query itself, and that may be drastically reduced by
exploiting the max tree-height of the primal graph
associated with the query.

Finally, an interesting line for future research is
to extend the proposed encoding for dealing with
possibly unconnected graphs. In these case, the
notion of max tree-height is naturally extended by
considering the maximum value among all possible
max tree-heights of the different connected
components of the graph.

REFRENCES:

 [1] M. Alviano, F. Calimeri, W. Faber, S. Perri,

and N. Leone, “Unfounded Sets and Well-
Founded Semantics of Answer Set Programs
with Aggregates”, Journal of Artificial
Intelligence Research, Vol. 42, 2011, p. 487-
527.

 [2] M. Alviano, W. Faber, N. Leone, S. Perri, G.
Pfeifer, and G. Terracina, “The Disjunctive
Datalog System DLV”, Datalog Reloaded -
First International Workshop (Datalog 2010),
LNCS, 2011, pp. 282-301.

 [3] M. Alviano, N. Leone, M. Manna, G.
Terracina, and P. Veltri, “Magic-Sets for
Datalog with Existential Quantifiers”, Datalog
in Academia and Industry - Second
International Workshop (Datalog 2.0), LNCS,
Vol. 7494, 2012, pp. 31-43.

 [4] C. Baral, “Knowledge Representation,
Reasoning and Declarative Problem Solving”,
Cambridge University Press, 2003.

 [5] F. Calimeri, G. Ianni, F. Ricca, M. Alviano, A.
Bria, G. Catalano, S. Cozza, W. Faber, O.
Febbraro, N. Leone, M. Manna, A. Martello,
C. Panetta, S. Perri, K. Reale, M.C. Santoro,
M. Sirianni, G. Terracina, P. Veltri, “The
Third Answer Set Programming Competition:
Preliminary Report of the System Competition
Track”, Proceedings of the 11th International
Conference on Logic Programming and
Nonmonotonic Reasoning (LPNMR),
Vancouver, Canada, May 16-19, 2011, pp.
388-403.

 [6] D. Calvanese, G. De Giacomo, D. Lembo, M.
Lenzerini, A. Poggi, and R. Rosati, “Ontology-
based Database Access”, Proceedings of the
15th Italian Symposium on Advanced
Database Systems (SEBD), Fasano, Italy, June
17-20, 2007, pp. 324-331.

 [7] K. Das, and M. Pal, “An Optimal Algorithm to
Find Maximum and Minimum Height
Spanning Trees on Cactus Graphs”, AMO -
Advanced Modeling and Optimization, Vol.
10, No. 1, 2008, pp. 121-134.

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 10th October 2013. Vol. 56 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

152

 [8] C. Dodaro, M. Alviano, W. Faber, N. Leone,
F. Ricca, and M. Sirianni, “The Birth of a
WASP: Preliminary Report on a New ASP
Solver”, Proceedings of the 26th Italian
Conference on Computational Logic (CILC),
CEUR Workshop Proceedings, 2011, pp. 99-
113.

 [9] C. Dodaro, M. Alviano, W. Faber, N. Leone,
and F. Ricca, “WASP: A native ASP solver
based on constraint learning”, Proceedings of
the 12th International Conference on Logic
Programming and Nonmonotonic Reasoning
(LPNMR), LNCS, 2013, to appear.

 [10] W. Faber, N. Leone, and G. Pfeifer,
“Recursive Aggregates in Disjunctive Logic
Programs: Semantics and Complexity”,
Proceedings of the 9th European Conference
on Logics in Artificial Intelligence (JELIA),
Lisbon, Portugal, September 27-30, 2004, pp.
200-212.

 [11] O. Febbraro, K. Reale, and F. Ricca,
“ASPIDE: Integrated Development
Environment for Answer Set Programming”,
Proceedings of the 11th International
Conference on Logic Programming and
Nonmonotonic Reasoning (LPNMR), Canada,
May 16-19, 2011, pp. 317-330.

 [12] G. Galbiati, A. Morzenti, and F. Maffioli, “On
the Approximability of Some Maximum
Spanning Tree Problems”, Theoretical
Computer Science, Vol. 181, No. 1, 1997, pp.
107-118.

 [13] M. Gebser, B. Kaufmann, A. Neumann, and T.
Schaub, “Conflict-driven answer set solving”,
Proceedings of the 20th International Joint
Conference on Artificial Intelligence (IJCAI),
India, January 6-12, 2007, p. 386-392.

 [14] M. Gelfond, and N. Leone, “Logic
programming and knowledge representation –
The A-Prolog perspective”, Artificial
Intelligence, Vol. 138, No. 1-2, 2002, pp. 3-38.

 [15] G. Gottlob, N. Leone, and F. Scarcello,
“Hypertree Decompositions: A Survey”,
Proceedings of the 26th International
Symposium on Mathematical Foundations of
Computer Science (MFCS), Marianske Lazne,
Czech Republic, August 27-31, 2001.

 [16] G. Grasso, S. Iiritano, N. Leone, and F. Ricca,
“Some DLV Applications for Knowledge
Management”, Proceedings of the 10th
International Conference on Logic
Programming and Nonmonotonic Reasoning
(LPNMR), Potsdam, Germany, September 14-
18, 2009, pp. 591-597.

 [17] G. Grasso, N. Leone, M. Manna, and F. Ricca,
“ASP at Work: Spin-off and Applications of
the DLV System”, Logic Programming,
Knowledge Representation, and Nonmonotonic
Reasoning, LNCS, Vol. 6565, 2011, pp. 432-
451.

 [18] J. Gross, and J. Yellen. “Handbook of Graph
Theory”, CRC Press, 2004.

 [19] J. Lee, and Y. Meng, “On Reductive
Semantics of Aggregates in Answer Set
Programming”, Proceedings of the 10th
International Conference on Logic
Programming and Nonmonotonic Reasoning
(LPNMR), Potsdam, Germany, September 14-
18, 2009, pp. 182-195.

 [20] N. Leone, M. Manna, G. Terracina, and P.
Veltri, “Efficiently Computable Datalog∃
Programs”, Proceedings of the 13th
International Conference on Principles of
Knowledge Representation and Reasoning
(KR), Italy, June 10-14, 2012, pp.13-23.

 [21] N. Leone, G. Pfeifer, W. Faber, T. Eiter, G.
Gottlob, S. Perri, and F. Scarcello, “The DLV
system for knowledge representation and
reasoning”, ACM Transactions of Computers
Logic, Vol. 7, No. 3, 2006, pp. 499-562.

 [22] Y. Lierler, and M. Maratea, “Cmodels-2: SAT-
based Answer Set Solver Enhanced to Non-
tight Programs”, Proceedings of the 7th
International Conference on Logic
Programming and Nonmonotonic Reasoning
(LPNMR), FL, USA, January 6-8, 2004, pp.
346-350.

 [23] M. Manna, F. Ricca, and G. Terracina,
“Consistent query answering via ASP from
different perspectives: Theory and practice”,
Theory and Practice of Logic Programming,
Vol. 13, No. 2, 2013, pp. 227-252.

 [24] F. Ricca, A. Dimasi, G. Grasso, S. M. Ielpa,
and S. Iiritano, M. Manna, and N. Leone, “A
Logic-Based System for e-Tourism”,
Fundamenta Informaticae, Vol. 105, No. 1-2,
2010, pp. 35-55.

 [25] F. Ricca, W. Faber, and N. Leone, “A
backjumping technique for Disjunctive Logic
Programming”, AI Communications, Vol. 19,
No. 2, 2006, pp. 155-172.

 [26] F. Ricca, G. Grasso, M. Alviano, M. Manna,
V. Lio, S. Iiritano, and N. Leone, “Team-
building with Answer Set Programming in the
Gioia-Tauro Seaport”, Theory and Practice of
Logic Programming, Vol. 12, No. 3, 2012, pp.
361-381.

http://www.jatit.org/

	MARCO MANNA
	2.1 Maximum Height Spanning Trees
	2.2 Height of a Tree
	2.3 Answer Set Programming
	2.4 Answer Set Semantics

