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ABSTRACT 
 

The max tree-height of an undirected graph is the longest possible length of a path among all spanning trees 
of the graph. A maximum height spanning tree of an undirected graph is a spanning tree that has a path of 
length equal to the max tree-height of the graph. Finding the max tree-height of a graph, or similarly some 
spanning tree of maximum height, is an NP-hard optimization problem for which efficient optimal 
procedures have been proposed only for special classes of graphs, and which is not polynomially 
approximable within any constant factor unless PTIME = NP. The paper presents an elegant yet efficient and 
succinct logic program in Answer Set Programming for the identification of both the max tree-height and 
the maximum height spanning trees of a graph. 
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1. INTRODUCTION  

 
Problems on graphs are at the basis of many real-

world applications in every field of Computer 
Science [18]. Some of these problems are tractable 
and others are computationally hard. In both cases, 
most of the research effort has been devoted to the 
design of more and more scalable algorithms that 
are able to deal with graphs of large size. However, 
in the former case, such algorithms are exact, 
namely they always find the best answer. 
Conversely, in the latter case, the designed 
algorithms either work correctly only if suitable 
restrictions are imposed on the instances of the 
problem, or they are usually heuristics that find 
suboptimal solutions. This is the case of the 
problem of finding the max tree-height of an 
undirected graph, namely the longest possible 
length of a path among all spanning trees of the 
graph. This is an NP-hard optimization problem for 
which efficient optimal procedures have been 
proposed only for very special classes of graphs 
(see, e.g., [7]), and which is not polynomially 
approximable within any constant factor unless 
PTIME = NP [12]. 

Consider the graph G depicted in Figure 1, which 
consists of 9 vertices and 12 edges. It is not difficult 
to see that G has a max tree-height of 4. In fact, a 
witness spanning tree T exhibiting this bound can 
be obtained from G by removing the dashed edges, 
namely {1,2}, {1,4}, {6,7}, and {8,9}. Moreover, 

due to the special structure of G, it is not possible to 
find any spanning tree of G with a path of length 
greater than 4. For this reason, tree T is said to be a 
maximum height spanning tree of G. 

 
Figure 1: Cactus Graph. 

The graph of Figure 1 is actually a cactus graph, 
namely a connected undirected graph in which 
every block is either an edge or a cycle. For such 
graphs, for instance, the problem of identifying the 
max tree-height is tractable and, in particular, it is 
doable in liner time with respect to the number of 
vertices of the graph [7].  

Unfortunately, there are contexts in which 
suboptimal solutions have to be avoided as much as 
possible, especially for those NP-hard optimization 
problems where no polynomial approximation 
within any constant factor is guaranteed. As an 
example, we mention the context of Ontology 
Based Data Access [6], a novel field of research in 
which the objective is to provide access to data 
stored in heterogeneous data sources trough a 
semantic layer in the form of an ontology. In 
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particular, we consider the case in which a query 
has to be evaluated over a database paired with a set 
of ontological axioms. In this setting, given a 
database D, a set of axioms Σ, and a conjunctive 
query q, the key decision problem is to determine 
whether q is entailed by D and Σ (namely, whether 
D ⋃ Σ ⊨ q). However, in case Σ is a set of shy rules 
[20, 3], the unique deductive procedure that has 
been designed so far to solve this problem relies on 
the size of q. More specifically, this procedure 
performs a number k of macro iterations which, to 
ensure correctness, must be at least equal to the 
max tree-height of the primal graph [15] associated 
with q. Since the time required by this procedure 
grows exponentially with k, it is clear that k must be 
as small as possible, namely it should desirably 
coincide with the max tree-height of the primal 
graph associated with q. 

To easily identify both the max tree-height and 
the maximum height spanning trees of a graph, we 
design a disjunctive logic program with constraints 
in Answer Set Programming (ASP), a fully 
declarative language for Knowledge Representation 
and Reasoning. ASP has been developed in the 
field of logic programming and nonmonotonic 
reasoning, and has been already exploited for 
solving complex knowledge-based problems in 
many areas of Knowledge Management, such as 
Artificial Intelligence and Information Integration 
(see, e.g., [16, 17, 23, 24, 26]).  

The proposed approach has at least three 
strengths. First, it computes optimal solutions. 
Second, the designed program is quite elegant and 
succinct; and this is important especially in contexts 
where specific adaptations are required. Third, 
implementation issues are completely demanded to 
efficient ASP solvers (see, e.g., cmodels [22], 
DLV [21, 25], clasp [13], and WASP [8, 9]) that 
have been developed in the last few years to 
represent and manipulate complex knowledge (see, 
e.g., [5] for an in-depth comparison among these 
solvers and [11] for an Integrated Development 
Environment for ASP supporting the entire life-
cycle of ASP development). 

2. TECHNICAL BACKGROUND 
 

2.1 Maximum Height Spanning Trees 
 
An undirected graph (hereafter just graph) G is a 

pair (V,E) where V are the vertices and E are the 
edges of G. Without loss of generality, we assume 
that vertices are positive integers and that edges are 
sets of two distinct vertices. Consider a graph G = 

(V,E). A path in G, from a vertex a∈V to another 
vertex b∈V, is any non-empty sequence S of edges 
such that: (i) both a and b appear in exactly one 
edge of S; (ii) any two successive edges in the 
sequence S share a vertex; (iii) any vertex of G 
other than a and b appears either in exactly two 
edges of S or in none of the edges of S. The length 
of S is given by the number of its edges. Graph G is 
connected if there is a path between each pair of its 
vertices, and it is called a tree if there is exactly one 
path between each pair of its vertices. In the latter 
case, for a given tree T, the length of the path 
between two vertices a and b is denoted by 
lenT(a,b), which of course is equivalent to 
lenT(b,a). By definition, lenT(a,a) = 0. 

The height (also known as diameter) of a tree T 
over a set V of vertices, denoted by height(T), is the 
length of the longest path of T. More precisely, it is 
defined as follows: height(T) = max({lenT(a,b) | 
a,b∈V}). A spanning tree of G is a tree T = (V,K) 
that shares with G the same set of vertices and 
where K ⊆ E. We are now ready to introduce the 
notion of maximum height spanning tree of a graph. 

Definition 1. Consider a connected graph G. A 
spanning tree T of G is said to be a maximum height 
spanning tree of G if, for each spanning tree T' of 
G, it holds that height(T) ≥ height(T'). ☐ 

Using the previous definition, we can also 
introduce the notion of max tree-height of a graph. 

Definition 2. The max tree-height of a connected 
graph G is the height of any of the maximum height 
spanning trees of G. ☐ 

2.2 Height of a Tree 
 
Any algorithm for determining the max tree-

height of a graph, unavoidably, has to rely on some 
subroutine that determines the height of a tree. 
Hence, the design a good algorithm for the first 
problem should use some efficient subroutine. To 
this regard, we describe an algorithm that has the 
status of folklore in the literature, but to the best of 
our knowledge it has never been explicitly stated. 
Such an algorithm, called tree-height-finder, is 
described at the end of this section.  

Proposition 1. Consider a tree T with n vertices. 
Algorithm tree-height-finder correctly finds the 
height of T in time O(n) on a real computer. 

Proof. Let u be a vertex of T, v be one of the 
farthest vertex from u, and w be one of the farthest 
vertex from v. Assume now that there exists another 
path from a to b such that: 
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   lenT(v,w) < lenT(a,b). (1) 
First, observe that such a path contains a vertex c 
(not necessarily distinct from u) which is reachable 
from u, and that appears both in the path from u to 
a and the one from u to b (see Figure 2). Without 
loss of generality, assume that lenT(c,a) ≥ lenT(c,b). 
Expression (1) can now be rewritten as follows: 
   lenT(u,v) + lenT(u,w) < lenT(c,a) + lenT(c,b). (2) 
Moreover, to comply with the hypothesis stating 
that w is one of the farthest vertex from v, also the 
following inequality must hold (see Figure 2): 
   lenT(u,c) + lenT(c,a) ≤ lenT(u,w). (3) 
In fact, otherwise, if expression (3) were not true, 
we would have lenT(v,w) < lenT(v,a). Now, by 
combining expression (2) and (3), we have: 
   lenT(u,v) < lenT(c,b) – lenT(u,c), 
which is a contradiction since we know that 
lenT(c,b) ≤ lenT(u,v). Therefore, such a path from a 
to b cannot exists. 
To conclude the proof, since the number of edges 
of a tree is linear in the number of nodes, each of 
the two traversals of T is doable in linear time with 
respect to the number of vertices of T. ☐ 

 
Figure 2: Height of a tree. 

Remark. Proposition 1 actually says that to 
determine the height of a tree T, it is not necessary 
to consider all the possible O(|V |2) paths of T, but it 
suffices to consider only 2∙|V | such paths. 

 

2.3 Answer Set Programming 
 
In this section, we recall some basic notion of 

ASP [3, 4, 10, 14, 19]. We assume sets of 
variables, constants, and predicates to be given, 
variables to be strings starting with uppercase 
letters, and constants to be non-negative integers or 
strings starting with lowercase letters. Predicates 
are strings starting with lowercase letters. An arity 
(non-negative integer) is associated with each 
predicate. Moreover, the language allows for using 
built-in predicates (i.e., predicates with a fixed 
meaning) for the common arithmetic operations. 

A term is either a variable or a constant. A 
standard atom is an expression p(t1,…,tk), where p 
is a predicate of arity k and t1,…,tk are terms. If 
t1,…,tk are constants, then p(t1,…,tk) is a ground 
standard atom. A set term is either a symbolic set 
or a ground set. A symbolic set is a pair 
{Terms :Conj}, where Terms is a list of terms, and 
Conj is a conjunction of standard atoms. Intuitively, 
a set term X :a(X,Y),b(Y) stands for the set of X-
values making the conjunction a(X,Y),b(Y) true, 
namely {X | ∃Y s.t. a(X,Y), b(Y) is true}. A ground 
set is a set of pairs of the form 〈consts :conj〉, where 
consts is a list of constants and conj is a 
conjunction of ground standard atoms. 

An aggregate function is of the form f(S), where 
S is a set term and f  is an aggregate function 
symbol. Intuitively, an aggregate function can be 
thought of as a function, mapping multisets of 
constants to constants. Hereinafter, we will adopt 
the following notation of the DLV system [21] for 
representing aggregate functions: #min (minimal 
term); #max (maximal term); and #count (number 
of terms). An aggregate atom is a structure of the 
form f(S) ⊙ T, where f(S) is an aggregate function, 
⊙ is a comparison operator, and T is a term. If T is 
a constant and S is a ground set term, then f(S) ⊙ T 
is a ground aggregate atom. A literal is a standard 
atom, or a standard atom preceded by the negation 
as failure symbol not, or an aggregate atom. 

A rule r is an expression of the form: 

α1 ∨ … ∨ αn  :–  l1, …, lm , 
where α1, …, αn are standard atoms and l1, …, 

lm are literals. The disjunction α1 ∨ … ∨ αn is 
referred to as the head of r, while the conjunction 
l1, …, lm is the body of r. We denote by H(r) the 
set of head atoms and by B(r) the set of body 
literals. If H(r) and all the literals in B(r) are 
ground, then r is a ground rule. A ground rule r is a 
fact if both B(r) is empty and H(r) is a singleton. If 

 

ALGORITHM tree-height-finder 

Input: A tree T. 

Output: The height of T.  

1. Pick an arbitrary vertex u of T; 
2. Perform a traversal of T from vertex u to compute the 

distance between u and every other vertex of T; 
3. Pick one of the farthest vertex from u, say v; 

4. Perform another traversal of T from v to compute the 
distance between v and every other vertex of T; 

5. Return the maximum distance between v and the 
other vertices of T. 
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H(r) is empty, then r is said to be a strong 
constraint. A program P is a set of rules; if all rules 
of P are ground, then P is a ground program. 

A program P can be also equipped with a set of 
weak constraints to formulate optimization 
problems in an easy and natural way. While strong 
constraints always have to be satisfied, weak 
constraints express desiderata, i.e., they should be 
satisfied if it is possible. A weak constraint is an 
expression of the form: 

 :~  l1, …, lm. [W], 
where l1, …, lm are literals, and W is a term 
representing the weight of the constraint. 

2.4 Answer Set Semantics 
 
Consider an ASP program P (with no weak 

constraint). Before defining the semantics of P, we 
assume that every constraint γ of P of the form :- 
l1, …, lm has been replaced by a rule of the form 
coγ :– l1, …, lm, not coγ,  where coγ is a 
symbol that does not occur in any other rule of P. 
The universe of P, denoted by UP, is the set of 
constants appearing in P. The base of P, denoted by 
BP, is the set of standard atoms constructible from 
predicates of P with constants in UP. A substitution 
is a mapping from a set of variables to UP. Given a 
substitution σ and any structure s containing atoms, 
the structure obtained by replacing each variable X 
of s with σ(X) is denoted by σ(s). A substitution 
over the set of global variables of rule r is a global 
substitution for r; a substitution over the set of local 
variables of a set term S is a local substitution for S. 
Given a set term S={Terms :Conj} without global 
variables, the instantiation of S, denoted by inst(S), 
is the ground set term {〈σ(Terms) :σ(Conj)〉 | σ is a 
local substitution for S}. A ground instance of a 
rule r is obtained in two steps: first, a global 
substitution σ for r is applied; then, every set term S 
in σ(r) is replaced by its instantiation inst(S). The 
instantiation Ground(P) of program P is the set of 
instances of all rules in P. 

An interpretation I for a program P is a subset of 
BP. A standard ground atom α is true with respect 
to I if α ∈ I; otherwise, α is false with respect to I. A 
negative standard ground literal not α is true with 
respect to I if α ∉ I; otherwise, not α is true with 
respect to I. Consider a set term S. Let SI denote the 
set {〈t1,…,tk〉 | 〈t1,…,tk :Conj〉 ∈ S, and all the 
atoms of Conj are true with respect to I}. The 
evaluation of S with respect to I is the multiset I(S) 
= {t1 | 〈t1,…,tk〉 ∈ SI} obtained as the projection of 
the tuples of SI on their first constant. The 

evaluation I(f(S)) of an aggregate function f(S) with 
respect to I is the result of the application of f on 
I(S). If the multiset I(S) is not in the domain of f, 
I(f(S))=⊥ (where ⊥ is a fixed symbol not occurring 
in P). A ground aggregate atom f(S) ⊙ k is true 
with respect to I if both I(f(S))≠⊥ and I(f(S))–k 
hold; otherwise, f(S)–k is false. 

Given an interpretation I, a rule r is satisfied with 
respect to I if some head atom is true with respect 
to I whenever all body literals are true with respect 
to I. An interpretation M is a model of a program P 
if all the rules r of Ground(P) are satisfied with 
respect to M. A model M of P is (subset) minimal if 
no model N of P exists such that N⊂M. Let P be a 
ground program, I be an interpretation, and PI 
denote the transformed program obtained from P by 
deleting all rules in which a body literal is false 
with respect to I. An interpretation M is an answer 
set of P if it is a minimal model of Ground(P)M. 
Finally, the answer sets of P plus a set of weak 
constraints Ω are those answer sets of P which 
minimize the sum of the weights of the violated 
weak constraints. 

3. ASP-BASED ENCODING 
 
We now propose an ASP-based encoding for the 

identification of both the max tree-height and the 
maximum height spanning trees of a graph. More 
specifically, we define a mapping µ that encodes a 
graph as a set of facts, and we design a program P 
and a weak constraint ω such that, for every graph 
G, T is a maximum height spanning tree of G if and 
only if T is encoded by an answer set of program 
µ(G) ⋃ P ⋃ {ω}. Moreover, we show how to 
determine the max tree-height of G from µ(G) ⋃ P 
⋃ {ω}. For the rest of this section, let G = (V,E) 
denote a connected graph. 

First, we start by defining the mapping µ, which 
associates a fact to each edge of G as follows: µ(G) 
= {edge(u,v) | {u,v}∈E, u<v}. Then, we 
construct program P by gradually introducing its 
rules according to role they play. 

We start with two rules that derive the vertices of 
G by exploiting its edges, namely they infer the set 
of atoms {vertex(v) | v ∈ V} (observe that, since 
G is assumed to be connected, each vertex of G 
appears in at least one edge of G): 

vertex(U) :- edge(U,V). 

vertex(V) :- edge(U,V). 

Once we have the vertices of G, we can count 
them by using the built-in aggregate #count to 
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derive the atom size(n), where n = |V |. This can 
be obtained via the following rule: 

size(N) :- #count{V:vertex(V)} = N. 

Moreover, it will result useful to fix a node of the 
graph that will play the role of root in the spanning 
trees that we are going to construct. Without loss of 
generality, we choose the smallest node of V (recall 
that vertices are positive integers). This can be 
achieved by the following rule, which uses the 
aggregate function #min to derive the atom 
first(ur), where ur = min(V): 

first(Ur) :- #min{V:vertex(V)} = Ur. 

All the atoms derived so far are obtained 
deterministically, and they are part of every answer 
set of µ(G) ⋃ P ⋃ {ω}. Conversely, to identify all 
maximum height spanning trees of G, we need to 
derive different sets of atoms, each of which 
consists of the edges of some maximum height 
spanning tree of G, and all of which give rise to the 
answer sets of µ(G) ⋃ P ⋃ {ω}. To this end, we 
introduce the next disjunctive rule to pick (or guess) 
from E different sets of edges, each of which forms 
a candidate maximum height spanning tree of G:  

pick(U,V) ∨ discard(U,V) :- edge(U,V). 

Note that we used the term “candidate” since for 
an arbitrary set of edges, say S, the graph (V,S) 
could be neither a maximum height spanning tree, 
nor even a tree of G. Hence, it is clear that we need 
further rules to check whether S satisfies or not our 
desiderata. In the former case, S gives rise to one of 
the answer sets of µ(G) ⋃ P ⋃ {ω}. In the latter 
case, S will be ignored instead. Let us now fix one 
possible set of edges S and consider the set 
{pick(u,v) | {u,v}∈S, u<v} consisting of the 
atoms associated with S that are derived by the 
above disjunctive rule. We are going to introduce 
suitable rules and constraints to determine whether 
graph C = (V,S) is a maximum height spanning tree 
of G or whether the set S has to be ignored without 
being part of  any answer set of µ(G) ⋃ P ⋃ {ω}.  

By using the three recursive rules below, we can 
collect all the nodes that are reachable in C from the 
node ur = min(V). 

reachable(Ur) :- first(Ur). 

reachable(V) :- reachable(U), pick(U,V). 

reachable(U) :- reachable(V), pick(U,V). 

A first reason to ignore S is that C is actually not 
a tree due to some vertex of V that is not reachable 
from ur. To identify such situations, we add to 
program P the following strong constraint, saying 

that it is not possible that v is a vertex and v is not 
reachable from ur: 

:- vertex(V), not reachable(V). 

Moreover, it could also be the case that C is not a 
tree since the cardinality of S is greater than n–1. 
(Note that if each vertex of V is reachable from ur, 
then the cardinality of S is at least n–1.) This can 
be checked by adding to P also the following strong 
constraint: 

:- size(N), #count{U,V:pick(U,V)} >= N. 

Up to this point we have guaranteed that C is 
actually a spanning tree of G. Now, it remains to 
enforce that the height of C is equal to the max tree-
height of G. To this end, we propose a declarative 
version of the technique described in Section 2.2 to 
find the height of a tree. For convenience, for each 
edge {u,v}∈S, the next rules derive the two atoms 
sEdge(u,v) and sEdge(v,u), which allow us to 
treat each edge of C as a set of two vertices: 

sEdge(U,V) :- pick(U,V). 

sEdge(V,U) :- pick(U,V). 

The following rules simulate a traversal of C 
from ur to determine the distance between ur and 
every other vertex of C: 

trv1(Ur,V,1) :- first(Ur), sEdge(Ur,V). 

trv1(V,W,D1) :- trv1(U,V,D), sEdge(V,W), 
                U<>W, D1 = D + 1. 

In particular, the meaning of each atom of the 
form trv1(u,v,d) is that the distance between ur 
and v is d, namely d = lenC(ur,v). Moreover, u is the 
vertex that precedes v in the path from ur to v. Note 
that it is important to keep the predecessor of each 
vertex to avoid, in the second rule, that the traversal 
extends to vertices that have already been visited. 

The next rule selects one of the farthest vertex 
from ur: 

far1(Vr) :- Dr = #max{D:trv1(_,_,D)}, 
            Vr = #min{V:dist1(_,V,Dr)}. 

Actually, this rule first determines the maximum 
distance, say dr, from ur to any other vertex. Then, 
it picks the minimum vertex, call it vr, that is at 
distance dr from ur. 

At this point, the following two rules simulate a 
second traversal of C from vr to determine the 
distance between vr and every other vertex of C: 

trv2(Vr,V,1) :- far1(Vr), sEdge(Vr,V). 

trv2(V,W,D1) :- trv2(U,V,D), sEdge(V,W), 
                U<>W, D1 = D + 1. 

http://www.jatit.org/


Journal of Theoretical and Applied Information Technology 
 10th October 2013. Vol. 56 No.1 

© 2005 - 2013 JATIT & LLS. All rights reserved.  
 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195 

 
151 

 

Similarly to the first traversal, the meaning of 
each atom of the form trv2(u,v,d) is that the 
distance between vr and v is d and that u is the 
vertex that precedes v in the path from vr to v. 

The next rule selects the maximum distance, 
say dm, between vr and the other vertices of C: 

maxDist(Dm) :- Dm = #max{D:trv2(_,_,D)}. 

Finally, we define the weak constraint ω, which 
guarantees that S (and therefore C) is not ignored 
only if its height dm is the max tree-height of G. 
Actually, ω allows us to ignores S if the value n–
dm is not the minimum one over all possible 
different sets of edged guessed by the only 
disjunctive rule of P: 

:~ size(N), maxDist(Dm), V=N-Dm. [V] 

As previously stated, the answer sets of the 
program µ(G) ⋃ P enhanced with ω are 
representative of all the maximum height spanning 
tree of G. However, a run of any ASP solver over 
this program can also return the valued dm that 
appears in each answer set that satisfies the weak 
constraint. In fact, all the maximum height 
spanning trees of G share the same value for the 
height dm. Hence, it suffices to ask for at least one 
answer set of µ(G) ⋃ P ⋃ {ω}, which necessarily 
contains the atom maxDist(dm). 

4. DISCUSSION 
 
We have presented a succinct yet elegant ASP 

program for the identification of both the max tree-
height and the maximum height spanning trees of a 
graph, which are both NP-hard optimization 
problem for which efficient optimal procedures 
have been proposed only for special classes of 
graphs and which are not polynomially 
approximable within any constant factor unless 
PTIME = NP.  

The approach has been profitably applied in the 
context of Ontology Based Data Access, to 
determine the max tree-height of the primal graph 
associated with a conjunctive query. In this setting, 
due to the size of real-world conjunctive queries, 
which may give rise to graphs with few dozens of 
vertices, the time required by any ASP solver which 
interprets the presented program to identify the max 
tree-height of the graph associated with a 
conjunctive query is negligible when compared 
with the time required to evaluate the conjunctive 
query itself, and that may be drastically reduced by 
exploiting the max tree-height of the primal graph 
associated with the query. 

Finally, an interesting line for future research is 
to extend the proposed encoding for dealing with 
possibly unconnected graphs. In these case, the 
notion of max tree-height is naturally extended by 
considering the maximum value among all possible 
max tree-heights of the different connected 
components of the graph. 
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