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ABSTRACT 
 

Transient stability analysis is an important part of power planning and operation. For large power systems, 
such analysis is very demanding in computation time. On-line transient stability assessment will be 
necessary for secure and reliable operation of power systems in the near future because systems are 
operated close to their maximum limits. In this manuscript swallowtail catastrophe is used to determine the 
transient stability regions. The bifurcation set represents the transient stability region in terms of the power 
system transient parameters bounded by the transient stability limits. The transient stability regions 
determined are valid for any changes in loading conditions and fault location. The system modeling is 
generalized such that the analysis could handle either one or any number of critical machines. This 
generalized model is then tested on numerical examples of multi-machine power system (Cigre seven 
machine systems) shown very good agreement with the time solution in the practical range of first swing 
stability analysis. The method presented fulfills all requirements for on-line assessment of transient stability 
of power system  
 

Keywords: Swallowtail Catastrophe Theory, Distributed Generators, Generator Critical, Large Power 
System, Transient Stability Assessment. 

 
1. INTRODUCTION 
 
A stable power system implies that all its 
interconnected generators are operating in 
synchronism with each other and the rest of power 
system network. Problems arise when the 
generators oscillate because of disturbances that 
occur from transmission faults or load switching 
operations. The stability problem of power system 
has been given new importance since the famous 
blackout in Northeast U.S.A. in 1965[7]. 
Considerable research effort has gone into the 
stability investigation both for off-line and on-line 
purposes. Since then a stringent rules on Operation 
and Control procedures of electric power systems 
are imposed. It started a chain reaction affecting 
planning. There are two types of stability problem 
in power systems. Firstly, the steady state stability 
problem which refers to the stability of power 
systems when a small disturbance occurs in the 
power systems such as a gradual change in loads, 
manual or automatic changes in excitation 
irregularities in prime-mover input. Obviously 
these kind of disturbance never lead to loss of 
synchronism unless the system is operating at, or 
very near to, its steady state stability boundary. 
This boundary is the greatest power that can be 

transmitted on a specified circuit, during operating 
time in the steady state case, without loss of 
synchronism. Of steady state stability requires the 
solution of power flow equations and swing 
equations over a period of a few minutes. The 
analysis Governor and exciters should also be 
included in the steady state stability analysis. 
Secondly, there is the transient stability problem 
which arises from a large disturbance in the power 
system such as a sudden loss of generators or loads, 
switching operations, or faults with subsequent 
circuit isolation. Such large disturbances create a 
power unbalance between supply and demand in 
the system This unbalance takes place at the 
generator shafts and causes the rotors to oscillate 
until a new steady state operating point is reached 
for stable system; or until the rotors continue to 
oscillate and deviate from each other and finally 
some generators will lose synchronism for unstable 
system. Loss of synchronism must be prevented or 
controlled because it has a disturbing effect on 
voltages, frequency and power, and it may cause 
serious damage to generators, which are the most 
expensive elements in power systems [1]. The 
generators which tend to lose synchronism should 
be tripped, i.e. disconnected from the system before 
any serious damage occurs, and subsequently 
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brought back to synchronism. While this can be 
done readily with gas and water turbine generators, 
steam turbine generators require many hours to 
rebuild steam and the operator has to shed load to 
compensate for the loss of generators. Loss of 
synchronism may also cause some protective relays 
to operate falsely and trip the circuit breakers of 
unfaulted lines. In such cases the problem becomes 
very complicated and may result in more generators 
losing synchronism. Therefore, transient stability of 
power systems becomes a major factor in planning 
and day-to-day operations and there is a need for 
fast on-line solution of transient stability to predict 
any possible loss of synchronism and to take the 
necessary measures to restore stability. Since then 
several studies have been conducted and new 
concepts and directions have been suggested to 
prevent instability and ensure security and 
reliability of power systems such as direct method 
Lyapunov's and pattern recognition which have 
been introduced for fast assessment of transient 
stability and eventually to implement these methods 
for on-line applications. Catastrophe theory has 
been pragmatic to the study of stability of various 
dynamic systems [2] and in recent years to the 
steady state stability problem of power systems by 
Sallam and Dineley [3]. An attractive feature of 
Catastrophe Theory is that the stability regions are 
defined in terms of the system parameters bounded 
by the lines of stability limits. Tavora and Smith [8] 
introduced Centre Of Inertia (COI) technique for 
multi-machines power system which has been 
proven to give a good result in direct stability 
analysis. In this manuscript swallowtail catastrophe 
theory has been applied to find the sudden change 
of generator rotor angle operation. This is 
recognized as operational discontinuity in concept 
of Catastrophe Theory. It simplifies the transient 
stability assessment (TSA) problem by unifying 
diverse stability boundaries into the operational 
discontinuity. 
 
2. CATASTROHE THEORY  

  It is a natural phenomenon that sudden changes 
can occur as a result of smooth or gradual changes. 
Examples might include the breakdown of an 
insulator when voltage is built up gradually, the 
collapse of a bridge by gradual load increases and 
the loss of synchronism of generators in a power 
system when subject to smooth changes in 
operating conditions. The term "catastrophe" is 
used for such sudden changes that are caused by 
smooth alterations. 
The foundations of catastrophe theory were 
developed by the French mathematician 

Rene'Thorn and became widely known through his 
book Stabilite' Structurelleet Morphogenese [14]  in 
which he proposed them as a foundation for 
biology. A catastrophe, in the very broad sense 
Thom gives to the world, is any discontinuous 
change that occurs when a system perhaps have 
more than one stable case, or can follow more than 
one stable pathway of change. The catastrophe is 
the jump from one case or pathway to other [5]. 
The elementary catastrophes are the seven simplest 
ways such a transaction from one state to another 
state can occur. This is true for any system 
governed by a potential, and in which the manners 
of the system is determined by less than five 
different factors, then only seven qualitatively 
diverse types of discontinuity are possible [6] .The 
qualitative type of any stable discontinuity does not 
depend on the specific nature of the potential 
involved, merely on its existence, i.e. on the 
existence of cause-and-effect relationship between 
conditions. Now we can see how the elementary 
catastrophes are comparable to the regular forms of 
classical geometry. Just as we can say that any 
three dimensional object, if it is regular (i.e. all its 
faces are identical polygons ), must be one of the 
five solids, so the catastrophe theory asserts that 
any discontinuous process whose behavior can be 
described by a graph in as many as six dimensions, 
if structurally stable, must correspond to one of the 
seven elementary catastrophes [9] .This manuscript 
generalizes the use of catastrophe theory to the case 
of multi-machine power systems, with more than 
one machine being critical (likely to go unstable). 
The mathematical ideas involved in reducing the 
multi-machine power system and the application of 
catastrophe theory by (seven machine cigre 
system). In deriving the equations for the multi-
machine system, the general dynamic equivalent 
approach is used, grouping all the critical 
generators as one equivalent machine and grouping 
the rest of the system as another single equivalent 
machine. 
Consider a continuous potential function V(x,c) 
which represents the system behavior, where x are 
the state variables  and c are the control parameters. 
The potential function V(x,c) can be mapped in 
terms of its control variables c to define the 
continuous region. Let the potential function be 
represented as: 
V(x,c) : M ⊗ R      
 

(1) 

 
Where M, c are manifolds in the state space Rn and 
the control space Rr respectively. Now we define 
the catastrophe manifold M as the equilibrium 
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surface that represents all critical points of V(x,c). 
It is the subset rn RR × defined by: 

( )x c xV∇  (2) 

 
Where Vc(x) = V(x,c) and  is partial derivative 
with respect to x. Equation (2) is the set of all 
critical points of the function V(x,c). Next we find 
the singularity set, S, which is the subset of M that 
focus on all degenerate critical points of V.  
It is defined by : 

( )x c xV∇  
And  

2
(x)x cV∇  

 

(3) 

 
The singularity set, S, is then projected down onto 
the control space Rr by eliminating the state 
variables x using equations (2) and (3), to obtain 
the bifurcation set, B. The bifurcation set provides a 
projection of the stability region of the function 
V(x,c), i.e. it contains all non-degenerate critical 
points of the function V bounded by the degenerate 
critical point at which the system exhibits sudden 
changes when it is subject to small changes of 
control parameters. 
 

 
Figure (1) p-δ curve and equal area criteria [10] 

Figure (1) showing power-angle area if a fault 
occurs on one of the transmission lines near the 
generator bus. The rotor will start to accelerate and 
hence the machine would gain kinetic energy. If the 
fault is cleared at a clearing time such that the 
kinetic energy (A1)  produced by the fault is 
absorbed by the potential energy (A2) produced 
after the clearance of the fault and the gained 
energy is less than zero then the system is stable 
and, if exactly zero the system is critically stable 
otherwise the system attend to unstable case .this is 
showing in figure (2) 

 
Figure (2) energy function stability criteria  [13] 

 
 

 
2.1 Catastrophe Theoy Application In Tsa 

The transient stability problem of multi-machine 
power system is much more complicated because 
the analysis of multi-machine involves individual 
machine in the power system without equivalencing 
any machine. In this case of transient stability  there 
are two switchings (discontinuities) during the 
transient period, one at fault happening and the 
other at fault clearance. Before we attempt to apply 
the swallowtail catastrophe theory we need to find a 
continuous function that represents the system 
performance during the transient period. We need 
also to classify the degenerate and non-degenerate 
critical points in terms of transient stability. 
If the fault occurs in a large power system only a 
few machines actively response to the fault and 
tend to lose synchronism. These machines are 
known as the critical machines [11,12]. Therefore, 
it is enough to study the behavior of the critical 
machines with respect to the rest of the power 
system in order to estimate the transient stability of 
the system for a specific fault.  Let’s consider that 
machine k is the critical machine(s) for a specific 
disturbance. This machine is considered to be 
oscillating against the rest of the power system 
which is not significantly affected by the 
disturbance and will be considered moving as one 
machine. 
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Where M   andδ  , respectively, inertia constant 
and angle of the centres of the system excluding the 
critical machine. 
Let  

k kθ δ δ= −   (6) 

1 ( )
n

ik k i
i k

M
M

θ δ δ
≠

= − ∑
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Also  

1 ( )
n

ik k i
i k

M
M

θ δ δ
≠

= − ∑


    (8) 

 
1 ( )

n

ik k i
i k

M
M

θ δ δ
≠

= − ∑


    ( 9) 

 
i mi eiiM P Pδ = −  

 
(10) 

 

1
( cos sin )

n

ei
j

EiEj gij ij bij ijP δ
=

= +∑  (11) 

 
Where: 

eiP = Electrical power output of machines  

miP =Mechanical power input  

iM =Inertia constant  
δ i =Rotor angle  
Ei =Internal voltage  
gij =Transfer conductance  
bij =Transfer susceptance 

δδδ jiij −=  
We substitute equation (10) into (9) to obtain the 
swing equation machine (k) with respect to the 
center of angle (COA) 
 
 

1 ( )
n

mk ek
mi eik

k i k

P P P P
M M

θ
≠

−
= − −∑



  (12) 

Substituting equation (11) and separating kθ from 
the rest of the system we get the swing equation of 
the critical machine (k) against the rest of the power 
system. This will be explained in the following 
steps: 
Lets: 

ij i j ijgD E E=  (13) 

i jij ijC bE E=  (14) 
Equation (12) becomes: 
 

( cos sin )(

cos sin )

cos sin

(

k mk kk
n n

k
mi ij ijij

i k j k

n
k

ik ik ikik
i k

n

kj kj kj kj
j k

M P D

M D CP ijM

M CD
M

CD

θ

θ θ

θ θ

θ θ

≠ ≠

≠

≠

= −

− − +

+ +

− +

∑ ∑

∑

∑







 (15) 

Lets: 

( cos sin )(

k mk k
n n

k
mi ij ijij

i k j k

P P D
M D CP ijM

θ θ
≠ ≠

= −

− − +∑ ∑


 

(16) 

Then  
[ sin cos ]k k k kk b aM P θ θθ = − −   (17) 

Where  

cos sin )

sin cos

(
n

k
i ik iik

i k
n

kjkj j j
j k

Ma CD
M

C D

θ θ

θ θ

≠

≠

= +

− −

∑

∑


 

 

           
(18)   

0

sin cos )

sin cos )(

(
n

j ij jkj
j k

n
k

i ik iik
i k

b CD

M D C
M

θ θ

θ θ

≠

≠

= +

− −

∑

∑
  (19) 

Equation (17) can be written in a more convenient 
from : 
 

sin( )k k k k kkM P T θ αδ = − −                     (20) 

Where 
1( )tank

a
bα −=                                                (21) 
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2 2
k a bT = +                                                (22) 

 
Equation (20) is a simple form representing the 
motion of the critical machine for a certain 
disturbance. Since we assumed that the rest of the 
system is not responding to the disturbance, it is 
reasonable to use the pre-disturbance angle θ   to 
calculate the parameters kP  , kT  and kα  . the 
stable and unstable equilibrium points of equation 
(20) can be easily computed by solving equation 
(23). 

sin( ) 0s
k k k kP T θ α− − =                            (23) 

And the unstable equilibrium point (UEP) is  
u s
k kπθ θ= −                                                  (24) 

We note here that we have two sets of the 
parameters kP , kT and kα ; one set for the fault-
on network and another for the post-fault network. 
Multiplying equation (20) by kθ and integration 

between c
kθ and kθ °  with respect to time for the 

fault-on network parameters we obtain the kinetic 
energy generated by the fault. 

( ) [cos( )

cos( )]

f f fc
k k kk k k

fc
k k

kin P Tθ θ θ α

θ θ

° °= − − −

− −
    (25) 

Where f
kP , f

kT and f
kα are the system parameters 

for fault-on network and c
kθ  is the clearing angle . 

The potential energy of the post-fault network is 
derived in the same approach by integrating 
equation (20) between c

kθ and u
kθ  using the post-

fault network parameter , we obtain : 
( ) [cos( )

cos( )]

f p pu c c
k k kk k k

pu
k k

pot P Tθ θ θ α

θ α

= − − −

− −
    (26) 

So, the energy balance equation for critical clearing 
becomes: 

21 cos( ) 0
2

p p pc c c u
k kk k kM P T Dθ θ θ α− − − + =  

                                                                      (27) 
Where  

cos( )p pu u cP
kk kk kN P Tθ θ θ= + −                  (28) 

We represent c
kθ by Taylor Series expansion 

2 ( )
sin( )

c
c

f

M
t Pm P

θ θ
θ

−
=

−




                               (29) 

21
2

c
kk ck tYθ θ= +                                          (30) 

Where  
1 [ ( )]k k e

k
tY P P

M
= −                                 (31) 

Let 21
2 k cx tY=  

By replacing )cos( αθ P
R

C
R −  in equation (27) with 

cosine series expansion up to the fourth order, we 
get: 

2

4

( )
( ) [1

2!
( )

0
4!

p
p p kx

k kk k

p
kx u

x
M x xY P T

x
D

αθθ

αθ

+ −
− + − −

+ −
+ + =




 

 
 
(32) 

Let ( )kkβ αθ= −   
Then we get catastrophe theory manifold equation  
Let: 

3
2

2

3
1

2 4

4

12(1 )
2

24 ( )
6

24 ( )
2 24

p
p p k

k k kp
k

p p
p p p k ku
k k kp

k

A

A

TMA Y P T
T

T TNA T P
T

β

β

β β

β βθ°

= −

= − −

= − − + −

= − − − + −

and  
x y µ= −  

3

4
Aµ =  

 
We obtain the swallowtail catastrophe manifold  

4 2 0u vy wy y+ + + =                                 (33) 
 
Where  

2
2 3

3( )
8

u A A= −                                          (34) 

3
32 3

1( )
2 8

A A Av A= − +                                (35) 

2 4
1 3 2 3 33( )
4 16 256

A A A A Aw A°= − + −              (36) 
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3.  NUMERICAL EXAMPLE  

 

Table 1: (Tcc) Estimation By Proposed Method Is 
Tabulated As:

Figure(3) Cigre seven machine system 
 
A Cigre seven bus system show in figure (3) [see 
Appendix to its data] was used as the system 
examination. The perturbation is simulated as a 
fault occur on the Transmission line. Simulation 
was performed in a numerous times to get the 
approximate critical clearing time (CCT). The 
(CCT) estimation by suggested method is tabulated 
in table (1). As following 
 
 
 
 
 
 
 

 
Figure (4): bifurcation set of swallowtail 

 
The importance of the transient stability regions 
provided by the bifurcation set of the catastrophe 
manifold is not only in terms of speed and 
accuracy. It provides another important dimension 
to the transient stability problem-the stability limits. 
The method checks for the violations of the 
transient stability limits of the post-fault network in 
terms of the system parameters. Of course, if the 

Fault at Bus TCC 
simulation 

TCC 
Proposed  
method 

1 
 

0.36 0.36 

2 
 

0.41 0.37 

3 
 

0.39 0.39 

4 
 

0.50 0.48 

          5 
 

0.35 0.35 

6 
 

0.52 0.51 

7 
 

0.33 0.33 

8 
 

0.44 0.45 
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limits are exceeded the system is unstable. This 
important feature is not possible with existing 
direct methods, i.e., the existing direct methods 
cannot give any solution when the stability limits of 
the post-fault network are violated. To obtain good 
accuracy beyond this limit higher order terms have 
to be included in the computations. This will 
complicate the stability region and slow down the 
calculation procedure. In practice, however, this 
problem is very rare. Faults in large power systems 
are usually tripped in a few cycles, typically in 
range 0.1-0.3 seconds. Interest is in the delivery of 
maximum power at low clearing time without 
risking the power system security. This practical 
consideration can easily be handled by the proposed 
method without loss of accuracy. 

 

4. CONCLUSION 

This manuscript suggest a method to solve the 
transient stability problem of multi-machine power 
Systems with the system having more than one 
critical machine for a specified disturbance. Here 
the critical machines during a three-phase fault are 
identified, single-out and combined to be one 
equivalent machine and also the rest of the system 
as another single equivalent machine using the 
general dynamic equivalent approach. Then the 
energy balance equation is derived from the 
equation of motion of the equivalent critical 
machine against the rest of the system. The energy 
balance equation is then used to form the 
equilibrium surface of the swallowtail catastrophe 
manifold from which the transient stability region is 
derived by the bifurcation technique. The results 
obtained by this general swallowtail catastrophe 
approach is in good agreement with those obtained 
by the time solution method. 
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Line Data Of Cigre Seven Machine System 

 
Line From bus To bus R (pu) X (pu) BC/2(pu) 

1 2 3 0.045 0.1236 0.1013 
2 1 3 0.0099 0.0484 0.1013 
3 3 4 0.0119 0.078 0.1519 
4 4 10 0.0164 0.0652 0.1519 
5 4 1 0.009 0.0484 0.0506 
6 8 6 0.0188 0.0628 0.1013 
7 4 6 0.0075 0.0198 0.6075 
8 4 5 0.0039 0.0198 0.1013 
9 2 10 0.0164 0.0638 0.0152 

10 9 8 0.0488 0.1916 0.1013 
11 9 4 0.0488 0.1916 0.1013 
12 3 9 0.0115 0.0553 0.1013 
13 8 7 0.0119 0.078 0.1519 

 
Bus Data Of Cigre Seven Machine System 

 
BUS 

 TYPE Magnitude 
voltage Angle PG (PU) QG (PU) PL(PU) QL (PU) 

1 PV 1.0611 6.11984 2.13832 0.564363 0 0 
2 SWING 1.0051 0 1.38105 1.11728 2 1.2 
3 PV 1.047 4.69996 2.53843 0.707422 0 0 
4 PV 1.0254 2.47471 2.88663 1.62199 6.5 4.05 
5 PV 1.0507 4.71052 2.30594 0.817952 0 0 
6 PV 1.0322 2.79355 1.57806 0.0370282 0.8 0.3 
7 PV 1.0195 5.27133 1.72832 0.290893 0.9 0.4 
8 PQ 1.00806 1.69941 -0.003658 0 1 0.5 
9 PQ 0.974951 -0.327217 -0.001181 -0.001963 2.3 1.4 
10 PQ 0.998046 -0.273962 0.0002112 -0.000403 0.9 0.45 

 
Generator Data Of Cigre Seven Machine System 

 
Gen Bus H (pu) D (pu) Xq′ (pu) Td′ Tq′ E (pu) δ (degree) 

1 1 24.08 0 0.074 8.96 0.4 1.11052 13.837 
2 2 16.44 0 0.118 6 0.535 1.14778 8.12087 
3 3 30.36 0 0.124 5.89 0.6 1.17006 19.5885 
4 4 38.16 0 0.049 5.89 0.6 1.1115 9.60369 
5 5 24.08 0 0.074 8.96 0.4 1.12014 13.047 
6 6 27.08 0 0.071 6 0.535 1.04042 8.78211 
7 7 22.72 0 0.087 5.89 0.6 1.05469 13.3099 
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