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ABSTRACT 

 
Model-Driven Engineering utilizes modeling to provide abstraction techniques in order to effectively 
manage the complexity inherent in software systems development for a problem domain. Further, it 
emphasizes the use of models as primary development artifacts, and encourages researchers and 
professionals to develop ways that can lead to obtaining executable systems from models. Reusable Aspect 
Models is a multi-view modeling approach, which combines existing aspect-oriented approaches to 
modeling class, sequence and state diagrams, into a single approach. These models can serve as an effective 
design notation to provide abstraction for a given domain. Moreover, these models may be used as input to 
a model-driven engineering process to obtaining an executable system, by transforming them into aspect-
oriented code. However, when investigating different ways of transforming models into code, an important 
technical issue is to determine a formal (and semantically equivalent) computer-understandable, text-based 
implementation of the graphical model. Here, a text-based model for Reusable Aspect Models has been 
presented. To make sure that the text-based model captures all relevant concepts of the notation, a 
conceptual reference model for Reusable Aspect Models has been presented first, and later implemented 
through the use of XML schemas.    
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1. INTRODUCTION 

Aspect-oriented software development 
(AOSD) techniques [1-3] improve the handling 
of crosscutting concerns, which cut across the 
primary modularization of a system, by 
providing means to identifying, modeling, and 
implementing them independent of each other as 
well as isolated from the non-crosscutting 
concerns of a system. Aspect orientation is 
applied at all levels of software development, for 
example, Early Aspects [1] are used during the 
analysis phase, whereas Aspect-Oriented 
Modeling (AOM) [2] are used at the design level, 
and Aspect-Oriented Programming (AOP) [3] 
languages are used for implementation of aspect-
oriented software. In the context of Model-
Driven Engineering (MDE)[4], which makes use 
of design models as the primary artifact to 
generating an executable system, the AOM 
notations can be used to obtain an aspect-
oriented implementation of systems through 
automated, or semi-automated ways. 

Reusable Aspect Models  (RAM) [5-8] is a 
multi-view modeling approach that unifies 
existing aspect-oriented approaches to model 
class, sequence and state diagrams into a single 
approach. Multi-view modeling enables 

designers to use different modeling notations to 
describe a system from multiple points of view. 
In this way, a modeler can make choice of an 
appropriate modeling notation to describe 
different views of the system. RAM can be 
distinguished from other AOM notations in the 
sense that it models any reusable functionality in 
a system by means of an aspect.  Hence, different 
views (i.e., structure, message, and state views) 
of a reusable concern are encapsulated in the 
form of an aspect model. This model takes the 
form of a special UML package, and comprises 
of three different compartments, representing the 
structural view, state view and message view. 
These views are expressed using a UML class 
diagram, state diagram and sequence diagrams, 
respectively. 

The Object Management Group (OMG) 1 has 
developed a number of specifications to facilitate 
the software application development. In order to 
support MDE, the OMG provides the Model-
Driven Architecture (MDA)2, which is an 
approach that utilizes modeling to provide 
abstraction techniques to effectively manage the 

                                                           
1 www.omg.org 
2 www.omg.org/mda 
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complexity inherent in software systems 
development for a problem domain. RAM 
models can serve as an effective design notation 
to provide abstraction for a given domain [5, 9]. 
Further, these models may be used as input to an 
MDE process to obtaining an executable system, 
by transforming them into aspect-oriented code 
[10]. A detailed discussion on the benefits 
associated with model-driven code generation 
can be found in [11-15]. However, when we 
transform a graphical model (e.g., one developed 
using RAM notation) into code, an important 
technical issue is to determine a formal and 
semantically equivalent text-based 
implementation of the graphical model. This is 
essential because the code generation system 
needs a computer-understandable representation 
of the graphical model. Conventionally, model-
driven code generation approaches have used 
Extensible Markup Language (XML) and related 
standards to define text-based implementation 
models, see for example [15-18]. However, 
unless XML documents adhere to a certain 
degree of representation rigor, their 
transformation procedures may need to be 
updated each time the model is updated. Further, 
if different applications implement this 
transformation differently, the data (i.e. objects) 
represented within XML cannot be easily 
exchanged among applications. Consequently, 
OMG has set-forth an important standard to link 
this transformation with the MDA context, i.e., 
the Extensible Metadata Interchange (XMI) [19]. 
XMI is the part of MDA that essentially provides 
a standard way of representing different model 
elements and objects using XML. In practice, it 
can be used to generate XML schemas, which 
define the content of XML documents, in a 
standard way. XML schemas are then used to 
generate and validate the corresponding XML 
documents. 

In this paper, we propose a technique of 
transforming RAM models into XML schema, 
which can serve as the basis to generating text-
based implementation models for RAM aspects. 
The paper is organized in six sections. Following 
this introduction, Section 2 highlights the 
motivation for this work and briefly describes 
some related work in the literature. Some 
background information on Reusable Aspect 
Models, XML and XML schema that was 
important in the context of this study, is 
presented in Section 3. Section 4 and Section 5 
present the conceptual reference model and 

implement the same using XML schema, 
respectively. Section 6 concludes the paper.    

 
2. MOTIVATION AND RELATED WORK 

 
Model-driven code generation significantly 

enhances the software development by allowing 
rapid development of high quality code, reducing 
the number of accidental programming errors, 
and enhancing the consistency between design 
and code [11-15]. The use of aspect orientation is 
also known to carry certain positive effects on 
software development, see for example the 
evidence provided by Ali et al. [20] and the 
experience of Hovsepyan et al. [21]. Further 
reasoning on the use of aspect orientated 
techniques can be found in [22-25]. Owing to 
this, several approaches have appeared in the 
literature addressing model-driven code 
generation while making one of the aspect-
oriented programming languages as the target 
platform. However, the idea of automatic code 
generation cannot be realized without defining a 
conceptual transformation of the graphical input 
model into a computer-understandable 
representation. This representation can take any 
form, for example, a custom-defined text file, a 
table etc., or it can preferably be defined in a 
standard way, in order to support 
interoperability. A useful discussion on the 
importance of standard ways of representing and 
exchanging model information from one level 
(e.g., design) to another (e.g., implementation) 
can be found in Grose et al. [26]. XML has 
emerged as a de-facto standard that provides a 
powerful and easy way to model data between 
transformations to and from code. Being a 
standard way of doing so, XML allows saving 
model constructs at a given level in a form that 
can be accessed and understood by applications 
other than the ones that transformed the model. 
Standard application programming interfaces 
(APIs) can be used to access this text-based 
representation. However, since XML is flexible, 
it allows representation of elements of a model in 
more than one way. This flexibility may cause 
problems as different modelers may end up with 
different representations of the same graphical 
input model. Hence, in order to transfer model 
data between different levels, we need not only 
to define the data to be exchanged but also to 
define a systematic representation of the data in 
XML. For this purpose, we use the MDA’s 
support for XML schemas, which essentially 
define the contents of an XML document. The 
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rules for representation of model data 
(specifically corresponding to behavioral part) 
are not well-defined in the literature. Therefore, 
in this paper, we address this need and define a 
standard way of transforming RAM models into 
XML schema.  

Existing work in the broader context of this 
study can be perceived under two different 
categories. The work in the first category focuses 
only on the generation of code from a given 
model, and the XML-based representation is 
used as an intermediate representation. This 
category is more inclined to implementation, and 
thus, it does not provide much detail on the 
design decisions behind transforming model at 
one level to another. In this regard, Bennett et al. 
[16] have defined an XML schema to provide a 
text-based representation of aspects developed in 
Formal Design Analysis Framework (FDAF) 
[27]. FDAF works at architectural design level; 
hence the schema covers no details of the 
detailed design process. It is limited to handling 
of the crosscutting nature of an aspect by 
providing means to contain an advice and a 
pointcut, and it covers no details of the structure 
or behavior of aspect itself. Similarly, Hecht et 
al. [28] have defined a schema to represent 
Theme/UML [29] models in text-based format 
and used this representation in an XMI-based 
code generator. Just like the previously discussed 
work, they have not illustrated a general-purpose 
mapping. Rather, they have defined two new 
elements into the basic structural representation 
of Theme/UML model in XMI. One of these 
elements refers to the model elements that can be 
bound to actual classes during a composition, 
whereas the other defines the composition. They 
use Extensible Stylesheet Language 
Transformation (XSLT) for code generation. 
Apart from the fact that the use of XSLT for this 
purpose has been reported to have certain 
limitations (see [30]), their approach makes the 
schema very specific to their implementation, 
and hence it cannot be used or extended by other 
non-XSLT-based approaches.         

As far as the work in the second category is 
concerned, several techniques have appeared in 
the literature to transform UML-based models 
into XML schemas. In this regard, Routledge et 
al. [31] have proposed a technique to mapping 
from UML class diagrams to XML schemas. 
They have defined a UML profile to correspond 
to different XML schema data structures. This 
approach, however, does not cover some of the 

basic elements of UML, such as relationships 
and constraints. Similarly, Carlson’s work [32] 
has proposed a UML profile that addresses the 
mapping of package diagrams besides the class 
diagram, through an approach based on XMI 
rules. Some similar work in the area includes the 
work of Wu and Hsieh [33] and Conrad et al. 
[34]. However, all works in this category, apart 
from having some other limitations, focus on 
class (or some other structural) diagrams only. 
XML schema representation of behavioral 
diagrams has not been addressed. Further, these 
approaches do not generally integrate the 
schemas and the resulting text-based 
representation in the larger context of model-
driven engineering. In contrast, our intention in 
this paper is to provide a representation of 
models developed using Reusable Aspect Models 
approach, including the structural and behavioral 
representations. Since the effectiveness of 
Reusable Aspect Models approach has been 
shown in the literature using certain non-trivial 
modeling case studies [5, 9, 35, 36], we believe 
that our textual representation of models can be 
valuable to textually represent any kind of 
application scenario. Further, this textual 
representation can be used by any kind of code 
generations systems that are capable of 
processing XML-based models.    
3. BACKGROUND  
 
3.1. Reusable Aspect Models 

Reusable Aspect Models (RAM) [5, 6, 8] is a 
multi-view modeling approach that combines 
existing aspect-oriented approaches to model 
class, sequence and state diagrams into a single 
approach. Thus, it allows describing a system 
from multiple points of view using the most 
appropriate modeling notation. RAM can be 
distinguished from other aspect-oriented 
modeling approaches in the sense that it views 
aspects as concerns that are reused many times in 
an application or across a number of 
applications. This means that it models any 
functionality that is reusable by means of an 
aspect.  Different views (i.e. structure, message, 
and state views) of a reusable concern are 
encapsulated in the form of an aspect model 
which is essentially a special UML package. This 
aspect model comprises of three compartments. 
First compartment represents the structural view 
and is expressed as a UML class diagram. 
Classes in this compartment need not to be 
complete; they include methods and attributes 
that are relevant to the particular concern only. 

http://www.jatit.org/
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Complete classes are later produced by means of 
composition with other classes at the time of 
instantiation of the aspect. The incomplete 
classes are termed as mandatory instantiation 
parameters.  

Following the structural compartment, one or 
more state view compartments correspond to the 
classes defined in structural view of the aspect 
model. State view contains UML state diagrams 
to describe the internal states of the class that are 
relevant within the concern. For complete classes 
(i.e., standard classes) in the structural view, the 
state diagram will be a standard state diagram. 
However, for incomplete classes, in which 
concerns are to be injected later, an aspectual 
state diagram is defined which contains two 
parts: a pointcut and an advice. The pointcut part 
is used to define the states and transitions that are 
required in target state diagram, whereas the state 
diagram that replaces the occurrence of pointcut 
in the target state diagram is defined by the 
advice part.  

Aspect models are used in a target model by 
means of either instantiation or binding 
directives. Instantiation directives map the 
mandatory instantiation parameters defined in 
different views of the aspect model to elements 
in the target model. For example, an instantiation 
directive in structural view can be defined to 
assign one or more classes of the view to classes 
declared as mandatory instantiation parameters in 
some other aspect. Unlike instantiation 
directives, which are specific to incomplete 
classes, binding directives are used to bind 
complete classes or methods to other classes or 
methods.  

3.2. XML and XML Schemas 
XML has emerged as a powerful and easy-to-

use standard to save and exchange data [30, 37]. 
It can easily be integrated with other related 
standards and tools which allow accessing the 
data stored in XML documents by means of 
standard application programming interfaces 
(APIs). XML represents the stored data using 
XML elements consisting of a start tag, XML 
attributes, content, and an end tag.    

The structure and content of an XML 
document is defined using an XML schema[38]. 
Just like the rules and features of a UML 
diagram, XML schemas define a set of rules 
describing elements and other markup objects to 
be defined in an XML document. The standard to 

define XML schemas is called XML Schema 
Definition (XSD).  

4. THE CONCEPTUAL REFERENCE 
MODEL FOR RAM  

 

The Conceptual Reference Model (CRM) in 
this section defines the set of basic elements of a 
RAM model and their relationships with each 
other, which lead to a comprehensive 
representation of the designed system. We 
present the CRM in a graphical form using the 
notation of a UML class diagram and 
complement it with a textual definition of each 
concept defined in the class diagram. The 
essential purpose of this model is to elaborate the 
concepts used by a RAM model in a systematic 
way, so that the same elaborated definition can 
be used to propose a schema representation of 
the RAM models. It is important to note here that 
since our CRM has been defined in a generic 
way in terms of UML meta-classes, it can further 
be extended by defining subclasses to support 
more concepts of RAM models. Thus, for 
example, the support for sequence views of 
RAM can be provided by means of extending our 
CRM.  

In the following, we illustrate the concepts of 
CRM along three major parts, i.e., Core, 
StructuralView and StateView, represented as a 
package, see Figure 1. The Core package covers 
the high level global details of the RAM aspect, 
whereas the StructuralView and StateView 
correspond to the structural and behavioral 
details of the aspect, respectively.  

4.1. Core 
The Core package contains the global details 

related to an aspect. On one hand, it contains the 
information on mandatory instantiation 
parameters as well as the specific instantiations 
as declared by the structural view. On the other 
hand, it specifies the aspect to contain the classes 
and statechart diagrams defined in structural and 
state views, respectively. 

An aspect can be seen as the highest 
encapsulating unit in RAM models. This is 
because in the RAM approach all reusable 
functionality is considered as crosscutting and all 
such functionality is modeled using aspects. 
Thus, an aspect contains all structural as well as 
behavioral functionality, which is necessary to 
model the particular concern represented by the 
aspect. Structural modeling is done using class 
diagrams given in the structural view 
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(StructuralView) whereas the state 
diagrams (StateView) and sequence diagrams 
are used for behavioral modeling. Note that we 
have used only the state diagrams in the current 
study because we consider them preferable to 
sequence diagram in terms of modeling behavior. 
Another reason for the use of state diagrams is 
that this paper intends to contribute to aspect 
models in the specific context of code 
generation, and state diagrams have been used to 
generate full behavioral code for objects (in 
contrast to their counterparts which mostly 
generate skeletons) [13]. A detailed discussion 
on advantages of state machines over sequence 

and other behavioral diagrams can be found in 
Cottenier et al. [39], Vanderperren et al. [40] and 
Harel [41]. Further, the aspect defines mandatory 
instantiation parameters, which are model 
elements that must be composed with other 
(target) models by means of instantiation or 
binding. RAM models can declare a class, a 
specific instance of a class, a method of a class, 
or a state as a mandatory instantiation parameter 
(determined by MIPType).  

 

 

Figure 1 The conceptual reference model for Reusable Aspect Models 

An aspect can use the functionality provided 
by another aspect by declaring a dependency 
relationship with that aspect (dependsOn). In 
case an aspect is dependent on another aspect, it 
specifies some instantiation directives (in case it 
refers to incomplete elements) or binding 

directives (in case it refers to complete 
elements), to actually map the elements of the 
aspect it depends on. In this regard, we may 
distinguish between the mapping of classes and 
the mapping of states by means of instantiation 
or binding. Hence, we define ClassInstantiation 
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and StateInstantiation in our CRM to correspond 
to these concepts. Each of the classes contains 
information specifying which element of the 
reused aspect (mappedFrom) is mapped to which 
element of the dependent aspect (mappedTo).        

4.2. StructuralView 
Conceptually, the structural view of an aspect 

defines a set of classes and interfaces, and their 
relationships with each other. In order to 
emphasize different concepts captured by the 
classes in the structural view of a RAM model, 
we have elaborated them in the StructuralView 
part of Figure 1. The CRM shows that both types 
of the basic structural units, i.e., Class and 
Interface share some conceptual characteristics 
captured in the general type Struct. However, a 
Class can either be complete (CompleteClass) or 
an incomplete one (IncompleteClass), in which 
case it is expected to be woven with some other 
class by means of binding or an export as a 
mandatory instantiation parameter. Both types of 
Struct may contain an arbitrary number of 
functions (Function). However, the specialized 
types of Constructor and Method can only be 
contained by classes, where the former refers to 
constructors of classes and the latter to functions 
which are associated with a statechart given in 
the state view. Therefore, an instance of Method 
always contains a reference to the statechart 
which defines its behavior (stateChartID). Unlike 
constructors, instances of Method also specify 
some return type (ReturnType). The attribute 
isSingular in ReturnType takes care of the cases 
in which a method returns an enumeration or 
collection of some type of objects. Classes also 
contain fields (Field). 

A class in RAM model may specify how it is 
conceptually related to other classes in the model 
(Relationship). It also specifies the multiplicity 
of relationship (minParticipation, 
maxParticipation) with the class on other end of 
the relationship (classID). In the specific case of 
association relationship, in which the roles of 
participants on either side of the relationship are 
relevant, we take care of the role name 
(roleName in Association).     

4.3. StateView 
From a conceptual standpoint, the state view 

of an aspect model defines the behavior of some 
of the classes given in the structural view. 
However, since there are two different types of 
classes that can exist in the aspect models, i.e., 
complete and incomplete classes, we may 
distinguish between two different ways to 

specifying the behavior of each type. One way, 
which is applicable to complete classes, is to 
associate a standard statechart diagram 
(Statechart) with the class. Other way, which 
essentially applies to incomplete classes, is to 
associate an extension of the state diagram 
(Statechart-Aspectual) that contains special 
constructs related to aspect-oriented concepts. 

An instance of Statechart may contain an 
arbitrary number of states (State). Each state in 
the state diagram may fire a transition 
(Transition) which can essentially be seen as a 
combination of an event to be triggered (Event) 
and an associated action (Action). A state may be 
defined as a composite state and thus may 
contain other states (Substate).  

An object of Statechart-Aspectual type is 
conceptually different from a standard statechart 
in the sense that it contains a pair of a pointcut 
(Pointcut) and an advice (Advice). Pointcut 
defines all the states which are relevant in order 
to fulfill some functionality defined by the state 
diagram, and in turn, the aspect. Advice, on the 
other hand, defines the states and their respective 
transitions to occur in case the pointcut was 
matched. The State and Transition types are 
semantically equivalent to those described 
previously for a standard statechart. 

 
5. THE TEXTUAL IMPLEMENTATION 

MODEL  
 
In this section, we present the text-based 

implementation model developed for Reusable 
Aspect Models in the form of XML schema. The 
schema is based on the conceptual reference 
model described in the previous section, and it 
employs the same design principles which we 
applied to define the CRM. It has to be noted 
here that the schema proposed in this section is a 
generic representation of RAM models, and that 
it can be used in combination with any other 
standard, such as XMI. 

An overview of the specification of mapping 
from RAM models to XML is presented in TABLE 

1. In the following, we take the RAM conceptual 
entities identified through the CRM, one by one, 
and illustrate how they can be implemented by 
means of the XML schema. It is to be noted here 
that the RAM aspect described in section 5.1 
serves as the main encapsulating entity and 
implements the Core of the CRM. Following 
this, sections 5.2 through 5.6 are related to the 
StructrualView of our CRM, whereas 
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sections 5.7 through 5.11 define the concepts 
defined in StateView of the CRM.    

5.1. RAM aspect 
RAM aspect, which encapsulates all other 

modeling units existing in a RAM model, is 
implemented by defining an XML element 
(<xs:element>) named Aspect and an 
associated complex type declaration 
(<xs:complexType>) named AspectType 
in XML schema. The Aspect element appears as 
the root element and all such elements of 
AspectType are capable of containing all the 
constructs related to structural and state views of 
an aspect, as applicable to specification of RAM 
aspect models. A partial XML schema is shown 
in Figure 2, which represents the AspectType.    

Aspect element further contains three elements 
Core, StructuralView and optionally 
StateView that correspond to three main 
segments of the CRM described in Section 4.  

The Core contains five elements for which a 
brief description follows. ProjectName and 

AspectName elements are of string type 
(<xs:string>) and refer to names of the 
project that uses this aspect and the aspect itself, 
respectively. These elements are followed by 
declaration of an element dependsOn which 
actually lists the names of any number aspects 
this aspect is dependent on, using a sub-element 
named dependsOnAspect. RAM aspects are 
not required to be dependent on other aspects but 
they may define any number of dependencies, 
therefore, the minOccurs value of 
dependsOn is set to 0 whereas the 
maxOccurs is set to unbounded. Further, by 
setting the values of minOccurs of 
dependsOnAspect to 1 and maxOccurs to 
unbounded, the schema actually requires that 
in case dependsOn was declared, it must define 
at least one dependesOnAspect element. 
Next within the Core element, we declare a 
mandatoryInstParam element, which will 
be described in detail in Section 5.5. 

 
Table 1: Overview of mapping from RAM aspect models to XML schema 

RAM entity 
to be mapped 

Mapped XML schema entity Exceptions Extensions Assumptions 

Aspect XML element Aspect and a 
corresponding complex type 
AspectType declaration. 

None None None 

Class XML element ClassType 
within StructuralView 
element and a corresponding 
complex type ClassType 
declaration.  

Features which are 
implementation- 
specific only such 
as abstract and final 
are not 
implemented.  

Extends the 
complex type 
StructType 
using XML 
extension.  

Realization of 
more than one 
interfaces will be 
implemented by 
having multiple 
realizes elements.  

Interface XML element 
InterfaceType within 
StructuralView element 
and a corresponding complex 
type InterfaceType.    

None Extends the 
complex type 
StructType.  

None 

Field XML element named field.  None  The attributes 
get, set, 
increment, 
decrement, 
add, remove 
and count can 
allow direct 
generation of 
matching 
methods.  

None 
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RAM entity 
to be mapped 

Mapped XML schema entity Exceptions Extensions Assumptions 

Constructor XML element constructor 
within ClassType element 
along with a complex type 
Constructor.  

Default 
constructors are not 
implemented in 
schema.  

Extends the 
generic 
FunctionTyp
e.  

The funcName 
element of 
FunctionTyp
e is applicable to 
determine the 
object type 
directly.  

Method XML element operations within 
ClassType element along 
with the complex type 
Method.  

None Extends the 
FunctionTyp
e by associating 
optional values of 
return type and 
statechart ID.  

For void return 
types, we omit the 
element. 
Similarly, if there 
is no statechart 
ID, we assume it 
as an unstated 
method, for which 
skeletons can be 
directly added.   

Mandatory 
instantiation 
parameter 

XML element 
mandatoryInstParam 
declared within Core element 
of AspectType.  

None The type 
attribute 
determines 
different types 
such as class, 
method, field etc.  

None 

Instantiation/ 
binding 
directive 

XML element 
Instantiations within 
Core element of 
AspectType.  

None Instantiation and 
binding directives 
in structural view 
are implemented 
within 
ClassInst 
element, whereas, 
those in state view 
are implemented 
within 
StateInst 
element.  

None 

Relationship • For inheritance, XML 
element parent within 
ClassType element.  

• For association, XML 
element association along 
with declaration of a 
complex type 
AssociationType. 

• For aggregation and 
composition, XML 
elements aggregation 
and composition 
along with declaration of 
matching complex type 
RelationshipType.  

None None Other possible 
relationship type 
extensions may be 
implemented 
using 
Relationshi
pType.  
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RAM entity 
to be mapped 

Mapped XML schema entity Exceptions Extensions Assumptions 

Standard 
statechart 

XML element statechart 
within StateView element 
and corresponding complex type 
StateChart.  

None None None 

State XML element state within 
statechart element and 
matching complex type 
State.  

None None None 

Substate XML element substate 
within state element.  

None None None 

Transition  XML element transition 
within state element.  

None None None 

Aspectual 
statechart 

XML element 
statechart-
aspectual within 
StateView element and 
declaration of matching type 
StateChart-AO.  

None None None 

 
Figure 2: An excerpt of XML schema for AspectType to represent a high level RAM aspect.  

StructuralView element within Aspect 
element contains the structural definition of the 
aspect as per the RAM specification. 
StateView element contains the behavioral 
description of the aspect. We defer a detailed 
discussion of these two elements to the following 
sections, wherein various conceptual constructs 

related to each of these elements will be 
discussed. 

5.2. Classes and interfaces 
The classes and interfaces in structural view of 

a RAM aspect are implemented by having them 
stem from a common origin defined as Struct. 

<xs:complexType name="AspectType"> 
   <xs:sequence> 
      <xs:element name="Global"> 
 <xs:complexType><xs:sequence> 
        <xs:element name="ProjectName" type="xs:string"/> 
        <xs:element name="AspectName" type="xs:string"/> 
        <xs:element name="DependsOn" minOccurs="0" 
maxOccurs="unbounded"><xs:complexType><xs:sequence> 
                       <xs:element name="DependsOnAspect" type="xs:string" maxOccurs="unbounded"/></xs:sequence> 
                   </xs:complexType></xs:element> 
       <xs:element name="MandatoryInstParam" minOccurs="0" maxOccurs="unbounded"> 
       <xs:complexType><xs:attribute name="MIPType"><xs:simpleType><xs:restriction base="xs:string"> 
            <xs:enumeration value="class"/><xs:enumeration value="method"/><xs:enumeration 
value="state"/> 
                 ….. 
 <xs:element name="Instantiations" minOccurs="0"> 
      <!-- ClassInst and StateInst are defined as elements within Instantiations here -->  
 <xs:element name="StructuralView"> 
      <xs:complexType><xs:sequence> 
           <xs:element name="ClassType" type="ClassType" maxOccurs="unbounded"/> 
           <xs:element name="InterfaceType" type="InterfaceType" minOccurs="0" maxOccurs="unbounded"/> 
        ….. 
 <!-- Here, StateView is defined. --> 
    <xs:element name="StateView" minOccurs="0" maxOccurs="unbounded"> 
     <xs:complexType><xs:sequence> 
                        <xs:element name="statechart" type="StateChart" minOccurs="0"/> 
         <xs:element name="statechart-aspectual" type="StateChart-AO" minOccurs="0"/></xs:sequence> 
            <xs:attribute name="stateViewName" type="xs:string"/></xs:complexType></xs:element> 
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The Struct is defined as an element that is 
associated with a composite type StructType. 
The StructType essentially provides a 
common structure which is shared by both 
structural units in RAM aspects, i.e., classes and 
interfaces. Specifically, it defines a number of 
elements to describe the properties of this 
structure including: (1) visibility which 
refers to the accessibility of this structure, (2) 

structName which defines the name of this 
structure, (3) an optional element parent which 
specifies generalization relationship of this 
structure with other structures, (4) a number of 
optional elements named realizes which 
specify if this structure implements some of the 
existing interfaces. 

 

 

Figure 3: An excerpt of XML schema for ClassType.   

Further, Struct defines an optional element 
named operations (with maxOccurs set to 
unbounded), which declares any number of 
functions into structure. Details of functions will 
be presented in Section 5.4. Interfaces are 
implemented by means of adding an element 
InterfaceType along with declaration of an 
associated type named InterfaceType which 
extends the StructType.  

So far as classes are concerned, they are 
implemented in a similar way by defining an 
element named ClassType and declaring an 
associated type named ClassType which 
extends StructType, see Figure 3. However, 
as in contrast with interfaces, classes bear some 
unique characteristics, they are implemented by 
adding a few more elements to the extension. 
These elements are: (1) data which is discussed 
in Section 5.3 (2) constructor which is 
described in Section 5.4, (3) association, 
aggregation and composition which are 
all related to the discussion in Section 5.6.     

5.3. Fields 
Fields define the attributes of classes in a 

RAM aspect’s structural view. We implement 
fields by defining a required element field 
with maxOccurs set to unbounded within 
data element of ClassType. The declaration of 
field element is shown in Figure 3. The 
field element contains a number of attributes 
to support automatic generation of simple 
methods which may be associated with the fields. 
These attributes are: (1) get and set, which 
specify whether a getter and/or setter method is 
desired for this field, (2) increment and 
decrement, which are specific to integer-type 
fields and specify the possibility of generation of 
simple increment and/or decrement operations 
for the integer field, (3) add, remove and 
count, which indeed work specifically for 
fields of enumeration type and are intended to 
support the automatic addition of methods to 
add/ remove elements to the enumeration and 
return the number of elements in the 
enumeration.  

As far as elements within the field element are 
concerned, there are four different elements of 

<xs:complexType name="ClassType"> 
     <xs:complexContent> 
          <xs:extension base="StructType"><xs:sequence> 
               <xs:element name="constructor" type="Constructor" minOccurs="0" maxOccurs="unbounded"/> 
               <xs:element name="data"><xs:complexType><xs:sequence> 
                    <xs:element name="field" maxOccurs="unbounded"><xs:complexType><xs:sequence> 
                    <xs:element name="visibility"><xs:simpleType><xs:restriction base="xs:string"> 
                          <xs:enumeration value="public"/><xs:enumeration value="protected"/><xs:enumeration 
value="private"/> 
 …          
      <xs:element name="fieldName" type="xs:string"/> 
     <xs:element name="fieldType" type="xs:string"/> 
     <xs:element name="initVal" type="xs:string"/></xs:sequence> 
 <xs:attribute name="get" type="xs:boolean"/><xs:attribute name="set" type="xs:boolean"/> 
 …  
 <!-- increment, decrement, add, remove, count attributes are defined in a similar way… --> 
 …. 
 <xs:element name="association" type="AssociationType" minOccurs="0" maxOccurs="unbounded"/> 
 <xs:element name="aggregation" type="RelationshipType" minOccurs="0" maxOccurs="unbounded"/> 
 <xs:element name="composition" type="RelationshipType" minOccurs="0" maxOccurs="unbounded"/> 
 …. 
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<xs:string> type which cover the details of a 
field declaration. These elements are 
visibility, fieldName, fieldType and 
initVal. The purpose of first three elements is 
evident from their names, whereas, the last one is 
intended to support specification of an initial 
value for a variable. 

5.4. Methods and constructors 
Just like interfaces and classes, we associate 

the methods and constructors to a common basis, 
the FunctionType. The FunctionType 

defines a number of essential properties 
applicable to both constructors of classes as well 
as methods, such as function name (funcName), 
any number of parameters (param), and a 
boolean value to specify whether this function is 
a mandatory instantiation parameter (isMIP).  

A method, however, is a special type of 
function which, unlike a constructor, specifies a 
return type. Return type of a method can either 
be a simple type or an enumeration.   

 

Figure 4: Definition (partial) of FunctionType and the sub-type Method. 

Our definition of a Method (shown in Figure 4) 
includes an element stateChartID which 
refers to the statechart which defines the 
behavior of this method. Since methods are not 
required to have statecharts define their behavior, 
stateChartID element is optional. Further, 
methods and constructors are defined in the 
structural view within operation and 
constructor elements of Method and 
Constructor types, respectively, in the 
ClassType. 

5.5. Mandatory instantiation parameters and 
instantiation directives 

The concept of mandatory instantiation 
parameters, which makes it possible to combine 
various elements of an aspect model with those 
of a target model by means of instantiation 
and/or binding directives, is implemented by 
introducing an element 
mandatoryInstParam within Core of 
Aspect (with minOccurs=0, 
maxOccurs=unbounded) which defines all 
parameters designated as required to be 
instantiated by a target model (see Figure 2). It 
contains an attribute (<xs:attribute>) 
MIPType to identify whether this parameter is a 
class, interface, method or a field etc. The last 
element in the Core element is 

Instantiations. This element corresponds 
to the instantiation and binding directives defined 
in different compartments of the RAM aspect. 
Specifically, it defines two elements 
ClassInst and StateInst. These elements 
are defined with a minOccurs value of 1 and 
maxOccurs value of unbounded, and they 
list the instantiation and binding of model 
elements in the form of from-to pairs. 

5.6. Relationships 
We divide the relationships among various 

structural units of our model conceptually into 
three different types: (1) generalization or 
specialization, (2) realization, and (3) other 
relationships. Note that the support for (1) and 
(2) has been discussed in Section 0. Other 
relationships are implemented as follows.  

There are three different forms of other 
instance-level relationships supported by our 
implementation, i.e., association, aggregation, 
and composition relationships. A new complex 
type has been defined with name 
RelationshipType, which defines three new 
elements classID, minParticipation, 
and maxParticipation. The classID 
refers to the ID of class on the other end of the 
relationship, whereas the other two elements 
define the minimum and maximum participation 

<xs:complexType name="FunctionType"> 
    <xs:sequence> 
        <xs:element name="funcID" type="xs:ID" minOccurs="0"/> 
        <xs:element name="funcName" type="xs:string"/> 
        <xs:element name="param" minOccurs="0" maxOccurs="unbounded"> 
        <xs:complexType> <xs:attribute name="paramType"/></xs:complexType></xs:element> 
        <xs:element name="isMIP" type="xs:boolean"/> 
….. 
<xs:complexType name="Method"><xs:complexContent> 
       <xs:extension base="FunctionType"><xs:sequence> 
 <xs:element name="stateChartID" type="xs:string" minOccurs="0"></xs:element> 
 <xs:element name="returnType" minOccurs="0"><xs:complexType> 
      <xs:attribute name="isSingular"/> 
…..  
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of the declaring class in the relationship, 
respectively.  

In order to implement aggregation and 
composition relationships, respective 
aggregation and composition elements 
are defined within the ClassType composite 
type (see Figure 3) and associated with the 
RelationshipType simply. However, to 
handle association relationship, we define an 
element association of the 
AssociationType, which extends 
RelationshipType and assigns a role name 
to the relationship by defining an attribute 
roleName on association.              
5.7. Standard statechart 

In our implementation, we differentiate 
between a standard statechart, which does not 
contain aspect-oriented constructs, and an 
aspectual statechart, which involves a pointcut 
and an advice. The support for aspectual 
statechart is discussed in Section 5.11. A 
standard statechart is implemented by 
introducing a statechart element of 
StateChart composite type into the 
AspectType definition (see figure Figure 2). 
The StateChart type essentially defines two 
basic attributes id and name and a number of 
elements of State type (minOccurs set to 1) 

which represent a state in the statechart. The 
State element is further described in the 
following section.  

5.8. States 
A statechart typically consists of more than 

one states and a number of transitions which 
determine the effect of certain events. We 
implement a state by defining a new complex 
type State and assigning a set of matching 
state elements to it within the statechart 
element (see Figure 5).   

The State complex type defines two 
attributes namely id and type. The id attribute 
provides a unique identification for this state, 
whereas, the type attribute is used to 
distinguish various types of states, i.e., actual, 
default and history states. Further, the State 
type defines four elements, i.e., stateName, 
internalEvent, subState and 
transition. The stateName refers to the 
name of this state. The internalEvent 
element is optional and may occur more than 
once to specify the name of action(s) associated 
with this particular state. The remaining two 
elements, i.e. subState and transition are 
described in the relevant discussion in sections 
5.9 and 5.10, respectively.  

 

 

Figure 5: XML schema representation of a State. 

5.9. Substates 
The subState element provides support for 

the phenomenon of composite states which 
allows a state to have a number of substates [42]. 

We refer to the action to be carried in case of a 
substate transition by means of a 
substateEvent element in a way similar to 
state event, see Figure 5.  

<xs:complexType name="State"> 
   <xs:sequence> 
       <xs:element name="stateName"/> 
       <xs:element name="internalEvent" minOccurs="0" maxOccurs="unbounded"> 
           <xs:complexType><xs:attribute name="id"/></xs:complexType> 
      </xs:element> 
      <xs:element name="substate" maxOccurs="unbounded"> 
           <xs:complexType><xs:sequence><xs:element name="substateEvent" maxOccurs="unbounded"> 
                 <xs:complexType><xs:attribute name="eventId"/></xs:complexType></xs:element></xs:sequence> 
       <xs:attribute name="id"/></xs:complexType></xs:element> 
      <xs:element name="transition" maxOccurs="unbounded"> 
            <xs:complexType><xs:sequence> 
       <xs:element name="event"/> 
       <xs:element name="action"/> 
       <xs:element name="nextState" minOccurs="0" 
maxOccurs="unbounded"></xs:element></xs:sequence> 
  <xs:attribute name="id"/></xs:complexType></xs:element></xs:sequence> 
      <xs:attribute name="id"/> 
      <xs:attribute name="type"></xs:attribute></xs:complexType> 
…..  
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5.10. Transitions 
A transition in a state diagram is usually a 

combination of an event and a resulting action 
[42]. We implement transitions defined in state 
view of RAM models by introducing a new 
element named transition into the State 
type. The transition element essentially captures 
the concept of transition from this state (in which 
this element exists) to the next state. For this 
purpose, we define three elements within the 
transition element, i.e., event, action and 
nextState. The semantics of these elements 
are evident from their names and need no further 
explanation. However, there are two important 
points which need a brief note in the context of 
state transitions. First, since UML specification 
allows the event and action to take any form, we 
consider them as instance of string 
(<xs:string>) type in our implementation. 
As a result, they may contain, for instance, name 
of a method or only a conditional expression etc. 

Second point is particularly relevant to the 
implementation of two advanced features of 
UML statecharts known as Fork and Join [42]. 
These features are in fact pseudostates, which are 
used to synchronize the transitions that enter into 
or leave a composite state [42]. Specifically, a 
fork refers to a transition that has one source 
state and two or more target states, whereas, a 
join represents a transition containing two or 
more source states and only one target state. 
Using our XML schema implementation, these 
two concepts will be implemented in a 
straightforward way. In particular, since the 
nextState element contains the ID of the next 
state, we will be having two IDs here in case of a 
fork, i.e., IDs of both states to be activated 
simultaneously. Similarly, in case of a join, two 
state elements will be having the same value for 
nextState element.      

5.11. Aspectual statechart 
An aspectual statechart in RAM is an 

extension of a standard statechart that specifies 
the behaviors of a pointcut to be matched and a 
target advice to be executed in response. We 
implement an aspectual statechart by introducing 
a new element named statechart-
aspectual in the state view of aspect, and 
defining a new complex type StateChart-
AO. Apart from defining two attributes id and 
name, which resemble in semantics to the 
attributes of standard statechart, a 

StateChart-AO defines two new elements 
namely pointcut and advice.  

The pointcut element contains one or more 
elements named state of string type. Note that 
the state element is not declared to be of the 
State type because we need only the name of 
states in the pointcut part. Further, the state 
element contains an attribute named type, 
which specifies whether this state is complete or 
incomplete state. Incomplete states are 
designated as mandatory instantiation parameters 
in RAM models.      

The advice element contains one or more 
elements of State type, which define states and 
their respective transitions as illustrated in 
sections 5.8 to 5.10.  

 
6. CONCLUSIONS AND FUTURE WORK 

 
In this paper, we have contributed a text-based 

implementation model for Reusable Aspect 
Models (RAM) notation. This model can serve as 
an intermediary between the graphical 
representation of RAM models and their 
implementation in a programming language. In 
this way, the current work is expected to 
effectively integrate the aspect models with the 
context of model-driven code generation, in a 
standard way. 

In order to develop a comprehensive 
representation of RAM models, we have first 
defined a conceptual reference model which is 
presented in the form of UML class diagram. 
This model encapsulates all structural and 
behavioral concepts captured by RAM aspects in 
terms of their structural and state views. Later, 
we have developed a detailed mechanism of 
implementing the conceptual model by XML and 
related technologies, and have proposed an XML 
schema for this purpose.  

We believe that the proposed conceptual 
reference model can be used as a basis for 
implementation of RAM models in other 
contexts such as their extension. Similarly, the 
text-based representation can be used to 
exchange model information in any way. 
However, most importantly, the implementation 
model can be used by a code generation system 
in combination with a mechanism to mapping 
RAM models into code, leading to automatic 
code generation.    
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