
Journal of Theoretical and Applied Information Technology
 20th September 2013. Vol. 55 No.2

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

209

A TEXT-BASED IMPLEMENTATION MODEL FOR
REUSABLE ASPECT MODELS

ABID MEHMOOD, DAYANG N.A. JAWAWI
Department of Software Engineering, Faculty of Computing, Universiti Teknologi Malaysia (UTM)

Email: mabid4@live.utm.my, dayang@utm.my

ABSTRACT

Model-Driven Engineering utilizes modeling to provide abstraction techniques in order to effectively
manage the complexity inherent in software systems development for a problem domain. Further, it
emphasizes the use of models as primary development artifacts, and encourages researchers and
professionals to develop ways that can lead to obtaining executable systems from models. Reusable Aspect
Models is a multi-view modeling approach, which combines existing aspect-oriented approaches to
modeling class, sequence and state diagrams, into a single approach. These models can serve as an effective
design notation to provide abstraction for a given domain. Moreover, these models may be used as input to
a model-driven engineering process to obtaining an executable system, by transforming them into aspect-
oriented code. However, when investigating different ways of transforming models into code, an important
technical issue is to determine a formal (and semantically equivalent) computer-understandable, text-based
implementation of the graphical model. Here, a text-based model for Reusable Aspect Models has been
presented. To make sure that the text-based model captures all relevant concepts of the notation, a
conceptual reference model for Reusable Aspect Models has been presented first, and later implemented
through the use of XML schemas.

Keywords: Aspect-Oriented Modeling, Code Generation, Model-Driven Engineering

1. INTRODUCTION

Aspect-oriented software development
(AOSD) techniques [1-3] improve the handling
of crosscutting concerns, which cut across the
primary modularization of a system, by
providing means to identifying, modeling, and
implementing them independent of each other as
well as isolated from the non-crosscutting
concerns of a system. Aspect orientation is
applied at all levels of software development, for
example, Early Aspects [1] are used during the
analysis phase, whereas Aspect-Oriented
Modeling (AOM) [2] are used at the design level,
and Aspect-Oriented Programming (AOP) [3]
languages are used for implementation of aspect-
oriented software. In the context of Model-
Driven Engineering (MDE)[4], which makes use
of design models as the primary artifact to
generating an executable system, the AOM
notations can be used to obtain an aspect-
oriented implementation of systems through
automated, or semi-automated ways.

Reusable Aspect Models (RAM) [5-8] is a
multi-view modeling approach that unifies
existing aspect-oriented approaches to model
class, sequence and state diagrams into a single
approach. Multi-view modeling enables

designers to use different modeling notations to
describe a system from multiple points of view.
In this way, a modeler can make choice of an
appropriate modeling notation to describe
different views of the system. RAM can be
distinguished from other AOM notations in the
sense that it models any reusable functionality in
a system by means of an aspect. Hence, different
views (i.e., structure, message, and state views)
of a reusable concern are encapsulated in the
form of an aspect model. This model takes the
form of a special UML package, and comprises
of three different compartments, representing the
structural view, state view and message view.
These views are expressed using a UML class
diagram, state diagram and sequence diagrams,
respectively.

The Object Management Group (OMG) 1 has
developed a number of specifications to facilitate
the software application development. In order to
support MDE, the OMG provides the Model-
Driven Architecture (MDA)2, which is an
approach that utilizes modeling to provide
abstraction techniques to effectively manage the

1 www.omg.org
2 www.omg.org/mda

http://www.jatit.org/
mailto:mabid4@live.utm.my
mailto:dayang@utm.my

Journal of Theoretical and Applied Information Technology
 20th September 2013. Vol. 55 No.2

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

210

complexity inherent in software systems
development for a problem domain. RAM
models can serve as an effective design notation
to provide abstraction for a given domain [5, 9].
Further, these models may be used as input to an
MDE process to obtaining an executable system,
by transforming them into aspect-oriented code
[10]. A detailed discussion on the benefits
associated with model-driven code generation
can be found in [11-15]. However, when we
transform a graphical model (e.g., one developed
using RAM notation) into code, an important
technical issue is to determine a formal and
semantically equivalent text-based
implementation of the graphical model. This is
essential because the code generation system
needs a computer-understandable representation
of the graphical model. Conventionally, model-
driven code generation approaches have used
Extensible Markup Language (XML) and related
standards to define text-based implementation
models, see for example [15-18]. However,
unless XML documents adhere to a certain
degree of representation rigor, their
transformation procedures may need to be
updated each time the model is updated. Further,
if different applications implement this
transformation differently, the data (i.e. objects)
represented within XML cannot be easily
exchanged among applications. Consequently,
OMG has set-forth an important standard to link
this transformation with the MDA context, i.e.,
the Extensible Metadata Interchange (XMI) [19].
XMI is the part of MDA that essentially provides
a standard way of representing different model
elements and objects using XML. In practice, it
can be used to generate XML schemas, which
define the content of XML documents, in a
standard way. XML schemas are then used to
generate and validate the corresponding XML
documents.

In this paper, we propose a technique of
transforming RAM models into XML schema,
which can serve as the basis to generating text-
based implementation models for RAM aspects.
The paper is organized in six sections. Following
this introduction, Section 2 highlights the
motivation for this work and briefly describes
some related work in the literature. Some
background information on Reusable Aspect
Models, XML and XML schema that was
important in the context of this study, is
presented in Section 3. Section 4 and Section 5
present the conceptual reference model and

implement the same using XML schema,
respectively. Section 6 concludes the paper.

2. MOTIVATION AND RELATED WORK

Model-driven code generation significantly

enhances the software development by allowing
rapid development of high quality code, reducing
the number of accidental programming errors,
and enhancing the consistency between design
and code [11-15]. The use of aspect orientation is
also known to carry certain positive effects on
software development, see for example the
evidence provided by Ali et al. [20] and the
experience of Hovsepyan et al. [21]. Further
reasoning on the use of aspect orientated
techniques can be found in [22-25]. Owing to
this, several approaches have appeared in the
literature addressing model-driven code
generation while making one of the aspect-
oriented programming languages as the target
platform. However, the idea of automatic code
generation cannot be realized without defining a
conceptual transformation of the graphical input
model into a computer-understandable
representation. This representation can take any
form, for example, a custom-defined text file, a
table etc., or it can preferably be defined in a
standard way, in order to support
interoperability. A useful discussion on the
importance of standard ways of representing and
exchanging model information from one level
(e.g., design) to another (e.g., implementation)
can be found in Grose et al. [26]. XML has
emerged as a de-facto standard that provides a
powerful and easy way to model data between
transformations to and from code. Being a
standard way of doing so, XML allows saving
model constructs at a given level in a form that
can be accessed and understood by applications
other than the ones that transformed the model.
Standard application programming interfaces
(APIs) can be used to access this text-based
representation. However, since XML is flexible,
it allows representation of elements of a model in
more than one way. This flexibility may cause
problems as different modelers may end up with
different representations of the same graphical
input model. Hence, in order to transfer model
data between different levels, we need not only
to define the data to be exchanged but also to
define a systematic representation of the data in
XML. For this purpose, we use the MDA’s
support for XML schemas, which essentially
define the contents of an XML document. The

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 20th September 2013. Vol. 55 No.2

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

211

rules for representation of model data
(specifically corresponding to behavioral part)
are not well-defined in the literature. Therefore,
in this paper, we address this need and define a
standard way of transforming RAM models into
XML schema.

Existing work in the broader context of this
study can be perceived under two different
categories. The work in the first category focuses
only on the generation of code from a given
model, and the XML-based representation is
used as an intermediate representation. This
category is more inclined to implementation, and
thus, it does not provide much detail on the
design decisions behind transforming model at
one level to another. In this regard, Bennett et al.
[16] have defined an XML schema to provide a
text-based representation of aspects developed in
Formal Design Analysis Framework (FDAF)
[27]. FDAF works at architectural design level;
hence the schema covers no details of the
detailed design process. It is limited to handling
of the crosscutting nature of an aspect by
providing means to contain an advice and a
pointcut, and it covers no details of the structure
or behavior of aspect itself. Similarly, Hecht et
al. [28] have defined a schema to represent
Theme/UML [29] models in text-based format
and used this representation in an XMI-based
code generator. Just like the previously discussed
work, they have not illustrated a general-purpose
mapping. Rather, they have defined two new
elements into the basic structural representation
of Theme/UML model in XMI. One of these
elements refers to the model elements that can be
bound to actual classes during a composition,
whereas the other defines the composition. They
use Extensible Stylesheet Language
Transformation (XSLT) for code generation.
Apart from the fact that the use of XSLT for this
purpose has been reported to have certain
limitations (see [30]), their approach makes the
schema very specific to their implementation,
and hence it cannot be used or extended by other
non-XSLT-based approaches.

As far as the work in the second category is
concerned, several techniques have appeared in
the literature to transform UML-based models
into XML schemas. In this regard, Routledge et
al. [31] have proposed a technique to mapping
from UML class diagrams to XML schemas.
They have defined a UML profile to correspond
to different XML schema data structures. This
approach, however, does not cover some of the

basic elements of UML, such as relationships
and constraints. Similarly, Carlson’s work [32]
has proposed a UML profile that addresses the
mapping of package diagrams besides the class
diagram, through an approach based on XMI
rules. Some similar work in the area includes the
work of Wu and Hsieh [33] and Conrad et al.
[34]. However, all works in this category, apart
from having some other limitations, focus on
class (or some other structural) diagrams only.
XML schema representation of behavioral
diagrams has not been addressed. Further, these
approaches do not generally integrate the
schemas and the resulting text-based
representation in the larger context of model-
driven engineering. In contrast, our intention in
this paper is to provide a representation of
models developed using Reusable Aspect Models
approach, including the structural and behavioral
representations. Since the effectiveness of
Reusable Aspect Models approach has been
shown in the literature using certain non-trivial
modeling case studies [5, 9, 35, 36], we believe
that our textual representation of models can be
valuable to textually represent any kind of
application scenario. Further, this textual
representation can be used by any kind of code
generations systems that are capable of
processing XML-based models.
3. BACKGROUND

3.1. Reusable Aspect Models

Reusable Aspect Models (RAM) [5, 6, 8] is a
multi-view modeling approach that combines
existing aspect-oriented approaches to model
class, sequence and state diagrams into a single
approach. Thus, it allows describing a system
from multiple points of view using the most
appropriate modeling notation. RAM can be
distinguished from other aspect-oriented
modeling approaches in the sense that it views
aspects as concerns that are reused many times in
an application or across a number of
applications. This means that it models any
functionality that is reusable by means of an
aspect. Different views (i.e. structure, message,
and state views) of a reusable concern are
encapsulated in the form of an aspect model
which is essentially a special UML package. This
aspect model comprises of three compartments.
First compartment represents the structural view
and is expressed as a UML class diagram.
Classes in this compartment need not to be
complete; they include methods and attributes
that are relevant to the particular concern only.

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 20th September 2013. Vol. 55 No.2

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

212

Complete classes are later produced by means of
composition with other classes at the time of
instantiation of the aspect. The incomplete
classes are termed as mandatory instantiation
parameters.

Following the structural compartment, one or
more state view compartments correspond to the
classes defined in structural view of the aspect
model. State view contains UML state diagrams
to describe the internal states of the class that are
relevant within the concern. For complete classes
(i.e., standard classes) in the structural view, the
state diagram will be a standard state diagram.
However, for incomplete classes, in which
concerns are to be injected later, an aspectual
state diagram is defined which contains two
parts: a pointcut and an advice. The pointcut part
is used to define the states and transitions that are
required in target state diagram, whereas the state
diagram that replaces the occurrence of pointcut
in the target state diagram is defined by the
advice part.

Aspect models are used in a target model by
means of either instantiation or binding
directives. Instantiation directives map the
mandatory instantiation parameters defined in
different views of the aspect model to elements
in the target model. For example, an instantiation
directive in structural view can be defined to
assign one or more classes of the view to classes
declared as mandatory instantiation parameters in
some other aspect. Unlike instantiation
directives, which are specific to incomplete
classes, binding directives are used to bind
complete classes or methods to other classes or
methods.

3.2. XML and XML Schemas
XML has emerged as a powerful and easy-to-

use standard to save and exchange data [30, 37].
It can easily be integrated with other related
standards and tools which allow accessing the
data stored in XML documents by means of
standard application programming interfaces
(APIs). XML represents the stored data using
XML elements consisting of a start tag, XML
attributes, content, and an end tag.

The structure and content of an XML
document is defined using an XML schema[38].
Just like the rules and features of a UML
diagram, XML schemas define a set of rules
describing elements and other markup objects to
be defined in an XML document. The standard to

define XML schemas is called XML Schema
Definition (XSD).

4. THE CONCEPTUAL REFERENCE
MODEL FOR RAM

The Conceptual Reference Model (CRM) in
this section defines the set of basic elements of a
RAM model and their relationships with each
other, which lead to a comprehensive
representation of the designed system. We
present the CRM in a graphical form using the
notation of a UML class diagram and
complement it with a textual definition of each
concept defined in the class diagram. The
essential purpose of this model is to elaborate the
concepts used by a RAM model in a systematic
way, so that the same elaborated definition can
be used to propose a schema representation of
the RAM models. It is important to note here that
since our CRM has been defined in a generic
way in terms of UML meta-classes, it can further
be extended by defining subclasses to support
more concepts of RAM models. Thus, for
example, the support for sequence views of
RAM can be provided by means of extending our
CRM.

In the following, we illustrate the concepts of
CRM along three major parts, i.e., Core,
StructuralView and StateView, represented as a
package, see Figure 1. The Core package covers
the high level global details of the RAM aspect,
whereas the StructuralView and StateView
correspond to the structural and behavioral
details of the aspect, respectively.

4.1. Core
The Core package contains the global details

related to an aspect. On one hand, it contains the
information on mandatory instantiation
parameters as well as the specific instantiations
as declared by the structural view. On the other
hand, it specifies the aspect to contain the classes
and statechart diagrams defined in structural and
state views, respectively.

An aspect can be seen as the highest
encapsulating unit in RAM models. This is
because in the RAM approach all reusable
functionality is considered as crosscutting and all
such functionality is modeled using aspects.
Thus, an aspect contains all structural as well as
behavioral functionality, which is necessary to
model the particular concern represented by the
aspect. Structural modeling is done using class
diagrams given in the structural view

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 20th September 2013. Vol. 55 No.2

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

213

(StructuralView) whereas the state
diagrams (StateView) and sequence diagrams
are used for behavioral modeling. Note that we
have used only the state diagrams in the current
study because we consider them preferable to
sequence diagram in terms of modeling behavior.
Another reason for the use of state diagrams is
that this paper intends to contribute to aspect
models in the specific context of code
generation, and state diagrams have been used to
generate full behavioral code for objects (in
contrast to their counterparts which mostly
generate skeletons) [13]. A detailed discussion
on advantages of state machines over sequence

and other behavioral diagrams can be found in
Cottenier et al. [39], Vanderperren et al. [40] and
Harel [41]. Further, the aspect defines mandatory
instantiation parameters, which are model
elements that must be composed with other
(target) models by means of instantiation or
binding. RAM models can declare a class, a
specific instance of a class, a method of a class,
or a state as a mandatory instantiation parameter
(determined by MIPType).

Figure 1 The conceptual reference model for Reusable Aspect Models

An aspect can use the functionality provided
by another aspect by declaring a dependency
relationship with that aspect (dependsOn). In
case an aspect is dependent on another aspect, it
specifies some instantiation directives (in case it
refers to incomplete elements) or binding

directives (in case it refers to complete
elements), to actually map the elements of the
aspect it depends on. In this regard, we may
distinguish between the mapping of classes and
the mapping of states by means of instantiation
or binding. Hence, we define ClassInstantiation

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 20th September 2013. Vol. 55 No.2

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

214

and StateInstantiation in our CRM to correspond
to these concepts. Each of the classes contains
information specifying which element of the
reused aspect (mappedFrom) is mapped to which
element of the dependent aspect (mappedTo).

4.2. StructuralView
Conceptually, the structural view of an aspect

defines a set of classes and interfaces, and their
relationships with each other. In order to
emphasize different concepts captured by the
classes in the structural view of a RAM model,
we have elaborated them in the StructuralView
part of Figure 1. The CRM shows that both types
of the basic structural units, i.e., Class and
Interface share some conceptual characteristics
captured in the general type Struct. However, a
Class can either be complete (CompleteClass) or
an incomplete one (IncompleteClass), in which
case it is expected to be woven with some other
class by means of binding or an export as a
mandatory instantiation parameter. Both types of
Struct may contain an arbitrary number of
functions (Function). However, the specialized
types of Constructor and Method can only be
contained by classes, where the former refers to
constructors of classes and the latter to functions
which are associated with a statechart given in
the state view. Therefore, an instance of Method
always contains a reference to the statechart
which defines its behavior (stateChartID). Unlike
constructors, instances of Method also specify
some return type (ReturnType). The attribute
isSingular in ReturnType takes care of the cases
in which a method returns an enumeration or
collection of some type of objects. Classes also
contain fields (Field).

A class in RAM model may specify how it is
conceptually related to other classes in the model
(Relationship). It also specifies the multiplicity
of relationship (minParticipation,
maxParticipation) with the class on other end of
the relationship (classID). In the specific case of
association relationship, in which the roles of
participants on either side of the relationship are
relevant, we take care of the role name
(roleName in Association).

4.3. StateView
From a conceptual standpoint, the state view

of an aspect model defines the behavior of some
of the classes given in the structural view.
However, since there are two different types of
classes that can exist in the aspect models, i.e.,
complete and incomplete classes, we may
distinguish between two different ways to

specifying the behavior of each type. One way,
which is applicable to complete classes, is to
associate a standard statechart diagram
(Statechart) with the class. Other way, which
essentially applies to incomplete classes, is to
associate an extension of the state diagram
(Statechart-Aspectual) that contains special
constructs related to aspect-oriented concepts.

An instance of Statechart may contain an
arbitrary number of states (State). Each state in
the state diagram may fire a transition
(Transition) which can essentially be seen as a
combination of an event to be triggered (Event)
and an associated action (Action). A state may be
defined as a composite state and thus may
contain other states (Substate).

An object of Statechart-Aspectual type is
conceptually different from a standard statechart
in the sense that it contains a pair of a pointcut
(Pointcut) and an advice (Advice). Pointcut
defines all the states which are relevant in order
to fulfill some functionality defined by the state
diagram, and in turn, the aspect. Advice, on the
other hand, defines the states and their respective
transitions to occur in case the pointcut was
matched. The State and Transition types are
semantically equivalent to those described
previously for a standard statechart.

5. THE TEXTUAL IMPLEMENTATION

MODEL

In this section, we present the text-based

implementation model developed for Reusable
Aspect Models in the form of XML schema. The
schema is based on the conceptual reference
model described in the previous section, and it
employs the same design principles which we
applied to define the CRM. It has to be noted
here that the schema proposed in this section is a
generic representation of RAM models, and that
it can be used in combination with any other
standard, such as XMI.

An overview of the specification of mapping
from RAM models to XML is presented in TABLE

1. In the following, we take the RAM conceptual
entities identified through the CRM, one by one,
and illustrate how they can be implemented by
means of the XML schema. It is to be noted here
that the RAM aspect described in section 5.1
serves as the main encapsulating entity and
implements the Core of the CRM. Following
this, sections 5.2 through 5.6 are related to the
StructrualView of our CRM, whereas

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 20th September 2013. Vol. 55 No.2

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

215

sections 5.7 through 5.11 define the concepts
defined in StateView of the CRM.

5.1. RAM aspect
RAM aspect, which encapsulates all other

modeling units existing in a RAM model, is
implemented by defining an XML element
(<xs:element>) named Aspect and an
associated complex type declaration
(<xs:complexType>) named AspectType
in XML schema. The Aspect element appears as
the root element and all such elements of
AspectType are capable of containing all the
constructs related to structural and state views of
an aspect, as applicable to specification of RAM
aspect models. A partial XML schema is shown
in Figure 2, which represents the AspectType.

Aspect element further contains three elements
Core, StructuralView and optionally
StateView that correspond to three main
segments of the CRM described in Section 4.

The Core contains five elements for which a
brief description follows. ProjectName and

AspectName elements are of string type
(<xs:string>) and refer to names of the
project that uses this aspect and the aspect itself,
respectively. These elements are followed by
declaration of an element dependsOn which
actually lists the names of any number aspects
this aspect is dependent on, using a sub-element
named dependsOnAspect. RAM aspects are
not required to be dependent on other aspects but
they may define any number of dependencies,
therefore, the minOccurs value of
dependsOn is set to 0 whereas the
maxOccurs is set to unbounded. Further, by
setting the values of minOccurs of
dependsOnAspect to 1 and maxOccurs to
unbounded, the schema actually requires that
in case dependsOn was declared, it must define
at least one dependesOnAspect element.
Next within the Core element, we declare a
mandatoryInstParam element, which will
be described in detail in Section 5.5.

Table 1: Overview of mapping from RAM aspect models to XML schema

RAM entity
to be mapped

Mapped XML schema entity Exceptions Extensions Assumptions

Aspect XML element Aspect and a
corresponding complex type
AspectType declaration.

None None None

Class XML element ClassType
within StructuralView
element and a corresponding
complex type ClassType
declaration.

Features which are
implementation-
specific only such
as abstract and final
are not
implemented.

Extends the
complex type
StructType
using XML
extension.

Realization of
more than one
interfaces will be
implemented by
having multiple
realizes elements.

Interface XML element
InterfaceType within
StructuralView element
and a corresponding complex
type InterfaceType.

None Extends the
complex type
StructType.

None

Field XML element named field. None The attributes
get, set,
increment,
decrement,
add, remove
and count can
allow direct
generation of
matching
methods.

None

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 20th September 2013. Vol. 55 No.2

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

216

RAM entity
to be mapped

Mapped XML schema entity Exceptions Extensions Assumptions

Constructor XML element constructor
within ClassType element
along with a complex type
Constructor.

Default
constructors are not
implemented in
schema.

Extends the
generic
FunctionTyp
e.

The funcName
element of
FunctionTyp
e is applicable to
determine the
object type
directly.

Method XML element operations within
ClassType element along
with the complex type
Method.

None Extends the
FunctionTyp
e by associating
optional values of
return type and
statechart ID.

For void return
types, we omit the
element.
Similarly, if there
is no statechart
ID, we assume it
as an unstated
method, for which
skeletons can be
directly added.

Mandatory
instantiation
parameter

XML element
mandatoryInstParam
declared within Core element
of AspectType.

None The type
attribute
determines
different types
such as class,
method, field etc.

None

Instantiation/
binding
directive

XML element
Instantiations within
Core element of
AspectType.

None Instantiation and
binding directives
in structural view
are implemented
within
ClassInst
element, whereas,
those in state view
are implemented
within
StateInst
element.

None

Relationship • For inheritance, XML
element parent within
ClassType element.

• For association, XML
element association along
with declaration of a
complex type
AssociationType.

• For aggregation and
composition, XML
elements aggregation
and composition
along with declaration of
matching complex type
RelationshipType.

None None Other possible
relationship type
extensions may be
implemented
using
Relationshi
pType.

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 20th September 2013. Vol. 55 No.2

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

217

RAM entity
to be mapped

Mapped XML schema entity Exceptions Extensions Assumptions

Standard
statechart

XML element statechart
within StateView element
and corresponding complex type
StateChart.

None None None

State XML element state within
statechart element and
matching complex type
State.

None None None

Substate XML element substate
within state element.

None None None

Transition XML element transition
within state element.

None None None

Aspectual
statechart

XML element
statechart-
aspectual within
StateView element and
declaration of matching type
StateChart-AO.

None None None

Figure 2: An excerpt of XML schema for AspectType to represent a high level RAM aspect.

StructuralView element within Aspect
element contains the structural definition of the
aspect as per the RAM specification.
StateView element contains the behavioral
description of the aspect. We defer a detailed
discussion of these two elements to the following
sections, wherein various conceptual constructs

related to each of these elements will be
discussed.

5.2. Classes and interfaces
The classes and interfaces in structural view of

a RAM aspect are implemented by having them
stem from a common origin defined as Struct.

<xs:complexType name="AspectType">
 <xs:sequence>
 <xs:element name="Global">
 <xs:complexType><xs:sequence>
 <xs:element name="ProjectName" type="xs:string"/>
 <xs:element name="AspectName" type="xs:string"/>
 <xs:element name="DependsOn" minOccurs="0"
maxOccurs="unbounded"><xs:complexType><xs:sequence>
 <xs:element name="DependsOnAspect" type="xs:string" maxOccurs="unbounded"/></xs:sequence>
 </xs:complexType></xs:element>
 <xs:element name="MandatoryInstParam" minOccurs="0" maxOccurs="unbounded">
 <xs:complexType><xs:attribute name="MIPType"><xs:simpleType><xs:restriction base="xs:string">
 <xs:enumeration value="class"/><xs:enumeration value="method"/><xs:enumeration
value="state"/>
 …..
 <xs:element name="Instantiations" minOccurs="0">
 <!-- ClassInst and StateInst are defined as elements within Instantiations here -->
 <xs:element name="StructuralView">
 <xs:complexType><xs:sequence>
 <xs:element name="ClassType" type="ClassType" maxOccurs="unbounded"/>
 <xs:element name="InterfaceType" type="InterfaceType" minOccurs="0" maxOccurs="unbounded"/>
 …..
 <!-- Here, StateView is defined. -->
 <xs:element name="StateView" minOccurs="0" maxOccurs="unbounded">
 <xs:complexType><xs:sequence>
 <xs:element name="statechart" type="StateChart" minOccurs="0"/>
 <xs:element name="statechart-aspectual" type="StateChart-AO" minOccurs="0"/></xs:sequence>
 <xs:attribute name="stateViewName" type="xs:string"/></xs:complexType></xs:element>

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 20th September 2013. Vol. 55 No.2

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

218

The Struct is defined as an element that is
associated with a composite type StructType.
The StructType essentially provides a
common structure which is shared by both
structural units in RAM aspects, i.e., classes and
interfaces. Specifically, it defines a number of
elements to describe the properties of this
structure including: (1) visibility which
refers to the accessibility of this structure, (2)

structName which defines the name of this
structure, (3) an optional element parent which
specifies generalization relationship of this
structure with other structures, (4) a number of
optional elements named realizes which
specify if this structure implements some of the
existing interfaces.

Figure 3: An excerpt of XML schema for ClassType.

Further, Struct defines an optional element
named operations (with maxOccurs set to
unbounded), which declares any number of
functions into structure. Details of functions will
be presented in Section 5.4. Interfaces are
implemented by means of adding an element
InterfaceType along with declaration of an
associated type named InterfaceType which
extends the StructType.

So far as classes are concerned, they are
implemented in a similar way by defining an
element named ClassType and declaring an
associated type named ClassType which
extends StructType, see Figure 3. However,
as in contrast with interfaces, classes bear some
unique characteristics, they are implemented by
adding a few more elements to the extension.
These elements are: (1) data which is discussed
in Section 5.3 (2) constructor which is
described in Section 5.4, (3) association,
aggregation and composition which are
all related to the discussion in Section 5.6.

5.3. Fields
Fields define the attributes of classes in a

RAM aspect’s structural view. We implement
fields by defining a required element field
with maxOccurs set to unbounded within
data element of ClassType. The declaration of
field element is shown in Figure 3. The
field element contains a number of attributes
to support automatic generation of simple
methods which may be associated with the fields.
These attributes are: (1) get and set, which
specify whether a getter and/or setter method is
desired for this field, (2) increment and
decrement, which are specific to integer-type
fields and specify the possibility of generation of
simple increment and/or decrement operations
for the integer field, (3) add, remove and
count, which indeed work specifically for
fields of enumeration type and are intended to
support the automatic addition of methods to
add/ remove elements to the enumeration and
return the number of elements in the
enumeration.

As far as elements within the field element are
concerned, there are four different elements of

<xs:complexType name="ClassType">
 <xs:complexContent>
 <xs:extension base="StructType"><xs:sequence>
 <xs:element name="constructor" type="Constructor" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element name="data"><xs:complexType><xs:sequence>
 <xs:element name="field" maxOccurs="unbounded"><xs:complexType><xs:sequence>
 <xs:element name="visibility"><xs:simpleType><xs:restriction base="xs:string">
 <xs:enumeration value="public"/><xs:enumeration value="protected"/><xs:enumeration
value="private"/>
 …
 <xs:element name="fieldName" type="xs:string"/>
 <xs:element name="fieldType" type="xs:string"/>
 <xs:element name="initVal" type="xs:string"/></xs:sequence>
 <xs:attribute name="get" type="xs:boolean"/><xs:attribute name="set" type="xs:boolean"/>
 …
 <!-- increment, decrement, add, remove, count attributes are defined in a similar way… -->
 ….
 <xs:element name="association" type="AssociationType" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element name="aggregation" type="RelationshipType" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element name="composition" type="RelationshipType" minOccurs="0" maxOccurs="unbounded"/>
 ….

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 20th September 2013. Vol. 55 No.2

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

219

<xs:string> type which cover the details of a
field declaration. These elements are
visibility, fieldName, fieldType and
initVal. The purpose of first three elements is
evident from their names, whereas, the last one is
intended to support specification of an initial
value for a variable.

5.4. Methods and constructors
Just like interfaces and classes, we associate

the methods and constructors to a common basis,
the FunctionType. The FunctionType

defines a number of essential properties
applicable to both constructors of classes as well
as methods, such as function name (funcName),
any number of parameters (param), and a
boolean value to specify whether this function is
a mandatory instantiation parameter (isMIP).

A method, however, is a special type of
function which, unlike a constructor, specifies a
return type. Return type of a method can either
be a simple type or an enumeration.

Figure 4: Definition (partial) of FunctionType and the sub-type Method.

Our definition of a Method (shown in Figure 4)
includes an element stateChartID which
refers to the statechart which defines the
behavior of this method. Since methods are not
required to have statecharts define their behavior,
stateChartID element is optional. Further,
methods and constructors are defined in the
structural view within operation and
constructor elements of Method and
Constructor types, respectively, in the
ClassType.

5.5. Mandatory instantiation parameters and
instantiation directives

The concept of mandatory instantiation
parameters, which makes it possible to combine
various elements of an aspect model with those
of a target model by means of instantiation
and/or binding directives, is implemented by
introducing an element
mandatoryInstParam within Core of
Aspect (with minOccurs=0,
maxOccurs=unbounded) which defines all
parameters designated as required to be
instantiated by a target model (see Figure 2). It
contains an attribute (<xs:attribute>)
MIPType to identify whether this parameter is a
class, interface, method or a field etc. The last
element in the Core element is

Instantiations. This element corresponds
to the instantiation and binding directives defined
in different compartments of the RAM aspect.
Specifically, it defines two elements
ClassInst and StateInst. These elements
are defined with a minOccurs value of 1 and
maxOccurs value of unbounded, and they
list the instantiation and binding of model
elements in the form of from-to pairs.

5.6. Relationships
We divide the relationships among various

structural units of our model conceptually into
three different types: (1) generalization or
specialization, (2) realization, and (3) other
relationships. Note that the support for (1) and
(2) has been discussed in Section 0. Other
relationships are implemented as follows.

There are three different forms of other
instance-level relationships supported by our
implementation, i.e., association, aggregation,
and composition relationships. A new complex
type has been defined with name
RelationshipType, which defines three new
elements classID, minParticipation,
and maxParticipation. The classID
refers to the ID of class on the other end of the
relationship, whereas the other two elements
define the minimum and maximum participation

<xs:complexType name="FunctionType">
 <xs:sequence>
 <xs:element name="funcID" type="xs:ID" minOccurs="0"/>
 <xs:element name="funcName" type="xs:string"/>
 <xs:element name="param" minOccurs="0" maxOccurs="unbounded">
 <xs:complexType> <xs:attribute name="paramType"/></xs:complexType></xs:element>
 <xs:element name="isMIP" type="xs:boolean"/>
…..
<xs:complexType name="Method"><xs:complexContent>
 <xs:extension base="FunctionType"><xs:sequence>
 <xs:element name="stateChartID" type="xs:string" minOccurs="0"></xs:element>
 <xs:element name="returnType" minOccurs="0"><xs:complexType>
 <xs:attribute name="isSingular"/>
…..

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 20th September 2013. Vol. 55 No.2

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

220

of the declaring class in the relationship,
respectively.

In order to implement aggregation and
composition relationships, respective
aggregation and composition elements
are defined within the ClassType composite
type (see Figure 3) and associated with the
RelationshipType simply. However, to
handle association relationship, we define an
element association of the
AssociationType, which extends
RelationshipType and assigns a role name
to the relationship by defining an attribute
roleName on association.
5.7. Standard statechart

In our implementation, we differentiate
between a standard statechart, which does not
contain aspect-oriented constructs, and an
aspectual statechart, which involves a pointcut
and an advice. The support for aspectual
statechart is discussed in Section 5.11. A
standard statechart is implemented by
introducing a statechart element of
StateChart composite type into the
AspectType definition (see figure Figure 2).
The StateChart type essentially defines two
basic attributes id and name and a number of
elements of State type (minOccurs set to 1)

which represent a state in the statechart. The
State element is further described in the
following section.

5.8. States
A statechart typically consists of more than

one states and a number of transitions which
determine the effect of certain events. We
implement a state by defining a new complex
type State and assigning a set of matching
state elements to it within the statechart
element (see Figure 5).

The State complex type defines two
attributes namely id and type. The id attribute
provides a unique identification for this state,
whereas, the type attribute is used to
distinguish various types of states, i.e., actual,
default and history states. Further, the State
type defines four elements, i.e., stateName,
internalEvent, subState and
transition. The stateName refers to the
name of this state. The internalEvent
element is optional and may occur more than
once to specify the name of action(s) associated
with this particular state. The remaining two
elements, i.e. subState and transition are
described in the relevant discussion in sections
5.9 and 5.10, respectively.

Figure 5: XML schema representation of a State.

5.9. Substates
The subState element provides support for

the phenomenon of composite states which
allows a state to have a number of substates [42].

We refer to the action to be carried in case of a
substate transition by means of a
substateEvent element in a way similar to
state event, see Figure 5.

<xs:complexType name="State">
 <xs:sequence>
 <xs:element name="stateName"/>
 <xs:element name="internalEvent" minOccurs="0" maxOccurs="unbounded">
 <xs:complexType><xs:attribute name="id"/></xs:complexType>
 </xs:element>
 <xs:element name="substate" maxOccurs="unbounded">
 <xs:complexType><xs:sequence><xs:element name="substateEvent" maxOccurs="unbounded">
 <xs:complexType><xs:attribute name="eventId"/></xs:complexType></xs:element></xs:sequence>
 <xs:attribute name="id"/></xs:complexType></xs:element>
 <xs:element name="transition" maxOccurs="unbounded">
 <xs:complexType><xs:sequence>
 <xs:element name="event"/>
 <xs:element name="action"/>
 <xs:element name="nextState" minOccurs="0"
maxOccurs="unbounded"></xs:element></xs:sequence>
 <xs:attribute name="id"/></xs:complexType></xs:element></xs:sequence>
 <xs:attribute name="id"/>
 <xs:attribute name="type"></xs:attribute></xs:complexType>
…..

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 20th September 2013. Vol. 55 No.2

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

221

5.10. Transitions
A transition in a state diagram is usually a

combination of an event and a resulting action
[42]. We implement transitions defined in state
view of RAM models by introducing a new
element named transition into the State
type. The transition element essentially captures
the concept of transition from this state (in which
this element exists) to the next state. For this
purpose, we define three elements within the
transition element, i.e., event, action and
nextState. The semantics of these elements
are evident from their names and need no further
explanation. However, there are two important
points which need a brief note in the context of
state transitions. First, since UML specification
allows the event and action to take any form, we
consider them as instance of string
(<xs:string>) type in our implementation.
As a result, they may contain, for instance, name
of a method or only a conditional expression etc.

Second point is particularly relevant to the
implementation of two advanced features of
UML statecharts known as Fork and Join [42].
These features are in fact pseudostates, which are
used to synchronize the transitions that enter into
or leave a composite state [42]. Specifically, a
fork refers to a transition that has one source
state and two or more target states, whereas, a
join represents a transition containing two or
more source states and only one target state.
Using our XML schema implementation, these
two concepts will be implemented in a
straightforward way. In particular, since the
nextState element contains the ID of the next
state, we will be having two IDs here in case of a
fork, i.e., IDs of both states to be activated
simultaneously. Similarly, in case of a join, two
state elements will be having the same value for
nextState element.

5.11. Aspectual statechart
An aspectual statechart in RAM is an

extension of a standard statechart that specifies
the behaviors of a pointcut to be matched and a
target advice to be executed in response. We
implement an aspectual statechart by introducing
a new element named statechart-
aspectual in the state view of aspect, and
defining a new complex type StateChart-
AO. Apart from defining two attributes id and
name, which resemble in semantics to the
attributes of standard statechart, a

StateChart-AO defines two new elements
namely pointcut and advice.

The pointcut element contains one or more
elements named state of string type. Note that
the state element is not declared to be of the
State type because we need only the name of
states in the pointcut part. Further, the state
element contains an attribute named type,
which specifies whether this state is complete or
incomplete state. Incomplete states are
designated as mandatory instantiation parameters
in RAM models.

The advice element contains one or more
elements of State type, which define states and
their respective transitions as illustrated in
sections 5.8 to 5.10.

6. CONCLUSIONS AND FUTURE WORK

In this paper, we have contributed a text-based

implementation model for Reusable Aspect
Models (RAM) notation. This model can serve as
an intermediary between the graphical
representation of RAM models and their
implementation in a programming language. In
this way, the current work is expected to
effectively integrate the aspect models with the
context of model-driven code generation, in a
standard way.

In order to develop a comprehensive
representation of RAM models, we have first
defined a conceptual reference model which is
presented in the form of UML class diagram.
This model encapsulates all structural and
behavioral concepts captured by RAM aspects in
terms of their structural and state views. Later,
we have developed a detailed mechanism of
implementing the conceptual model by XML and
related technologies, and have proposed an XML
schema for this purpose.

We believe that the proposed conceptual
reference model can be used as a basis for
implementation of RAM models in other
contexts such as their extension. Similarly, the
text-based representation can be used to
exchange model information in any way.
However, most importantly, the implementation
model can be used by a code generation system
in combination with a mechanism to mapping
RAM models into code, leading to automatic
code generation.

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 20th September 2013. Vol. 55 No.2

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

222

REFERENCES:

[1] A. Rashid, A. Moreira, J. Araujo, P.

Clements, E. Baniassad, and B.
Tekinerdogan. (2006, Early aspects:
Aspect-oriented requirements engineering
and architecture design.

[2] T. Elrad, O. Aldawud, and A. Bader,
"Aspect-Oriented Modeling: Bridging the
Gap between Implementation and Design "
in Generative Programming and
Component Engineering. vol. 2487, D.
Batory, C. Consel, and W. Taha, Eds., ed:
Springer Berlin / Heidelberg, 2002, pp.
189-201.

[3] G. Kiczales, J. Lamping, A. Mendhekar, C.
Maeda, C. Lopes, J.-M. Loingtier, and J.
Irwin, "Aspect-oriented programming," in
ECOOP'97 — Object-Oriented
Programming. vol. 1241, M. Aksit and S.
Matsuoka, Eds., ed: Springer Berlin /
Heidelberg, 1997, pp. 220-242.

[4] "Proceedings of the 15th international
conference on Model Driven Engineering
Languages and Systems," Innsbruck,
Austria, 2012, p. 826.

[5] J. Kienzle, W. Al Abed, F. Fleurey, J.-M.
Jézéquel, and J. Klein, "Aspect-Oriented
Design with Reusable Aspect Models," in
Transactions on Aspect-Oriented Software
Development VII. vol. 6210, S. Katz, M.
Mezini, and J. Kienzle, Eds., ed: Springer
Berlin / Heidelberg, 2010, pp. 272-320.

[6] J. Kienzle, W. A. Abed, and J. Klein,
"Aspect-oriented multi-view modeling,"
presented at the Proceedings of the 8th
ACM international conference on Aspect-
oriented software development,
Charlottesville, Virginia, USA, 2009.

[7] W. A. Abed and J. Kienzle, "Information
Hiding and Aspect-Oriented Modeling," in
Proceedings of the 14th Aspect-Oriented
Modeling Workshop, Denver, CO, USA,
2009, pp. 1–6.

[8] J. Klein and J. Kienzle, "Reusable Aspect
Models," presented at the 11th Workshop
on Aspect-Oriented Modeling, Nashville,
TN, USA, 2007.

[9] W. Al Abed and J. Kienzle, "Aspect-Oriented
Modelling for Distributed Systems," in
Model Driven Engineering Languages and
Systems. vol. 6981, J. Whittle, T. Clark,
and T. Kühne, Eds., ed: Springer Berlin /
Heidelberg, 2011, pp. 123-137.

[10] M. Kramer and J. Kienzle, "Mapping
Aspect-Oriented Models to Aspect-
Oriented Code," in Models in Software
Engineering. vol. 6627, J. Dingel and A.
Solberg, Eds., ed: Springer Berlin /
Heidelberg, 2011, pp. 125-139.

[11] B. Karakostas and Y. Zorgios, Engineering
Service Oriented Systems: A Model Driven
Approach: IGI Global, 2008.

[12] M. Afonso, R. Vogel, and J. Teixeira,
"From code centric to model centric
software engineering: practical case study
of MDD infusion in a systems integration
company," in Model-Based Development of
Computer-Based Systems and Model-Based
Methodologies for Pervasive and
Embedded Software, 2006.
MBD/MOMPES 2006. Fourth and Third
International Workshop on, 2006, pp. 10
pp.-134.

[13] E. Domı´nguez, B. Pérez, Á. L. Rubio, and
M. a. A. Zapata, "A systematic review of
code generation proposals from state
machine specifications," Information and
Software Technology, vol. 54, pp. 1045-
1066, 2012.

[14] Ó. Pastor and S. España, "Full Model-
Driven Practice: From Requirements to
Code Generation," in Advanced
Information Systems Engineering. vol.
7328, J. Ralyté, X. Franch, S.
Brinkkemper, and S. Wrycza, Eds., ed:
Springer Berlin Heidelberg, 2012, pp. 701-
702.

[15] B. Lamancha, P. Reales, M. Polo, and D.
Caivano, "Model-Driven Test Code
Generation," in Evaluation of Novel
Approaches to Software Engineering. vol.
275, L. Maciaszek and K. Zhang, Eds., ed:
Springer Berlin Heidelberg, 2013, pp. 155-
168.

[16] J. Bennett, K. Cooper, and L. Dai, "Aspect-
oriented model-driven skeleton code
generation: A graph-based transformation
approach," Science of Computer
Programming, vol. 75, pp. 689-725, 2010.

[17] D. Kundu, D. Samanta, and R. Mall,
"Automatic code generation from unified
modelling language sequence diagrams,"
Software, IET, vol. 7, pp. 12-28, 2013.

[18] R. Pilitowski and A. Dereziñska, "Code
Generation and Execution Framework for
UML 2.0 Classes and State Machines," in
Innovations and Advanced Techniques in
Computer and Information Sciences and

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 20th September 2013. Vol. 55 No.2

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

223

Engineering, T. Sobh, Ed., ed: Springer
Netherlands, 2007, pp. 421-427.

[19] OMG, "MOF 2.0/XMI Mapping, Version
2.1.1," ed, 2007.

[20] M. S. Ali, M. A. Babar, L. Chen, and K.-J.
Stol, "A systematic review of comparative
evidence of aspect-oriented programming,"
Inf. Softw. Technol., vol. 52, pp. 871-887,
2010.

[21] A. Hovsepyan, R. Scandariato, S. V.
Baelen, Y. Berbers, and W. Joosen, "From
aspect-oriented models to aspect-oriented
code?: the maintenance perspective,"
presented at the Proceedings of the 9th
International Conference on Aspect-
Oriented Software Development, Rennes
and Saint-Malo, France, 2010.

[22] J. Hannemann and G. Kiczales, "Design
pattern implementation in Java and
aspectJ," SIGPLAN Not., vol. 37, pp. 161-
173, 2002.

[23] A. Garcia, C. Sant'Anna, E. Figueiredo, U.
Kulesza, C. Lucena, and A. v. Staa,
"Modularizing design patterns with
aspects: a quantitative study," presented at
the Proceedings of the 4th international
conference on Aspect-oriented software
development, Chicago, Illinois, 2005.

[24] L. Fuentes and P. Sánchez, "Execution of
Aspect Oriented UML Models," in Model
Driven Architecture- Foundations and
Applications. vol. 4530, D. Akehurst, R.
Vogel, and R. Paige, Eds., ed: Springer
Berlin / Heidelberg, 2007, pp. 83-98.

[25] N. Cacho, C. Sant'Anna, E. Figueiredo, A.
Garcia, T. Batista, and C. Lucena,
"Composing design patterns: a scalability
study of aspect-oriented programming,"
presented at the Proceedings of the 5th
international conference on Aspect-
oriented software development, Bonn,
Germany, 2006.

[26] T. J. Grose, G. C. Doney, and S. A.
Brodsky, Mastering XMI: Java
Programming with XMI, XML and UML:
Wiley, 2002.

[27] L. Dai, "Formal design analysis framework:
An aspect-oriented architectural
framework," Ph.D. 3224352, The
University of Texas at Dallas, United
States -- Texas, 2005.

[28] M. V. Hecht, E. K. Piveta, M. S. Pimenta,
and R. T. Price, "Aspect-oriented Code
Generation," presented at the XX Brazilian

Conference on Software Engineering,
2005.

[29] S. Clarke and E. Baniassad, Aspect-
Oriented Analysis and Design: The Theme
Approach: Addison Wesley Object
Technology, 2005.

[30] WWWC, "Extensible Markup Language
(XML) 1.0 (fourth edition)," ed: World
Wide World Consortium. Available at:
http://www.w3.org/TR/xml/, August 2006
[Online].

[31] N. Routledge, L. Bird, and A. Goodchild,
"UML and XML schema," Aust. Comput.
Sci. Commun., vol. 24, pp. 157-166, 2002.

[32] D. Carlson, Modeling Xml Applications
With Uml: Practical E-Business
Applications: ADDISON WESLEY
Publishing Company Incorporated, 2001.

[33] I.-C. Wu and S.-H. Hsieh, "An UML-XML-
RDB Model Mapping Solution for
Facilitating Information Standardization
and Sharing in Construction Industry," in
Proceeding of the 19th International
Symposium on Automation and Robotics in
Construction (ISARC) Maryland, 2002, pp.
317-321.

[34] R. Conrad, D. Scheffner, and J. C. Freytag,
"XML conceptual modeling using UML,"
presented at the Proceedings of the 19th
international conference on Conceptual
modeling, Salt Lake City, Utah, USA,
2000.

[35] G. Mussbacher, J. Kienzle, and D. Amyot,
"Transformation of aspect-oriented
requirements specifications for reactive
systems into aspect-oriented design
specifications," in Model-Driven
Requirements Engineering Workshop
(MoDRE), 2011, 2011, pp. 39-47.

[36] M. E. Kramer, "Mapping Reusable Aspect
Models to aspect-oriented code," Karlsruhe
Institute of Technology, Germany, 2010.

[37] L. M. Garhol, Definitive Xml Application
Development: Prentice Hall Ptr, 2002.

[38] E. Van der Vlist, XML Schema: O'Reilly,
2003.

[39] T. Cottenier, A. v. d. Berg, and T. Elrad,
"Stateful Aspects: The Case for Aspect-
Oriented Modeling," presented at the 10th
AOM Workshop, 2007.

[40] W. Vanderperren, D. Suvée, M. Cibrán, and
B. Fraine, "Stateful Aspects in JAsCo," in
Software Composition. vol. 3628, T.
Gschwind, U. Aßmann, and O. Nierstrasz,

http://www.jatit.org/
http://www.w3.org/TR/xml/

Journal of Theoretical and Applied Information Technology
 20th September 2013. Vol. 55 No.2

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

224

Eds., ed: Springer Berlin Heidelberg, 2005,
pp. 167-181.

[41] D. Harel, "Statecharts: A visual formalism
for complex systems," Sci. Comput.
Program., vol. 8, pp. 231-274, 1987.

[42] OMG, "UML 2.3 Superstructure
Specification Document Formal/2010-05-
05 <http://www.omg.org/> ", ed, 2010 (last
visited May 2012).

http://www.jatit.org/
http://www.omg.org/

	ABID MEHMOOD, DAYANG N.A. JAWAWI
	3.1. Reusable Aspect Models
	3.2. XML and XML Schemas
	4.1. Core
	4.2. StructuralView
	4.3. StateView
	5.1. RAM aspect

	Table 1: Overview of mapping from RAM aspect models to XML schema
	5.2. Classes and interfaces
	5.3. Fields
	5.4. Methods and constructors
	5.5. Mandatory instantiation parameters and instantiation directives
	5.6. Relationships
	5.7. Standard statechart
	5.8. States
	5.9. Substates
	5.10. Transitions
	5.11. Aspectual statechart

