
Journal of Theoretical and Applied Information Technology
 20th September 2013. Vol. 55 No.2

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

174

A SURVEY ON MITIGATING ATTACKS RELATED TO
SHORTCOMINGS OF ANDROID PERMISSION

FRAMEWORK

1IMAN KASHEFI, 2MAZLEENA SALLEH
1Faculty of Computing (FC), Universiti Teknologi Malaysia (UTM), 81300 Johor Bahru, Malaysia
2Faculty of Computing (FC), Universiti Teknologi Malaysia (UTM), 81300 Johor Bahru, Malaysia

E-mail: 1kaashefi@gmail.com , 2 mazleena@utm.my

ABSTRACT

Today Smartphones are the closest user assistants since they offer a wide range of functionalities to users.
Although there are many applications developed in the market which facilitate the day-to-day user activities
and provide a comprehensive means to entertain users, the number of malicious applications which misuse
the users’ personal data or overcharge them are increased accordingly. These applications are granted
privileges legitimately while they may not use them in a proper way. The aim of this paper is to address
attacks related to the shortcomings of Android permission framework, which further are categorize to
attacks result from applications with excessive privileges, confused deputy, and collusion attacks. This
work compares the ability of existing approaches in mitigating these attacks since any improvement in
current mechanisms or proposing novel methods to impede these types of attacks would not be achieved
unless a comprehensive study on the current approaches takes place.

Keywords: Android Security, Privilege Escalation Attack, Collusion Attack, Confused Deputy Attack

1. INTRODUCTION

Although Androids inherits many security
countermeasures from Linux, and also it retrofits
the framework with specific security mechanisms,
researches [1, 2] shows that like any other computer
device in network system, it is threaten by many
different kinds of attacks. One of the most
important attacks that jeopardize the users’ privacy
or over charge users comes from installing
applications from different markets and also Google
official market, “Google Play”. Unfortunately
recent researches [3, 4, 5, 6, 7] showed that
currently there are various malicious applications
uploaded in market which misuse the deficiencies
in Security framework, and users are attracted by
their splendid advertisement. These applications
have been developed with malicious purpose such
as leaking user sensitive information [8].
Applications are granted privileges legitimately and
users are not aware what is doing in the background
and whether their private information is using in a
proper way or not. However the problem of
privilege escalation attacks does not limit to over-
privilege applications; attacks. Confused deputy

attacks [9] discuss scenarios where a malicious
application misuses the vulnerable interfaces of
another benign privileged (but not well-protected)
application. On the other hand, colluding attack [9]
concerns with two or more applications which share
their privileges in order to empower them to
perform actions beyond their individual
permissions. This paper with expressing the
Android architecture and security mechanism aims
to address the deficiencies in its frameworks which
are exploited by attackers to perform privilege
escalation attacks. Moreover it discusses many
works, which are mainly in the form of extensions
to android framework, aim to prevent the above
kinds of attacks. The rest of this paper is organized
as follow: In section II, a brief review of Android
Architecture is presented, section III explained the
Android security, then in section IV, some of the
most famous works aim at extending the Android
security mechanism will be discussed, finally
section V concludes this paper and provide some
open area for future research.

http://www.jatit.org/
mailto:1kaashefi@gmail.com
mailto:mazleena@utm.my

Journal of Theoretical and Applied Information Technology
 20th September 2013. Vol. 55 No.2

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

175

2. ANDROID ARCHITECTURE

Android is a Linux-based, open source,
mobile phone platform that includes an Operating
System (OS), middleware, and key applications
[10] as it is demonstrated in Figure 1.

Figure 1: Android Software Stack

The foundation of the Android software
stack is the Linux Kernel. Android uses Linux for
its device drivers, memory management, process
management, and networking. In the conceptual
model, the kernel layer is placed between hardware
and the software layers to provide core
functionalities for Android services [10]. The
middleware itself is written in Java and C/C++.
The application framework includes applications
written in C/C++ or Java that provide
functionalities for system purpose.

Android Runtime, in the Android
Middleware layer, consists of the Dalvik Virtual
Machine and the core libraries. Dalvik runs .dex
(Dalvik Executable) files which are more compact
and memory-efficient than Java class files.

The Application Framework layer
encompasses Google-supplied tools along with
proprietary extensions or services. One of the main
components of the framework is the Activity
Manager, which controls the lifecycle of
applications. The Package Manager is responsible
for assigning privileges to applications at install
time. The Package Manager also verifies the
accuracy and completeness of the .apk files.
Package installer extracts and installs .apk files
according to the Android installation mechanism.
Applications in Android are packaged in an .apk
(Android package) archive. The .apk is alike to a
standard Java jar file that it holds all code and non-
code resources such as images, sound, manifest,

and so forth. The top layer is the Applications layer
for implementing applications such as email client,
calendar, phone and so forth.

The Android package is composed of
different components. Components in a package
can access to the components of other packages and
share data only through the ways provided by the
system. Every Android package is associated with a
primary process in which components of an
application such as activity, service, content
provider, and broadcast receiver are executed.
Activities present the user interfaces (or screens) of
an application, generally each screen which is
presented to a user is proposed only by a single
Activity. Services control backbone processing and
in contrast to activity components, they are hidden
to the user. Content Provider is in charge for store
and share data. Each content provider comes with a
relevant authority which describes the regulations
on the component from other application which has
permissions to read or write data associated with it.
Broadcast Receiver is constructed in the form of
mailboxes to receive messages from other
applications. Applications are enabled to broadcast
messages to an implicit or explicit destination. In
implicit broadcasting an application can only
receive messages from the destinations for which
has subscribed [2, 11].

The communication between components
occurs through an inter component communication
(ICC) mechanism intent messages are used in this
mechanism. An intent is a data structure which
contains the information about the intended action
needs to be performed. There are two types of
intents; explicit intents and implicit intents. In
explicit intents the name of the component is
mentioned while in implicit intents an action string
which can be composed of the required action and
the related data, the component category and some
extra fields to define different needed data are
used [12]. Based on the action string, Android
sends implicit intents to the appropriate components
by checking these action strings against the intent
filters of components. Intent filters introduce the
type of actions which are done by each component.

In order to have secure Inter-Component
communication, components of an application can
be protected by permission labels. For using
services provided by the APIs, applications should
declare the needed permissions for accessing the
relevant components in the package manifest file at
install time to be granted by the users [13].

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 20th September 2013. Vol. 55 No.2

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

176

For instance if application A needs to use
the service provided by a component of application
B and this component is protected with a
permission label, Application A should declare this
permission in its manifest file in order to be granted
by the user.

3. ANDROID SECURITY MECHANISMS

In common, different security mechanisms
which are used in Android framework can be
classified into three groups: Linux mechanisms,
environmental features, and Android-specific
mechanisms. Since the aim of this paper is to
express the shortcomings in Android Specific
security mechanism in order to address privilege
escalation attacks, in the following, the
classification of this mechanism introduced by
Google: Component encapsulation, permission
framework, and application signing [11, 14, 15]
will be presented.

A. Component Encapsulation

An Android application can encapsulate its
component. This mechanism prevents other
applications from accessing to its components,
because they have a separate userID. This is
realized essentially through the definition of the
“exported” property. If it is essential for a
component of an application that is accessible
either to its main application or other applications
that bear the same user ID, therefore, the
“exported” property should be “false”; in the same
way, in order to be publicly available, the
“exported” property should be “true”. Developers
should always keep in mind to set the “exported”
property manually since the default value might not
coincide with the required one.

B. Android Permission Framework

Android’s permission mechanism applies
limitations on particular operations that an
application is able to perform. There are more than
100 built-in permissions that manage operations
like using the Internet (INTERNET), taking
pictures (CAMERA), making a phone call
(CALL_PHONE), modify the current configuration
(CHANGE_CONFIGURATION), and even
disabling the phone permanently (BRICK). Also
developers can define additional permissions in
Android applications. In order to get permission, an
application needs to request it explicitly at install
time. Permissions have associated protection levels:

• Normal – application-level permissions
which are not dangerous like turning on
the phone’s vibration, this kind of
permission does not need user’s
confirmation;

• Dangerous – these are high-risk
permissions that may provide access to the
user private data or dangerous
functionalities. Granting such permissions
needs user’s confirmation;

• Signature – these permissions are granted
to applications with the same signature;
and

• SignatureOrSystem – these permissions
can be granted to packages installed in the
Android system image.

As well as defending protected framework
APIs, the permission mechanism is needed and
should be applied in order to protect different
components in an application [2].

C. Application Signing

The Android system requires that all
installed applications be digitally signed. The
signed apk is valid as long as its certificate is valid
and the enclosed public key successfully verifies
the signature [14]. There is no necessity to acquire
these certificates from an authority. It allows
Android application developer to self-sign the
application. The Android only employs the
certificate as a means of identifying the author of
the application so that it will be able to launch
reliable connections between applications.

4. SOME OF THE APPROACHES TO
PRIVILEGE ESCALATION ATTACKS

Although Android integrates many

security features to enhance the security of
Smartphones, attackers use available security holes
to perform their malicious actions. For example,
component encapsulation may work best when
developers take necessary measures to develop
protected applications. However it is very much
seen that there are many benign applications which
are exploited by malicious applications due to their
vulnerable interfaces. As another example, many
vulnerabilities have been detected in the permission
mechanism of Android that significantly raise the
probability of installing malicious applications [2].
The Android permission mechanism is not enough

http://www.jatit.org/
http://developer.android.com/reference/android/Manifest.permission.html#CHANGE_CONFIGURATION

Journal of Theoretical and Applied Information Technology
 20th September 2013. Vol. 55 No.2

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

177

secured and gives malicious applications the
opportunity of misusing permissions that may be
granted by unaware users . Moreover, users are
unable to approve only some of the permissions
requested by an application. They can grant all or
none of the requested permissions to an application
and cannot verify that these permissions are used
for benign purposes or not. In addition, shared user
ID mechanism lets applications to share their
permissions without users explicit approval.

 Over the few years, many researchers in
academia and industry proposed complicated
extensions to fortify the Android’s security
framework. They mainly focus on protecting the
user data and mitigating some types of privilege
escalation attacks. In this section, some of the most
well-known approaches are presented.

“Saint” [16] introduces a fine-grained
access control extension that secures applications
against being misused by malicious applications.
Saint let application developers define access
control policies to keep the components of their
applications safe. These policies can determine the
significant factors of calling applications like
defining the permissions which are required by a
caller application to access the components of
callee. In this way the caller must have at least the
same permissions that the callee has. With this
method an application can specify applications
which can access its interfaces. Saint mechanism
trusts application developers who are not expert in
security to consider the policies in their
applications. Therefore it could be an error-prone
approach which expects developers to consider
proper policies.

“CRePE” [17] is an extension that tries to
solve the problem of over-privileged applications
by using context-related policies which bounds the
privileges of an application or some of its
functionalities by considering the contextual limits
like time, geographical location and noise. The
policies in CRePE can be defined by user as well as
trusted third parties. For example these policies can
be set by an organization for all the employees in a
company. In CRePE contextual information are
considered and appropriate policies are defined to
restrict the privileges granted to an application. So
it does not mitigate privilege escalation attacks.

“MockDroid” [13] is another extension for
Android which prevents an application accessing
the critical information and important resources. As
it is inferred from its name, it makes users able to

'mock' an application's access to critical resources.
There might be important resources and sensitive
data on the phone that can be misused by some
applications, therefore, MockDroid provides empty
or fake information instead of real data when these
applications request to access these resources. Since
there is much sensitive information stored in
Smartphone, and some of the applications use this
information in an inappropriate way, MockDroid
presents empty or bogus information whenever the
application requests access. This solution
empowers users to recall access to specific
resources at run-time. This method enables users to
opt between disclosing the sensitive data and
functionality at the time of using an application.
Whenever MochDroid serves an application with
the fake information, user will be notified through
providing some information. S

 “TISSA” [8] works very similar to
MockDroid in controlling the access of unreliable
applications to important resources and sensitive
information. Unlike MockDroid which provides
applications with the empty of fake data, TISSA
presents true information but with low accuracy.
The difference between TISSA and MockDroid is
the quality of the data which is provided for the
applications. This mechanism is able to make a
balance between efficiency and flexibility. For
instance, if an application needs the user location to
provide weather information, TISSA provides the
location data of some places near the user real
place. This model challenges to come to a good
balance between efficiency and flexibility. TISSA
provides only one single privacy setting for one
type of sensitive information. Sometimes it seems
too coarse-grained.

“TaintDroid” [4] is an Android extension
that tracks the flow of critical and personal data
through untrusted applications. In TaintDroid, any
third party application downloaded from the market
is considered as an unreliable application. It
monitors the way these applications access or
change the sensitive data in users` devices. In this
way TaintDroid can find out when and how the
private data flow out of the phone through
unreliable applications. The obtained information
by this method helps users or other security services
analyze the behavior of the applications. TaintDroid
is capable of tracing data leakage and detecting
suspicious actions through tracking the explicit data
flows, though it is not able to detect private data
leakage through implicit flows.

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 20th September 2013. Vol. 55 No.2

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

178

 “QUIRE” [20] with a low overhead
mechanism prevents the unprotected interfaces of a
benign application from being misused by a
malicious app. By tracing RPC chains, QUIRE
checks all the applications in the chain in order to
find out they have the needed permissions to make
an application call or not. The shortcoming of the
Quire is that it is visible to the developers and also
it cannot protect private data from disclosure to the
remote servers through internet. Moreover this
mechanism is not able to detect and prevent
colluding attack

 “The AppFence” [21] is similar to TISSA
and MochDroid. It compounds two approaches in
order to protect information disclosure by untrusted
apps. First approach replaces the sensitive data with
unreal information and the second prevents network
transmissions that contains important data that are
provided only for local activities by the users.
AppFence, by taking advantage of TaintDroid
provides users with another mechanism to mock the
critical information in order to prevent the data
disclosure. AppFence can do nothing to the
problem of colluding attack. In this approach,
mocking valid data allows only data anonymity and
does not provide other alternative over private data.

 “XManDroid” [11] is an Android
extension for detecting and preventing privilege
escalation attacks by examining and analyzing the
communications between applications based on
extended system policy. XManDroid proposes an
efficient detection of covert channels which
executed through the Android core services and
content providers. This mechanism traces ICC
traffic in order to detect those ICC calls that may
cause privilege escalation according to the system
policies. The proposed system track all the Inter
Component Communication traffic and verify if an
Inter Component Communication call can result
escalating privileges based on appropriate system
policy. Despite the previous capabilities
XManDriod is not able to control communication
channels executed outside the Inter Component
Communication framework. Moreover, the lack of
fine-grained access policies results in choosing
between two options, all or no access to the
resources and no intermediary approach is
introduced.

“Porscha” [22] proposes policy-based
secure content managing in Android. The main
purpose of this approach is to associate any
sensitive data or resources to a specific Smartphone
and to a typical set of apps. Content sources (e.g.

devices transmitting SMS, e-mails, etc.) can be
binded to a Digital Rights Management policy in
order to be protected. However, Porscha in some
cases propose a more fine-grained solution, it is not
able to inhibit disclosure of data which are not
tainted with a security policy. Moreover, the
primary aim of Porscha is to monitor and manage
data flows (explicit flow), and privilege escalation
attacks based on control flows (implicit flow) are
not considered.

“ComDroid” [23] is a novel static analysis
tool that identifies deficiencies in application
interaction. It explores an application and identifies
vulnerable interfaces and security-critical
intent/broadcast transmissions. For example, it
alerts the app developer about the potential attacks
which result from sending private data through a
public broadcast. In case of the existence of a
malicious broadcast receiver, disclosing the data
through eavesdropping the message can be possible
and probable with a high percentage. However, this
approach is capable of identifying application
communications with deficiencies; it is not able to
unfold privilege escalation attacks that are based on
multiple colluding applications, regarding to the
fact that it only concentrate on a single application.
Moreover, normally static analysis tools are error-
prone, since they are not able to completely foresee
the real-time application communication.

“Kirin” [24] tries to solve the problem by
checking the applications’ permissions at install
time. By using security requirements engineering
and defining appropriate rules, Kirin detects the
applications that has the potential to perform
dangerous actions. These rules are composed of a
combination of critical permissions that gives the
application the ability of conducting malicious
activities. Although, this mechanism can mitigate
the threats caused by applications with excess
permissions, it is not capable of detecting privilege
escalation attack. This author also proposed a
method [25] to decompile and analyze the source of
applications to detect any possible way of leaking
data.

“A Privilege Escalation Vulnerability
Checking System” [26] considers applications
which are not well protected and can be misused by
malicious applications in order to conduct privilege
escalation attack. In this research, they proposed a
vulnerability checking system to verify if an
application is vulnerable to privilege escalation
attack.

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 20th September 2013. Vol. 55 No.2

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

179

Felt et al. [27] applies a type of static
analysis to verify if an Android application is over-
privileged or not. It examines all the permissions
an application requests, and in case of not using
requested permission, it concluded that the
application is over-privileged. Felt et al. [28] also
conducted a survey on applications on the Android
Market to mark the applications that request
dangerous permissions. None of above mentioned
mechanism result to detect or categorize malicious
applications.

Au et al. [29] conducts a survey on the
permission system of the most popular Smartphone
OSs and classifies them according to the level of
control given to users, the amount and level of
information they provide to users and the level of
interactions they need from the user to serve
properly. Moreover, they explained most
problematic issues result from extracting
permissions-based information from Android
applications.

Vidas [30] proposes a mechanism that
helps developers defining a minimum acceptable
set of permissions needed for a particular mobile
app. This mechanism is based on analyzing the
code of the application and deducts the minimum
acceptable set of permissions needed in order for
the application to work properly.

Some of the most important works are
summarized in the Table 1.

It may be worth to mention that while
proposing extensions for Android security can be a
useful paradigm for researchers, yet it might not
providing end-users with applicable solutions
which empower them best protect their device and
private sensitive information.

5. CONCLUSION

In this paper, the types of attacks related to
shortcomings of Android permission framework
such as confused deputy attacks, collusion attacks
and attacks result from applications with excessive
privileges are discussed. It has been mentioned that
users grant permissions to applications without
knowing that whether they use critical services
legitimately or not. Moreover, applications may
share their permissions in order to perform actions
beyond their normal permissions. Besides, there are
many over-privileged but benign applications with
vulnerable interfaces that are exploited by attackers.
In the recent years many researches have been

conducted to address different types of attacks
related to shortcomings of Android permission
framework. Most of them proposed some
modification to Android framework in order to
mitigate some deficiencies in it. However they
address the problem by proposing effective
solutions theoretically, still users cannot benefit
from them.

REFRENCES:

[1] Au, K., Zhou, Y., Huang, Z., Gill, P., and Lie,

D. (2011). Short paper: a Look at Smartphone
Permission Models. Proceedings of the 1st
ACM Workshop on Security and Privacy in
Smartphones and Mobile Devices, pages. 17-
21 October. Chicago, IL, USA, ACM: 63–68.

[2] Shabtai, A., Fledel, Y., Kanonov, U., Elovici,
Y., and Dolev,S. (2009). Google Android: A
state-of-the-Art Review of Security
Mechanisms. CoRR, abs/0912.5101.

[3] Mahaffey, K., Hering, J. (2010). App Attack:
Surviving the Explosive Growth of Mobile
Apps.

[4] Enck, W., Gilbert, P., Chun, B.G., Cox, L.P.,
Jung, J., McDaniel, P., and Sheth, A.N. (2010).
TaintDroid: an Information-Flow Tracking
System for Real-time Privacy Monitoring on
Smartphones. Proceedings of the 9th USENIX
Symposium on Operating Systems Design and
Implementation (OSDI). October. Vancouver,
BC, Canada: OSDI'10, Article No. 1-6.

[5] Egele, M., Kruegel, C., Kirda, E., and Vigna,
G. (2011). PiOS: Detecting Privacy Leaks in
iOS Applications. Proceedings of 18th Annual
Network and Distributed System Security
Symposium. 6 – 9 February. San Diego, CA,
USA: NDSS.

[6] Bradley, T. (2011, March 2). DroidDream
Becomes Android Market Nightmare.
PCWorld, Retrieved December 15, 2012, from
http://www.pcworld.com/businesscenter/article
/221247/droiddream_
becomes_android_market_nightmare.html

[7] Thurm, S. and Kane, Y.I. (2010, December
17). Your Apps Are Watching You. The Wall
Street Journal, Retrieved December 15, 2012,
from
http://online.wsj.com/article/SB100014240527
48704694004576020083703574602.html

[8] Zhou, Y., Zhang, X., Jiang, X., and Freeh,
V.W. (2011). Taming Information-Stealing
Smartphone Applications (on Android).
Proceedings of the 4th International
Conference on Trust and Trustworthy

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 20th September 2013. Vol. 55 No.2

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

180

Computing. 22-24 June. Pittsburgh, PA, USA,
TRUST: 93-107.

[9] Bugiel, S., Davi, L., Dmitrienko, A., Fischer,
T., Sadeghi, A.R., and Shastry, B. (2012).
Towards Taming Privilege-Escalation Attacks
on Android. Proceedings of 19th Annual
Network & Distributed System Security
Symposium. 5-8 February. San Diego,
California, USA, NDSS.

[10] Android Security Overview, Security and
Permissions. (2012). Retrieved December 15,
2012, from
http://source.android.com/tech/security/#androi
d-application-security

[11] Bugiel, S., Davi, L., Dmitrienko, A., Fischer,
T., and Sadeghi, A.R. (2011). Xmandroid: A
new Android Evolution to Mitigate Privilege
Escalation Attacks. Tecnical report, TR-2011-
04, Technische Universität Darmstadt,
Darmstadt, Germany.

[12] Nauman, M., Khan, S., and Zhang, X. (2010).
Apex: Extending Android Permission Model
and Enforcement with User-Defined Runtime
Constraints. Proceedings of the 5th ACM
Symposium on Information. 02 May. New
York, USA: ACM, 328–332.

[13] Beresford, A.R., Rice, A., and Skehin, N.
(2011). MockDroid: Trading Privacy for
Application Functionality on Smartphones.
Proceedings of the 12th Workshop on Mobile
Computing Systems and Applications, ser. 1-2
March. New York, NY, USA: ACM, 49-54.

[14] Shabtai, A., Fledel, Y., Kanonov, U., Elovici,
Y., Dolev, S., and Glezer, C. (2010). Google
android: A Comprehensive Security
Assessment. IEEE Security and Privacy. 8 (2),
35–44.

[15] Davi, L., Dmitrienko, A., Sadeghi, A.R., and
Winandy, M. (2010). Privilege Escalation
Attacks on Android. Proceedings of the 13th
International Conference on Information
Security. 25-28 October. Boca Raton, FL,
USA, ISC: 346–360.

[16] Ongtang, M., McLaughlin, S., Enck, W., and
McDaniel, P. (2009). Semantically Rich
Application-Centric Security in Android.
Proceedings of Proceedings of the 2009
Annual Computer Security Applications
Conference. December. Washington, DC,
USA, ACSAC: pages 340-349.

[17] Conti, M., Nguyen, V.T.N, and Crispo, B.
(2010). Crepe: Context Related Policy
Enforcement for Android. Proceedings of the
13th International Conference on Information

Security. 25 – 28 October. Boca Raton, FL,
USA, ISC: 331– 345.

[18] Hering, J., Mahaffey, K., and Burgess, J.
(2010, 27 July). Introducing the App Genome
Project. LOOKOUT, Retrieved December 15,
2012, from
http://blog.mylookout.com/2010/07/introducin
g-the-app-genome-project/

[19] Calo, R., Young, R., Smith, A., and Gelman, L.
(2010). WhatApp. Retrieved May 6, 2012,
from http://www.whatapp.org

[20] Dietz, M., Shekhar, S., Pisetsky, Y., Shu, A.,
and Wallach, D. S. (2011). Quire: Lightweight
Provenance for Smartphone Operating
Systems. Proceedings of 20th USENIX
Security Symposium. 8 -12 August. San
Francisco, CA, USA, USENIX.

[21] Hornyack, P., Han, S., Jung, J., Schechter, S.,
and Wetherall, D. (2011). These Aren't the
Droids You're Looking for: retrofitting android
to protect data from Imperious Applications.
Proceedings of the 18th ACM Conference on
Computer and Communications Security. 17 –
21 October. New York, USA: ACM, 639-652.

[22] Ongtang, M., Butler, K., and McDaniel, P.
(2010). Porscha: Policy Oriented Secure
Content Handling in Android. Proceedings of
the 26th Annual Computer Security
Applications Conference. 6-10 December. New
York, NY, USA, ACM: 221-230.

[23] Chin, E., Felt, A.P., Greenwood, K., and
Wagner, D. (2011). Analyzing Inter-
Application Communication in Android.
Proceedings of 9th Annual International
Conference on Mobile Systems, Applications,
and Services. 28 June – 1 July. New York, NY,
USA: ACM, 239-252.

[24] Enck, W., Ongtang, M., and McDaniel, P.
(2009). On Lightweight Mobile Phone
Application. Proceedings of the 16th ACM
conference on Computer and Communications
Security. 9-13 November. Chicago, IL, ACM:
235 – 245.

[25] Enck, W., Octeau, D., McDaniel, P., and
Chaudhuri, S. (2011). A Study of Android
Application Security. Proceedings of the 20th
USENIX Conference on Security. 8-12 August.
San Francisco, CA, USA, SEC: 21–21.

[26] Chan, P.P.F, Hui, L.C.K, and Yiu, S.M. A
Privilege Escalation Vulnerability Checking
System for Android Applications. (2011).
Proceedings of 2011 IEEE 13th International
Conference on Communication Technology.
25-28 September. Jinan, China: IEEE, 681-
686.

http://www.jatit.org/
http://dx.doi.org/10.1109/ICCT.2011.6157963
http://dx.doi.org/10.1109/ICCT.2011.6157963

Journal of Theoretical and Applied Information Technology
 20th September 2013. Vol. 55 No.2

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

181

[27] Felt, A., Chin, E., Hanna, S., Song, D., and
Wagner, D. (2011). Android Permissions
Demystified. Proceedings of the 18th ACM
conference on Computer and Communications
Security. 17 – 21 October. New York, USA,
ACM: 627–638.

[28] Felt, A., Greenwood, K., and Wagner, D.
(2011). The Effectiveness of Application
Permissions. Proceedings of the 2nd USENIX
Conference on Web Application Development.
15 – 16 June. Portland, OR, USA: 83-94.

[29] Au, K., Zhou, Y., Huang, Z., Gill, P., and Lie,
D. (2011). Short paper: a Look at Smartphone
Permission Models. Proceedings of the 1st
ACM Workshop on Security and Privacy in
Smartphones and Mobile Devices, pages. 17-
21 October. Chicago, IL, USA, ACM: 63–68.

[30] Vidas, T., Christin, N., and Cranor, L. (2011).
Curbing Android Permission Creep.
Proceedings of Web 2.0 Security and Privacy
Workshop. 26 May. Oakland, California, USA,
W2SP: 2.

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 20th September 2013. Vol. 55 No.2

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

182

Table 1. Comparison Table of the Current Approaches

Model Security mechanism

mitigate

Main deficiencies Excessive
permissions

attacks

Colluding
attack

Confused
deputy

Saint
Declares access control rules to
protect the components of
applications

Relies on developers to consider
saint policies in implementing their
applications

CRePE
Develops context-related policies
to limits an application’s
privilege

Has nothing to do with mitigating
privilege escalation attacks

MockDroid
Prevents user data by `mock' an
application's access to critical
resources

Has nothing to do with mitigating
privilege escalation attacks

TISSA Provides suspicious applications
accurate but low fidelity data

Has nothing to do with mitigating
privilege escalation attacks

TaintDroid
Detects when and in what way
personal data leaves the phone
through unreliable apps

- Only traces explicit flows and
does not consider implicit flows
- Has nothing to do with mitigating
privilege escalation attacks

Quire Approaches the problem through
tracking RPC chains

- Is not invisible to app developer
- Cannot identify and impede
colluding attack

AppFence Proposes two privacy controls to
enable users to protect their data

Has nothing to do with mitigating
privilege escalation attacks

XManDroid

Inhibits privilege escalation
attacks at runtime by analyzing of
interaction among applications
and according to extended system
policy.

Is incapable of controlling
communication channels executed
outside the ICC framework

Kirin
Uses policies to detect the
applications with inappropriate
infrastructure

Is unable to mitigate colluding and
privilege escalation attacks

Checking
Privilege
Escalation

Proposes a vulnerability checking
system to check if an application
can be potentially leveraged by an
attacker to launch such privilege
escalation attack.

Fails to prevent the excessive
permission and colluding attacks

http://www.jatit.org/

