
Journal of Theoretical and Applied Information Technology
 10th September 2013. Vol. 55 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

33

TASK SCHEDULING ALGORITHM BASED ON HYBRID
PARTICLE SWARM OPTIMIZATION IN CLOUD

COMPUTING ENVIRONMENT

1GOMATHI B, 2KARTHIKEYAN KRISHNASAMY
1Asstt Prof., Department of IT, Hindusthan College of Engg. and Tech., Coimbatore, India

2 Prof., Department of IT, Sri Krishna College of Engg. and Tech., Coimbatore, India
E-mail: 1gomathi.babu@gmail.com , 2karthiaish1966@gmail.com

ABSTRACT

Cloud computing environment can offer dynamic and elastic virtual resources to the end users on demand
basis. Task scheduling should satisfy the dynamic requirements of users and also need to utilize the virtual
resources efficiently in cloud environment, so that task scheduling in cloud is an NP-Complete problem. In
this paper, we present a Hybrid Particle Swarm Optimization (HPSO) based scheduling heuristic to balance
the load across the entire system while trying to minimize the makespan of a given task sets. Finally,
experimentation results show that hybrid PSO is more effective as compared to using existing simple PSO
algorithm.
Keywords: Task scheduling, Particle Swarm Optimization, Cloud computing, Makespan, Resource

Utilization

1. INTRODUCTION

Cloud[1,2] provides the greater flexibility for
user to use resources as a service by low cost, so it
increases the computational power and storage
capacity for user. Task scheduling in cloud
environment is responsible to assign user tasks to
appropriate resources for execution. Since the cloud
resources are abstracted, virtualized and
dynamically scalable, Task scheduling which is
NP-Complete problem has always been an
important issue in cloud environment. In order to
schedule the tasks quickly and efficiently, a task
scheduling based on HPSO is proposed to meet the
task requirements of users and improve the
utilization of resources while minimizing the
makespan of the given task sets.

Particle Swarm Optimization (PSO)[3] is an
evolutionary algorithm that simulates the behavior
of a flock of birds to a desired place. Due to its
simplicity and its effectiveness, PSO is used in
wide range of application with lowest
computational cost. Due to problems in PSO like
premature convergence in later generations, we
present HPSO by using vector differential operator
in Differential Evolution (DE) algorithm. This
HPSO is used to improve the resource utilization
while try to find optimal schedule for given task set
in the cloud environment.

The rest of this paper is organized as follows.
Section 2 gives related work. In section 3, we
describe makespan minimization problem.
Section 4 presents task scheduling algorithm that
uses HPSO. Section 5 presents an experimental
evaluation of proposed method. Section 6
concludes the paper and discussed some future
enhancement.

2. RELATED WORK

 Task scheduling is a challenging problem in
distributed system since it involves heterogeneous
environment. To obtain good method to solve this
problem, research is conducted on various
heuristics approaches for task scheduling in
distributed system. GA for multiprocessor
scheduling was proposed by [5] which scheduled
the task on a multiprocessor system to minimize the
finishing time of schedule. Individuals consisted of
multiple lists, with each list representing the tasks
assigned to one processor. The approach proposed
in this paper restricts action of genetic operators to
ensure the validity of evolved individuals. As a
result, some parts of the search space may be
unreachable. Zomaya etal[6] proposed a dynamic
load balancing strategy based on a genetic
algorithm. To speedup the scheduler and reduce the
chance of processor becoming idle, tasks in the
sliding window could be considered for execution

http://www.jatit.org/
mailto:1gomathi.babu@gmail.com
mailto:karthiaish1966@gmail.com

Journal of Theoretical and Applied Information Technology
 10th September 2013. Vol. 55 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

34

and characteristics of tasks known in advance.
Adaptive threshold helped to balance the load of
the processor dynamically.

 Yajun etal[7] combined FCFS and GA to
balance the load of sequential tasks under grid
environment in order to achieve minimum
execution time and maximum load utilization. A
sliding window technique was presented to trigger
the switch between FCFS and GA as well as helped
to make rapid task assignment. To avoid the
premature convergence, low convergence speed and
local optima, hybrid Adaptive GA was proposed [8]
to adjust the crossover and mutation probability
adaptively and non-linearly to expand the search
space as well as to improve the convergence.
Sandeep etal[9] proposed fuzzy-GA optimization to
schedule the job in hadoop framework in order to
improve the resource utilization. The revised
scheduling algorithm was used to predict the
execution time of tasks for better load balancing
across nodes in the cloud environment, but
efficiency of the prediction was highly affected by
the choice of the task vector.

 Lei Zhang etal [10] proposed Particle Swarm
Optimization for task scheduling problem to
generate an optimal schedule in grid environment in
order to complete the tasks in a minimum time as
well as to utilize the resources in an efficient way.
Yin etal [11] proposed HPSO algorithm to assign
tasks to a set of distributed processors such that
total execution cost and communication cost were
minimized and system throughput was maximized.
HPSO used hill climbing heuristic to speed up the
convergence. Task assignment with load balancing
using hybrid PSO in distributed system was
proposed in [12]. HPSO combined PSO for global
optimistic result and Simulated Annealing (SA) for
local optimistic result. It was cost effective when
compared to other variants of PSO.

 The task scheduling algorithm based on PSO
[13] improved the utility of resources in Grid
environment. This algorithm considered dependent
tasks and dynamic heterogeneous resources for
which global optimal solution was adjusted at
runtime. Lizheng etal [14] proposed PSO for task
scheduling in cloud environment in order to
minimize the processing time. It converged faster in
larger task set. Due to loss of diversity, PSO
suffered in premature convergence. So, we use
HPSO with differential operator to avoid the
premature convergence in task scheduling problem.
In this paper, we focus on minimizing the
makespan as well as maximizing the resource
utilization.

3. PROBLEM FORMULATION

 The scheduling of tasks on the cloud resources
have several objectives. We focus on minimizing
makespan as well as maximizing resource
utilization. Therefore, fitness function is defined to
evaluate the dual optimization criteria. In this
paper, we consider that cloud environment has
heterogeneous resources with different processing
capability. The processing time of task may vary
according to the task scheduling on different
resources.

 To formulate the problem, we denote the set of n
independent tasks as Ti, where i={0,1…n} and set
of m processors as R j, where j={0,1,…m}. Assume
that the execution time Pi,j for task i on processor j
is known and resource utilization for each processor
is represented as Ri(utilization). In permutation
matrix x, entry xi,j=1 if task i is assigned to
processor j, otherwise xi,j=0. This gives the
assurance that each task is assigned to exactly one
processor.

 Our first objective is minimizing the makespan,
which is longest task completion time among all
processors in cloud.Another factor to consider is
average resource utilization, which is defined as
sum of the utilization of all processors divided by
the total number of processors. Equation 1 and 2
represent makespan MS and average resource
utilization iR respectively. We evaluate both
objective functions using single fitness function in
equation 3 as shown below.

∑
=≤≤

=
n

j
i,ji,j

mi
*xPMS

11
max

∑
=

=
m

i
mnutilisatioRinutilisatioiR

1
/))(()(

Ri/MS,)P(tion)Ri(utilisa

x

Tj,x

,Subject to

n

j
i,j

TjR,i},,{i,j

m

i
i,j

∈∀=

∈∀=

∑

∑

=

∈∀∈∀=

=

1

10

1
1

on)(utilisatiiRMSfv maxmin=

 (1)

(2)

(3)

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 10th September 2013. Vol. 55 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

35

4. TASK SCHEDULING BASED ON PSO

4.1. Classical PSO

 PSO is an evolutionary algorithm that simulates
social behavior of bird flocking to find food source
of fish schooling to protect themselves from a
predator. Each solution candidate called a particle
in PSO which is flying through a search space. In
PSO population represents the number of particles
in the search space. The velocity of each particle
directs movement of flying particle in search space.
The position of particle depends on its best position
(pbest) and position of the best particle (gbest) in an
entire population. The whole population is
initialized randomly. The fitness value of particles
which is used to measure the performance of
particle is evaluated and optimized in each
generation. In each generation, velocity and
position of particle is updated as follows:

V i
k+1=WkVi

k+c1r1 (Pi
k-Xi

k) +c2r2 (Pg
k-Xi

k)
(4)

X i
k+1 = X i

k+ V i
k+1 (5)

 Where, the variables r1 and r2 are random
numbers between 0 and 1. c1 and c2 are
acceleration co-efficients. W is the inertia weight.
Vi

k is the velocity of particle i at iteration k. Xi
k

represents the current position of particle i at
iteration k. The classical PSO updates the velocity
of a particle using three components: inertia of
previous velocity provides momentum of particle as
well as control the balance between exploration and
exploitation in the search space, social component
represents the cooperation of the particles in
moving towards the global best position found in
the search space and cognitive component
represents the private experience of the particle
itself. In the HPSO, cognitive term is replaced as
weighted difference of the position values of any
two randomly chosen different particles in the
swarm. This replacement which is explained in the
next section, helps to avoid the premature
convergence which is caused by rapid loss of
diversity within the swarm.

4.2. Particle Representation

 To solve a task scheduling problem, each
solution should map with one of the particle in the
population. Each particle is defined as n
dimensional vector which is responsible for n tasks
in the task scheduling. Figure 1 depicts the
representation of particle in task scheduling.

 Task0 Task1 Task2 Task3 Task4

Figure 1: Resource Mapping in HPSO Particle

4.3. Solution Representation

 The initial population of particle is generated for
algorithm randomly. The initial position and
velocity of each particle is generated using the
following formula [15]:

 X0
k = Xmin + (Xmax - Xmin) * r

(6)

 V0
k = Vmin + (Vmax - Vmin) * r

(7)

 where Xmin= Vmin= -0.4 and Xmax= Vmax=4.0 and
r is a uniform random number between 0 and 1. As
the position of particle is a continuous value, we
need to convert continuous value into discrete
permutation using Small Position Value (SPV) rule
[15] for task scheduling in HPSO algorithm. By
applying SPV rule, continuous position vector
Xi

k={ Xi
1, Xi

2… Xi
n}is transformed as dispersed

permutation vector Si
k={Si

1,Si
2,…Si

n}. To find
resource allocation for each task, we should convert
permutation vector Sk into resource vector Ri

k={
Ri

1, Ri
2… Ri

n} by using the following equation,

 Ri
k= Si

k mod m
(8)

 The Table1 illustrates the solution representation
of a particle for 9 tasks and 3 resources.

4.4. The Hybrid PSO Algorithm

 Task scheduling which is NP-Complete problem
is a complicated issue in achieving better
performance in cloud environment. In this section,
we present a hybrid PSO for scheduling tasks to
minimize the makespan of given task set while
improving the efficiency of resources. In hybrid
PSO, velocity of particles can be updated with

Table 1: Solution Representation of a Particle

Dimension Xi
k S i

k Ri
k

0 0.89 2 2
1 -0.11 1 1
2 3.15 7 1
3 -0.39 0 0
4 3.41 8 2
5 2.64 5 2

Resource2 Resource0 Resource1 Resource0 Resource1

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 10th September 2013. Vol. 55 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

36

6 3.00 6 0
7 1.03 3 0
8 1.52 4 1

vector differential operator from Differential
Evolution (DE). In the proposed method, cognitive
term in the velocity equation is replaced by the term
containing the weighted difference (δ) between the
position vectors of any two randomly chosen
distinct particles from the whole population as
shown below [4]:

 δ = Xk
 - Xj (9)

V i
k+1= WkVi

k+βδ+c2r2 (Pg
k-Xi

k) if rand(0,1)<CR
(10)

 = Vi
k, otherwise

 Where CR is the crossover constant, δ is the n
dimensional difference vector and β is a scale factor
in (0,1). The differential operator is used to provide
additional exploration capability in search space.
The new trial location Ti is created for particle i as
shown below:

 Ti= X i
k+ V i

k+1
(11)

 Unlike PSO, particle is actually shifted to new
location only if the new location gives better fitness
value as shown below, so HPSO helps to avoid
premature convergence due to loss of diversity[4].

 X i
k+1= Ti if fv(Ti) < fv(X i

k)
(12)

 = X i
k otherwise

 Finally, if particle gets stagnated at any place in
solution space, then it is shifted to new location
using equation (6). The pseudo code of HPSO is
presented in Figure 2.

5. EXPERIMENTAL EVALUATION

 In this section, we present the metric of
comparison and experimental setup to test the
proposed algorithm on the simulated cloud
environment. Initially, test runs were based on the
following parameters such as number of tasks is
100, number of resources is 5,number of generation
is 100, population size is 10, crossover constant CR
is 0.9 and scale factor β is 0.8. The performance of
proposed algorithm was compared with classical
PSO algorithm based on two metrics such as
makespan and average resource utilization.

 As classical PSO and hybrid PSO are stochastic
and result may be different for particular problem,
each experiment was repeated 20 times and average
has been calculated. We tested and observed these
algorithms in terms of such performance metrics
under different parameters. Three tests were
performed for each set of parameters as shown
below.

1. Set dimension of particle as number of ready tasks
2. Initialize particles position and velocity vectors

randomly using equation (6) and (7)
3. By using SPV rule, find discrete vector

Si
k={Si

1,Si
2,…Si

n} from the continuous position vector
Xi

k={ Xi
1, Xi

2… Xi
n} for each particle and then map

discrete vector Si
k elements of each particle into

resource vector Ri
k={ Ri

1, Ri
2… Ri

n} according to
equation (8)

4. Evaluate the fitness of each particle using equations
from (1) to (3)

5. If fitness value is better than personal best pbest,
update pbest by current fitness value. Select the best
particle as gbest.

6. Update velocity and position of each particle using
equation (9) through (12)

7. If a particle gets stagnated for predetermined number
of iteration, then particle is shifted to new location
using equation (6)

8. If maximum iteration is reached or stopping criteria is
satisfied, then stop. Otherwise repeat from step 3

Figure 2 Pseudo Code of HPSO for Task Scheduling

 As classical PSO and hybrid PSO are stochastic
and result may be different for particular problem,
each experiment was repeated 20 times and average
has been calculated. We tested and observed these
algorithms in terms of such performance metrics
under different parameters. Three tests were
performed for each set of parameters as shown
below.

5.1. Variation In Number Of Tasks

}

}

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 10th September 2013. Vol. 55 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

37

Figure 3. Makespan Vs Number of Tasks

 This section gives effects on makespan and
average resource utilization by HPSO and PSO
when number of tasks was changed from 20 to 100.
When the number of tasks was increased, makespan
produced by PSO and HPSO were increased
linearly when larger number of tasks has to be
scheduled. Algorithms have taken longer time to
complete all the tasks. As we have seen in
figure 3, HPSO algorithm performed better than
PSO algorithm. In figure 4, resource utilization
using HPSO was varying from 94 to 99 percent
while PSO utilized the resources ranges from 91 to
97 percent. HPSO increased the resource utilization
up to 99 percent when number of tasks was
increased, then indicating that HPSO is able to
work better in the case of more tasks.

Figure 4. Resource utilization Vs Number of Tasks

5.2. Variation In Number Of Resources

 In this section, the effect on the performance
of HPSO was observed when number of resources
was varying for the same set of tasks. Figure 5
shows that makespan was significantly reduced as
the number of resources was increased from 5 to
20. Even though, there was larger number of tasks
to be scheduled, extra resources were handled the
excess load in the system.

Figure 5. Makespan Vs Number of Processors

 Unlike the improvement in makespan, figure 6
shows that average resource utilization reduced as
the number of resources increased. It shows that it
is difficult to balance load across the system when
large number of tasks were needed to balance out
across a larger system. Therefore, improving the
makespan by increasing number of resources
results as a cost of lower resource utilization.

Figure 6. Resource utilization Vs Number of Processors

5.3 Convergence Analysis

 Figure 7 shows that makespan reduced as the
number of iterations was increased. It shows that
the quality of the task scheduling improved after
each iteration. However, it is shown that PSO is
getting struck in premature convergence, but HPSO
gave faster convergence as well as reduction of
makespan than PSO.

 In summary, the above shows that HPSO is
suitable to handle the task scheduling in cloud
environment. The different parameters were
changed to identify the optimal set of parameters
for HPSO to improve the performance of task
scheduling problem.

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 10th September 2013. Vol. 55 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

38

Figure 7. Convergence Analysis

6. CONCLUSION

 The proposed task scheduling technique using
HPSO has been effective to minimize the makespan
as well as maximize the resource utilization in
cloud environment. It is found that HPSO based
task scheduling can achieve better load balancing as
compared to PSO based scheduling. As part of our
future work, we would like to integrate HPSO
based task scheduling on the map-reducing
framework in cloud environment.

REFERENCES:

[1] G. Boss, P. Malladi, D. Quan, L. Legregni, and

H. Hall, “Cloud computing,” Technical Report,
IBM High Performance on Demand Solutions,
2007.

[2] Dikaiakos,M, katsaros,D, Mehra,P,Vakali.A,
Cloud Computing: Distributed Internet
Computing for IT and Scientific Research”,
IEEE Transactions on Internet Computing, pp.
10-13, 2009.

[3] J. Kennedy and R. C. Eberhard, “Particle swarm
optimization”, Proc. of IEEE Int’l Conf. on
Neural Networks, pp.1942-1948, Piscataway,
NJ, USA,1995.

[4] Swagatam Das,Amit Konar,uday
K.Chakraborty, Improving Particle Swarm
Optimization with Differentially Perturbed
Velocity,ACM,2005.

[5] Edwin S.H.Hou, Nirwan Ansari, Hong Ren, A
Genetic Algorithm for Multiprocessor
Scheduling, IEEE Transactions on Parallel and
Distributed Systems, Vol.5, No.2,February
1994.

[6] Zomaya A Y, Teh Y-H. Observations on using
genetic algorithms for dynamic load-balancing,

IEEE Transactions on Parallel and Distributed
Systems, pp. 899-912, 2001.

[7] Yajun Li, Yuhang Yang, Maode Ma, Liang
Zhou, A hybrid load balancing strategy of
sequential tasks for grid computing
environments, Future Generation Computer
systems, pp.819-828,2009.

[8] Youchan Zhu and Xueying Guo, Grid
Dependent Tasks Scheduling Based on Hybrid
Adaptive Genetic Algorithm, Global Congress
on Intelligent Systems, 2009.

[9] Sandeep Tayal, Tasks Scheduling optimization
for the Cloud Computing systems, International
Journal of Advanced Engg. Sciences and
Technologies, Vol No.5, IssueNo.2, pp. 111-
115, 2011.

[10] L. Zhang, Y. Chen, R. Sun, S. Jing, and B.
Yang. “A task scheduling algorithm based on
PSO for grid computing”. International
Journal of Computational Intelligence
Research, vol.4, 2008.

[11] P.Yin, S.Yu, P.Wang, Y.Wang, A hybrid
particle swarm optimization algorithm for
optimal task assignment in distributed systems,
Computer standards and interfaces, 2006,28,
pp.441-450

[12] P.Visalakshi and S.N.Sivanandam, Dynamic
Task Scheduling with Load Balancing using
Hybrid Particle Swarm Optimization,
International Journal for Open Problems
Compt. Math. Vol.2, 2009.

[13] Tingwei Chen, Bin Zhang, Xianwen Hao, Yu
Dai, Task Scheduling in Grid Based on Particle
Swarm Optimization, Proceedings of the Fifth
International Symposium on Parallel and
Distributed Computing (ISPDC'06),2006.

[14] Lizheng Guo, Shuguang, shigen, changyuan,
Task Scheduling Optimization in cloud
Computing based on Heuristic Algorithm,
Journal of Networks, Vol 7,2012.

[15] M. Fatih Tasgetiren, Yun-Chia Liang, Mehmet
Sevkli, and Gunes Gencyilmaz, “Particle
Swarm Optimization and Differential
Evolution for Single Machine Total Weighted
Tardiness Problem,” International Journal of
Production Research, pp.4737-4754 vol. 44,
no. 22, 2006.

http://www.jatit.org/

	1GOMATHI B, 2KARTHIKEYAN KRISHNASAMY

