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ABSTRACT 
 

Cloud computing environment can offer dynamic and elastic virtual resources to the end users on demand 
basis. Task scheduling should satisfy the dynamic requirements of users and also need to utilize the virtual 
resources efficiently in cloud environment, so that task scheduling in cloud is an NP-Complete problem. In 
this paper, we present a Hybrid Particle Swarm Optimization (HPSO) based scheduling heuristic to balance 
the load across the entire system while trying to minimize the makespan of a given task sets. Finally, 
experimentation results show that hybrid PSO is more effective as compared to using existing simple PSO 
algorithm. 
Keywords: Task scheduling, Particle Swarm Optimization, Cloud computing, Makespan, Resource 

Utilization  
 
1. INTRODUCTION  
 

Cloud[1,2] provides the greater flexibility for 
user to use resources as a service by low cost, so it 
increases the computational power and storage 
capacity for user. Task scheduling in cloud 
environment is responsible to assign user tasks to 
appropriate resources for execution. Since the cloud 
resources are abstracted, virtualized and 
dynamically scalable, Task scheduling which is 
NP-Complete problem has always been an 
important issue in cloud environment. In order to 
schedule the tasks quickly and efficiently, a task 
scheduling based on HPSO is proposed to meet the 
task requirements of users and improve the 
utilization of resources while minimizing the 
makespan of the given task sets. 

Particle Swarm Optimization (PSO)[3] is an 
evolutionary algorithm that simulates the behavior 
of a flock of birds to a desired place. Due to its 
simplicity and its effectiveness, PSO is used in 
wide range of application with lowest 
computational cost. Due to problems in PSO like 
premature convergence in later generations, we 
present HPSO by using vector differential operator 
in Differential Evolution (DE) algorithm. This 
HPSO is used to improve the resource utilization 
while try to find optimal schedule for given task set 
in the cloud environment. 

The rest of this paper is organized as follows.    
Section 2 gives related work. In section 3, we 
describe makespan minimization problem.    
Section 4 presents task scheduling algorithm that 
uses HPSO. Section 5 presents an experimental 
evaluation of proposed method. Section 6 
concludes the paper and discussed some future       
enhancement. 

2. RELATED WORK 
 
     Task scheduling is a challenging problem in 
distributed system since it involves heterogeneous 
environment. To obtain good method to solve this 
problem, research is conducted on various 
heuristics approaches for task scheduling in 
distributed system. GA for multiprocessor 
scheduling was proposed by [5] which scheduled 
the task on a multiprocessor system to minimize the 
finishing time of schedule. Individuals consisted of 
multiple lists, with each list representing the tasks 
assigned to one processor. The approach proposed 
in this paper restricts action of genetic operators to 
ensure the validity of evolved individuals. As a 
result, some parts of the search space may be 
unreachable. Zomaya etal[6] proposed a dynamic 
load balancing strategy based on a genetic 
algorithm. To speedup the scheduler and reduce the 
chance of processor becoming idle, tasks in the     
sliding  window  could  be considered for execution   
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and characteristics of tasks known in advance. 
Adaptive   threshold helped to balance the load of 
the processor dynamically.  

     Yajun etal[7] combined FCFS and GA to 
balance the load of sequential tasks under grid 
environment in order to achieve minimum 
execution time and maximum load utilization. A 
sliding window technique was presented to trigger 
the switch between FCFS and GA as well as helped 
to make rapid task assignment. To avoid the 
premature convergence, low convergence speed and 
local optima, hybrid Adaptive GA was proposed [8] 
to adjust the crossover and mutation probability 
adaptively and non-linearly to expand the search 
space as well as to improve the convergence. 
Sandeep etal[9] proposed fuzzy-GA optimization to 
schedule the job in hadoop framework in order to 
improve the resource utilization. The revised 
scheduling algorithm was used to predict the 
execution time of tasks for better load balancing 
across nodes in the cloud environment, but 
efficiency of the prediction was highly affected by 
the choice of the task vector.  

     Lei Zhang etal [10] proposed Particle Swarm 
Optimization for task scheduling problem to 
generate an optimal schedule in grid environment in 
order to complete the tasks in a minimum time as 
well as to utilize the resources in an efficient way. 
Yin etal [11] proposed HPSO algorithm to assign 
tasks to a set of distributed processors such that 
total execution cost and communication cost were 
minimized and system throughput was maximized. 
HPSO used hill climbing heuristic to speed up the 
convergence. Task assignment with load balancing 
using hybrid PSO in distributed system was 
proposed in [12]. HPSO combined PSO for global 
optimistic result and Simulated Annealing (SA) for 
local optimistic result. It was cost effective when 
compared to other variants of PSO. 

     The task scheduling algorithm based on PSO 
[13] improved the utility of resources in Grid 
environment. This algorithm considered dependent 
tasks and dynamic heterogeneous resources for 
which global optimal solution was adjusted at 
runtime. Lizheng etal [14] proposed PSO for task 
scheduling in cloud environment in order to 
minimize the processing time. It converged faster in 
larger task set. Due to loss of diversity, PSO 
suffered in premature convergence. So, we use 
HPSO with differential operator to avoid the 
premature convergence in task scheduling problem. 
In this paper, we focus on minimizing the 
makespan as well as maximizing the resource 
utilization. 

3. PROBLEM FORMULATION  
 
     The scheduling of tasks on the cloud resources 
have several objectives. We focus on minimizing 
makespan as well as maximizing resource 
utilization. Therefore, fitness function is defined to 
evaluate the dual optimization criteria. In this 
paper, we consider that cloud environment has 
heterogeneous resources with different processing 
capability. The processing time of task may vary 
according to the task scheduling on different 
resources.  

     To formulate the problem, we denote the set of n 
independent tasks as Ti, where i={0,1…n} and set 
of m processors as R j, where j={0,1,…m}. Assume 
that the execution time Pi,j for task i on processor j 
is known and resource utilization for each processor 
is represented as Ri(utilization). In permutation 
matrix x, entry xi,j=1 if task i is assigned to 
processor j, otherwise xi,j=0. This gives the 
assurance that each task is assigned to exactly one 
processor.  

     Our first objective is minimizing the makespan, 
which is longest task completion time among all 
processors in cloud.Another factor to consider is 
average resource utilization, which is defined as 
sum of the utilization of all processors divided by 
the total number of processors. Equation 1 and 2 
represent makespan MS and average resource 
utilization iR  respectively. We evaluate both 
objective functions using single fitness function in 
equation 3 as shown below.
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4. TASK SCHEDULING BASED ON PSO  

4.1. Classical PSO 

     PSO is an evolutionary algorithm that simulates 
social behavior of bird flocking to find food source 
of fish schooling to protect themselves from a 
predator. Each solution candidate called a particle 
in PSO which is flying through a search space. In 
PSO population represents the number of particles 
in the search space. The velocity of each particle 
directs movement of flying particle in search space. 
The position of particle depends on its best position 
(pbest) and position of the best particle (gbest) in an 
entire population. The whole population is 
initialized randomly. The fitness value of particles 
which is used to measure the performance of 
particle is evaluated and optimized in each 
generation. In each generation, velocity and 
position of particle is updated as follows: 

V i
k+1=WkVi

k+c1r1 (Pi
k-Xi

k) +c2r2 (Pg
k-Xi

k)            
(4)               

X i
k+1 = X i

k+ V i
k+1                                               (5) 

     Where, the variables r1 and r2 are random 
numbers between 0 and 1. c1 and c2 are 
acceleration co-efficients. W is the inertia weight. 
Vi

k is the velocity of particle i at iteration k. Xi
k 

represents the current position of particle i at 
iteration k. The classical PSO updates the velocity 
of a particle using three components: inertia of 
previous velocity provides momentum of particle as 
well as control the balance between exploration and 
exploitation in the search space, social component 
represents the cooperation of the particles in 
moving towards the global best position found in 
the search space and cognitive component 
represents the private experience of the particle 
itself. In the HPSO, cognitive term is replaced as 
weighted difference of the position values of any 
two randomly chosen different particles in the 
swarm. This replacement which is explained in the 
next section, helps to avoid the premature 
convergence which is caused by rapid loss of 
diversity within the swarm. 

4.2. Particle Representation 

     To solve a task scheduling problem, each 
solution should map with one of the particle in the 
population. Each particle is defined as n 
dimensional vector which is responsible for n tasks 
in the task scheduling. Figure 1 depicts the 
representation of particle in task scheduling. 

      

         Task0           Task1           Task2          Task3           Task4 

Figure 1: Resource Mapping in HPSO Particle 

4.3. Solution Representation  

     The initial population of particle is generated for 
algorithm randomly. The initial position and 
velocity of each particle is generated using the 
following formula [15]: 

       X0
k = Xmin + (Xmax - Xmin) * r                         

(6)  

       V0
k = Vmin + (Vmax - Vmin) * r                         

(7)  

     where Xmin= Vmin= -0.4 and Xmax= Vmax=4.0 and 
r is a uniform random number between 0 and 1. As 
the position of particle is a continuous value, we 
need to convert continuous value into discrete 
permutation using Small Position Value (SPV) rule 
[15] for task scheduling in HPSO algorithm. By 
applying SPV rule, continuous position vector 
Xi

k={ Xi
1, Xi

2… Xi
n}is transformed as dispersed 

permutation vector Si
k={Si

1,Si
2,…Si

n}. To find 
resource allocation for each task, we should convert 
permutation vector Sk into resource vector Ri

k={ 
Ri

1, Ri
2… Ri

n} by using the following equation, 

        Ri
k= Si

k mod m                                              
(8) 

     The Table1 illustrates the solution representation 
of a particle for 9 tasks and 3 resources. 

4.4. The Hybrid PSO Algorithm  

     Task scheduling which is NP-Complete problem 
is a complicated issue in achieving better 
performance in cloud environment. In this section, 
we present a hybrid PSO for scheduling tasks to 
minimize the makespan of given task set while 
improving the efficiency of resources. In hybrid 
PSO,  velocity  of   particles  can  be   updated  with  

Table 1: Solution Representation of a Particle 

Dimension Xi
k S i

k Ri
k 

0 0.89 2 2 
1 -0.11 1 1 
2 3.15 7 1 
3 -0.39 0 0 
4 3.41 8 2 
5 2.64 5 2 

Resource2 Resource0 Resource1 Resource0 Resource1 
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6 3.00 6 0 
7 1.03 3 0 
8 1.52 4 1 

 
vector differential operator from Differential 
Evolution (DE). In the proposed method, cognitive 
term in the velocity equation is replaced by the term 
containing the weighted difference (δ) between the 
position vectors of any two randomly chosen 
distinct particles from the whole population as 
shown below [4]: 

        δ = Xk
 - Xj                                                            (9) 

V i
k+1= WkVi

k+βδ+c2r2 (Pg
k-Xi

k) if rand(0,1)<CR     
(10)        

        = Vi
k, otherwise 

     Where CR is the crossover constant, δ is the n 
dimensional difference vector and β is a scale factor 
in (0,1). The differential operator is used to provide 
additional exploration capability in search space. 
The new trial location Ti is created for particle i as 
shown below: 

     Ti= X i
k+ V i

k+1                                                 
(11) 

     Unlike PSO, particle is actually shifted to new        
location only if the new location gives better fitness 
value as shown below, so HPSO helps to avoid 
premature convergence due to loss of diversity[4]. 

      X i
k+1= Ti           if  fv(Ti) < fv(X i

k )                 
(12) 

               = X i
k         otherwise                                   

      Finally, if particle gets stagnated at any place in 
solution space, then it is shifted to new location 
using       equation (6). The pseudo code of HPSO is 
presented in Figure 2. 

5. EXPERIMENTAL EVALUATION  
 
     In this section, we present the metric of 
comparison and experimental setup to test the 
proposed algorithm on the simulated cloud 
environment. Initially, test runs were based on the 
following parameters such as number of tasks is 
100, number of resources is 5,number of generation 
is 100, population size is 10, crossover constant CR 
is 0.9 and scale factor β is 0.8. The performance of 
proposed algorithm was compared with classical 
PSO algorithm based on two metrics such as      
makespan and average resource utilization.  
 

     As classical PSO and hybrid PSO are stochastic 
and result may be different for particular problem, 
each experiment was repeated 20 times and average 
has been calculated. We tested and observed these 
algorithms in terms of such performance metrics 
under different parameters. Three tests were 
performed for each set of parameters as shown 
below. 
 
 
1. Set dimension of particle as number of ready tasks 
2. Initialize particles position and velocity vectors    

randomly using equation (6) and (7) 
3. By using SPV rule, find discrete vector 

Si
k={Si

1,Si
2,…Si

n} from the continuous position vector 
Xi

k={ Xi
1,   Xi

2… Xi
n} for each particle  and then map 

discrete vector Si
k elements of each particle into 

resource vector Ri
k={ Ri

1, Ri
2… Ri

n} according to 
equation (8) 

4. Evaluate the fitness of each particle using equations 
from (1) to (3) 

5. If fitness value is better than personal best pbest, 
update pbest by current fitness value. Select the best 
particle as gbest.  

6. Update velocity and position of each particle using 
equation (9) through (12)   

7. If a particle gets stagnated for predetermined number 
of iteration, then particle is shifted to new location 
using equation (6) 

8. If maximum iteration is reached or stopping criteria is 
satisfied, then stop. Otherwise repeat from step 3 

 
Figure 2 Pseudo Code of HPSO for Task Scheduling 

        
     As classical PSO and hybrid PSO are stochastic 
and result may be different for particular problem, 
each experiment was repeated 20 times and average 
has been calculated. We tested and observed these 
algorithms in terms of such performance metrics 
under different parameters. Three tests were 
performed for each set of parameters as shown 
below. 

5.1. Variation In Number Of Tasks  

}  

} 
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Figure 3. Makespan  Vs Number of Tasks 

      

     This section gives effects on makespan and 
average resource utilization by HPSO and PSO 
when number of tasks was changed from 20 to 100. 
When the number of tasks was increased, makespan 
produced by PSO and HPSO were increased 
linearly when larger number of tasks has to be 
scheduled. Algorithms have taken longer time to 
complete all the tasks. As we have seen in       
figure 3, HPSO algorithm performed better than 
PSO algorithm. In figure 4, resource utilization 
using HPSO was varying from 94 to 99 percent 
while PSO utilized the resources ranges from 91 to 
97 percent. HPSO increased the resource utilization 
up to 99 percent when number of tasks was 
increased, then indicating that HPSO is able to 
work better in the case of more tasks. 

 
Figure 4. Resource utilization Vs Number of Tasks 

5.2. Variation In Number Of Resources  

        In this section, the effect on the performance 
of HPSO was observed when number of resources 
was varying for the same set of tasks. Figure 5 
shows that makespan was significantly reduced as 
the number of resources was increased from 5 to 
20. Even though, there was larger number of tasks 
to be scheduled, extra resources were handled the 
excess load in the system. 

 

 

Figure 5. Makespan Vs Number of Processors 

     Unlike the improvement in makespan, figure 6 
shows that average resource utilization reduced as 
the number of resources increased. It shows that it 
is difficult to balance load across the system when 
large number of tasks were needed to balance out 
across a larger system. Therefore, improving the 
makespan by increasing number of resources 
results as a cost of lower resource utilization. 

 
Figure 6. Resource utilization Vs Number of Processors 

5.3    Convergence Analysis 

     Figure 7 shows that makespan reduced as the 
number of iterations was increased. It shows that 
the quality of the task scheduling improved after 
each iteration. However, it is shown that PSO is 
getting struck in premature convergence, but HPSO 
gave faster convergence as well as reduction of 
makespan than PSO.  

     In summary, the above shows that HPSO is 
suitable to handle the task scheduling in cloud 
environment. The different parameters were 
changed to identify the optimal set of parameters 
for HPSO to improve the performance of task 
scheduling problem.  
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Figure 7. Convergence Analysis 

6. CONCLUSION 
  
     The proposed task scheduling technique using 
HPSO has been effective to minimize the makespan 
as well as maximize the resource utilization in 
cloud environment. It is found that HPSO based 
task scheduling can achieve better load balancing as 
compared to PSO based scheduling. As part of our 
future work, we would like to integrate HPSO 
based task scheduling on the map-reducing 
framework in cloud environment. 
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