
Journal of Theoretical and Applied Information Technology
 10th September 2013. Vol. 55 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

149

JIAC SYSTEMS AND JADE INTEROPERABILITY

1ABDELLATIF SOKLABI, 2MOHAMED BAHAJ, 3JAMAL BAKKAS
1 PhD student, Department of Mathematics and Computer Science, University Hassan I, Settat, Morocco

2 PhD, Departments of Mathematics and Computer Science, University Hassan I, Settat, Morocco
3 PhD student, Department of Mathematics and Computer Science, University Hassan I, Settat, Morocco

E-mail: 1 abd.soklabi@gmail.com, 2 mohamedbahaj@gmail.com, 3 jbakkas@yahoo.fr

ABSTRACT

In the literature various Mobile Agents Systems (MASs) have been created, but with different proprietary
technologies and application programming interfaces. In a heterogeneous network, an agent may need to
migrate from one mobile agents system to another. Furthermore, not all the MASs are able to receive
foreign agents, because a few of the MASs attempt to realize the FIPA Ontology Agent, and each one
adopts a particular point of view of the interoperability problem. As a result, a system of transferring and
transformation is needed to permit an agent created in one multi-agent system to continue realizing its tasks
on another multi-agent system.

Our work was to find an algorithm to transform and transfer mobile agents between JIAC and JADE taking
the information contained in a JIAC agent to create its equivalent in JADE and saw to that, by migrating an
agent from one of the two systems with its functions, attributes, and its added features, it can operate on
another multi-agents system, based on our previous solution to the communication between both JIAC and
JADE agents, which takes into consideration the application programming interfaces and the architecture
language with which both systems were developed.

Keywords— Mobile agents, mobile agents system, interoperability, JADE, JIAC

1. INTRODUCTION:

The technology of mobile agents is an effective

solution for many industrial problems. This
generated the development of many mobile agents
systems, with different proprietary Application
Programming Interfaces (API), so the majority of
mobile agents systems are not interoperable with
currently available MASs. This proliferation of
incompatible APIs implies that agents developed
for one agent platform cannot be run on, let alone
migrate to, a system with a different agent platform.
In our opinion, interoperability of platforms is
essential for mobile agents to become ubiquitous
technology. This paper represents the results of
research conducted by trying to answer questions
like; is that the agents of MAS continue their
execution in other MAS, or what are the needs of an
agent JIAC for it to continue running in JADE?

In the literature, MASIF Mobile Agent System
Interoperability Facility [8] and Grid Mobile Agent
System (GMAS) [7] were the most interesting
interoperability structure that allow foreign agents
to execute in a foreign Mobile Agents System by
translating the foreign agent’s API into the local

platform’s API, However none of them have the
ability to encourage many systems to adopt them,
because they don’t give a pragmatic result, and
their approaches are not adapted to the most multi-
agents system APIs, and the technologies with
which they have been developed.

The authors of the article “Toward
Interoperability of Mobile-Agent Systems” [7] have
demonstrated that interoperability between different
mobile agent systems is possible, and they insisted
on the possibility of transforming agents between
different multi-agents systems in their conclusion.
The goal of this paper is to advance the research on
the interoperability of multi-agents systems, by
using the most diffuse FIPA compliant agent
platforms JADE [for the development of industrial
applications] and JIAC that use the newest and
advanced technologies. However, both of them are
not interoperable with each other.

Here, we will explain how to adapt a JIAC agent
to function in a JADE system. For that we will
begin the paper with the interoperability research
motivation. Then in section 3 we will describe the
state of art the mobile agents’ interoperability. In
section 4 we describe mobile agents’ structure

http://www.jatit.org/
mailto:abd.soklabi@gmail.com
mailto:mohamedbahaj@gmail.com
mailto:jbakkas@yahoo.fr

Journal of Theoretical and Applied Information Technology
 10th September 2013. Vol. 55 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

150

while specifying JIAC and JADE agents’
particularities. In Section 5 we will compare JADE
and JIAC agents. Section 6 talks about our previous
work in JADE and JIAC communication. Section 7
emphasizes the importance of taking the research
results in the migration of a mobile agent in the
agent’s migration between different mobile agent
systems. Section 8 details how to transfer and
transform a JIAC agent to a JADE agent. Finally, in
Section 9, we conclude by presenting a
demonstration application of our result.
2. THE INTEROPERABILITY

There is many definition of interoperability [2]

[3]. While the interoperability was initially defined
for IT systems or services and only allows for
information to be exchanged, a more generic
definition of this could be that the IEEE Glossary
that defines interoperability as the ability of two or
more systems or components to exchange
information and to use the information that has
been exchanged. Again, the research distinguishes
between two types of interoperability.

Syntactic interoperability [1] [2] [3] is the lack of
ability of a systems to communicate and exchange
data with other systems. Specified data formats,
communication protocols and the like are
fundamental. This is also true for lower-level data
formats, such as ensuring alphabetical characters
are stored in the same variation of the Americans
Standard Code for information interchange, or a
Unicode format in all the communicating systems.
Syntactical interoperability is a necessary condition
for further interoperability.

Semantic interoperability [4] [5] [6] is the lack of
the ability of two or more computer systems to
exchange information. In other words, it is the lack
ability to automatically interpret the information
exchanged meaningfully and accurately in order to
produce useful results as defined by the end users
of both systems. To achieve semantic
interoperability, both sides must refer to a common
information exchange reference model. The content
of the information exchange requests are
unambiguously defined; what is sent is the same as
what is understood.

Whereas, the interoperability of a mobile agents
system is it property, to work with others mobile
agents systems, present or future, without any
restriction access or implementation, and the
capability to permit mobile agents to exchange data
via a common set of exchange formats, to read and
write the same file formats, and to use the same
protocols.

3. STATE OF THE ART PROCESSING
AGENTS BETWEEN DIFFERENT MASS

MASIF [8] was presented in the literature, as a

standard for mobile agent systems, that was an
early attempt to standardize interoperability
between industrial mobile agents systems, that even
though popular in the past, still has not caught on it
defined a standard API and required all platforms
that wish to interoperate, to then implement the
common API. MASIF provides the features used in
the transport of agent standardized information
which is the first level of interoperability. How the
system deals with the parameters internally, once
the information is transferred from one mobile
agent system to another is an implementation
subject and not addressed by MASIF. Such
information includes agent profile which describes
the serialization, language, and other agent
requirements on the host system. MASIF permits
the MAS to understand the requirements that the
agent has on its native system because they
consider that it is the first step in end to end
interoperability. These approaches, however, have
failed to encourage many systems to adopt the API.
Since MASIF is about interoperability between
agents systems written in the same language, it does
not standardize local agent operations such as
serialization/deserialization, agent interpretation,
and execution.

Another interesting interoperability structure is
the Grid Mobile Agent System (GMAS) [7] that
allows foreign agents to execute in a non-native
mobile agents system by translating the foreign
agent’s API into the local platform’s API. Instead
of creating pair-wise translations of the multi-
agents system APIs, they define a single common
interoperability API (IAPI) that supports agent
registration, lookup, messaging, launching, and
mobility. Then each group provided translators
between their multi-agents system API and the
IAPI. In this manner, it was not necessary to rewrite
each MAS to conform to a new API, but to write
translators from each MAS to the IAPI, and
conversely, from the IAPI to the multi-agents
system to support these specific agent operations.
Since each mobile agents system has its own
communication and directory services, they rely
upon a common substrate to provide
communication and discovery services in a
heterogeneous environment instead of construct
mappings between them.

The GMAS API provides methods to create an
agent either by launching a new agent or by cloning
the current agent on a remote host. When launching

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 10th September 2013. Vol. 55 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

151

a new agent, the agent’s initial state must be
provided to the system as a parameter. Cloning an
agent requires that the state of the agent be moved
to the destination.

One of the main advantages of using Java for
mobile-agent programming is the ability to use
object serialization for packaging an agent before
shipment to another host. Any agent that
implements Java’s Serializable interface can be
cloned through the GMAS API.
4. MOBILE AGENTS STRUCTURE

Each agent has a execution flow to be able to

take the initiative to perform tasks. To talk about
the migration of an agent, it is important to know
what to transfer with the agent. A mobile agent
instance is an entity that has five attributes: its
status, its implementation, its user interface, its
identifier and its authority [12] [13]. When an agent
moves through the network, it carries its attributes
Table 1.

Table 1: the agent attributes with their descriptions

The attribute Description
The state The state of an agent can be seen

as a snapshot of its execution that
allows it to resume execution when
it reaches its destination.

The
implementation

A code that represents the
sequence of instructions
defining the static behavior of
the mobile agent, it allows it to
run when it moves through the
network.

The interface An interface that allows
other agents and other systems
to interact with the agent.

The identifier Each agent has a unique
identifier during its life
cycle, allowing it to be identified
and located. Since the identifier
is unique, it can be used as a key
in the operations that requires
a means to reference
a particular agent instance.

The authority An authority is an entity whose
identity can be authenticated by
any system to which it is trying to
access. The identity consists of
a name and other attributes.

4.1 JADE agents properties
4.1.1 Agent class:

A JADE agent is simply an instance of a defined
Java class that extends the base Agent Class. This
implies the inheritance of features to accomplish
basic interactions with the agent platform like

registration, configuration or remote management
and basic set of methods that can be called to
implement the custom behavior of the agent like
send or receive messages, use standard interaction
protocols, register with several domains. The
computational model of an agent is multitasking,
where behaviors are executed concurrently. Each
service provided by an agent should be
implemented as one or more behaviors. A
scheduler, internal to the base Agent class and
hidden to the programmer, automatically manages
the scheduling of behaviors [14].
4.1.2 Agent state:

A JADE agent can be in one of several states,
according to Agent Platform Life Cycle in the FIPA
specification. These are detailed in the Table 2.

Table 2: the agent states with their descriptions

The agent
State

Description

INITIATED The Agent object is built, but hasn't
registered itself yet with the MAS, has
neither a name nor an address and
cannot communicate with other
agents.

ACTIVE The Agent object is registered with the
MAS has a regular name and address
and can access all the various JADE
features.

SUSPENDED The Agent object is currently stopped.
Its internal thread is suspended and no
agent behavior is being executed.

WAITING The Agent object is blocked, waiting
for something. Its internal thread is
sleeping on a Java monitor and will
wake up when some condition is met.

DELETED The agent is definitely dead. The
internal thread has terminated its
execution and the Agent is no more
registered with the MAS.

TRANSIT A mobile agent enters this state while
it is migrating to the new location. The
system continues to buffer messages
that will then be sent to its new
location.

4.1.3 Agent execution:
The JADE framework controls the birth of a new

agent according to the following steps: the agent
constructor is executed, the agent is given an
identifier from the jade.core.AID class, it is
registered with the AMS, it is put in the ACTIVE
state, and finally the setup() method is executed.
The setup() method is therefore the point where any
application-defined agent activity starts. The
programmer has to implement the setup() method in
order to initialize the agent. When the setup()
method is executed, the agent has already been

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 10th September 2013. Vol. 55 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

152

registered with the AMS and its Agent Platform
state is ACTIVE. This initialization procedure is
used to modify the data registered with the MAS or
set the description of the agent and its provided
services and if necessary, register the agent with
one, more domains or add tasks to the queue of
ready tasks using the method addBehavior(). These
behaviors are scheduled as soon as the setup()
method ends. The setup() method should add at
least one behavior to the agent. At the end of the
setup() method, JADE automatically executes the
first behavior in the queue of ready tasks and then
switches to the other behaviors in the queue by
using a round-robin non-preemptive scheduler. The
addBehavior(Behavior) and
removeBehavior(Behavior) methods of the Agent
class can be used to manage the task queue.

The Agent.takeDown() method is executed when
the agent is about to go to DELETED state, i.e. it is
going to be destroyed. The takeDown() method can
be overridden by the programmers in order to
implement any necessary cleanup. When this
method is executed the agent is still registered with
the MAS and can therefore send messages to other
agents, but just after the takeDown() method is
completed, the agent will be de-registered and its
thread destroyed. The intended purpose of this
method is to perform application specific cleanup
operations, such as de-registering with Directory
Facilitator agents [14].

4.2 JIAC agents properties
4.2.1 Agent components

An agent consists of many types of components
and is described using a properties file. This
properties file consists of a set of entry keys that are
separated by an equal sign. If more than one value
is assigned to a key, they must be separated by
using separators such as blank, tabulator, comma or
semi-colon. Each entry in the property file must
begin at a newline.

The properties files are used for configuration of
the agent and can be globally accessed by each
component through the properties. Additionally, to
properties that are common to all components, there
are components’ specific properties files, which are
used by a component for internal configuration
purpose. Properties for the agent core are defined
for multiples functions like permissions, to control
the access to the agent, the agent’s name that is
automatically given by the platform’s manager and
the initial state of the agent.

The agents consist of a set of ontologies, rules,
plan elements, and initial goal states. The state of
the world is represented within a so-called fact base
which contains instantiations of categories which

are defined in ontologies. AgentBeans contain
methods which can be called directly from within
Jadl, allowing the agent to interact with the real
world, via user interfaces, database access, robot
control, and others components [16].
4.2.2 Goals

In JIAC, a StateGoal is a single goal of the agent,
which describes the state of the world to be reached.
And a ServiceGoal is a goal to execute protocol for
a service. The execution of goal can be prioritized
using the method setPriority. The priority is an
integer value comprised between 1 and 10,
normally set to 4. Goal with higher priority values
are chosen first for execution. Components can
determine and set up new goals to control the
behavior of agents, by passing messages to the
control components. To this end, a goal should first
be specified and sent to the GoalSelectionRole
using the ChangeGoalMessage. The method of the
DefaultApplicationBean addGoa()l is used to setup
a new goal, which in addition to the goal itself has
as parameters a reference to the goal and the
context.
4.2.3 Agent State

The agent as well as its components has a
discrete state during their whole life-cycle. The
state of the agent determines its behavior. The
following table gives an overview of all the
component states, with their explanation Table 3.

Table 3: JIAC agent’s component states with their

explanations
JIAC agent
component
states

Explanation

STATE VOID Start and end state. The
component is not part of the agent

STATE STOPPED Possible component’s state after
the first transition from

STATE
INITIATED

All prearrangement before
transition in an active state is
doing here

STATE ACTIVE Component is part of the agent and
active

STATE
SUSPENDED

 Temporary suspended execution
of component

STATE
STEPPING

Execution step by step

STATE
SERIALIZED

The component is prepared for
serialization.

STATE
TRANSIENT

The agent is in migration between
two platforms

The method changeState() is used for changing

agent’s state during its lifetime. The agent’s state is

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 10th September 2013. Vol. 55 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

153

set to the unknown value if the method changeState
fails.

4.2.4 FactBase

Unlike components where communication
happens through messages, the agent’s factbase is
accessed directly using methods. The advantage is
in the efficiency of communication and hence the
consistency of the knowledge base. Directly
accessing the factbase avoid the long delay that
result from waiting for request responses. The
manipulation of the fact base is done through the
variable factAccess, which is an instance of the
class FactAccess in de.dailab.control.component.

The variable factAccess is declared in the class
ControlComponent and should be used by all
components in the agent’s architecture to
manipulate the factbase. There is exactly one
factbase per agent.
4.2.5 Agent execution

The capabilities of an agent for deliberative
actions are described by plans consist of an
execution part (a set of conditions that must be
satisfied before or during the execution) and the
resulting effect after a successful execution.
Adopting a plan for execution in order to achieve
one of its goals is known as an intention.

The interior of a JIAC agent has certain useful
characteristics as well. Each agent has to provide
basic functionalities in order to deal with its beliefs,
plans, goals and intentions. Each of these
capabilities is implemented by reusable components
that can be configured into an agent that works
even at runtime. Thus, the definition of a specific
agent type is done defining a configuration file that
contains all components belonging to the agent [16].
5. JADE AGENT AND JIAC

AGENT COMPARISON

If we ignore the differences in the name of some

states, the JADE agents and JIAC agents pass
through the same states during their life cycles.
Also, both JADE and JIAC respect FIPA
specifications to identify the agents. But the manner
of agent identification differs in the two systems.
On the one hand, a JADE agent is identified by a
globally unique name that concatenates the local
name plus the '@' symbol, the home agent platform
identifier, and a set of agent addresses and a set of
resolvers (the white page services with which the
agent is registered). In other hand, JIAC does not
use the concept of agent identifier directly, but it
contains some methods in KAgentName JAVA
class that can manage the agent identifier. For
examples it uses getAgentIdentifier() method that
converts a JIAC agent object to an agent identifier

and parseAgentIdentifier() that converts an agent
identifier, to an object of JIAC category Agent.
Another difference between the two systems is that
a JADE agent execution is due to the sequential or
parallel execution of its Behaviors, while executing
JIAC agent is structured according to the operator
plans that consist of an execution part, a set of
conditions that must be satisfied before or during
the execution and the resulting effect after a
successful execution.

So the complete JIAC (or JADE) agent
transformation as an agent of JADE (or JIAC) is
possible, but requires a lot of effort. The adaptation
of the agent so that it fits into another non-native
multi-agent system to communicate and collaborate
with its agents is less complicated and more
convenient.
6. JIAC SYSTEMS AND JADE AGENTS

COMMUNICATION

In previous work we found a suitable solution to

the communication between both JIAC and JADE
agents, which takes into consideration the
architecture, APIs and language with which both
MAS were developed, and by integrating
ActiveMQ and The Java Message Service (JMS)
[9], [8] in JADE. ActiveMQ is a message broker
which is used to develop a MOM (Middleware
Oriented Messages). It supports multiple protocols
at several levels for maximum interoperability. It
works well with JAVA which is the programming
language of both JIAC and JADE. And it exchange
messages in asynchronous mode, which is the mode
needed to insure communication between JIAC and
JADE mobile agents. So AvctiveMQ was the best
MOM to choose in order to provide communication
between the two MAS (Mobile Agent System).

The advantage of JMS is that it provides an API
and a semantic that describes the interface and
general behaviors of an Enterprise-messaging
service. The goal of the JMS is to provide a
universal way to interact with multiple
heterogeneous Enterprise-messaging services in a
consistent approach. All messaging is about the
separating of senders and receivers. The messages
are sent to a broker and then they are received from
a broker in an asynchronous manner, which
corresponds perfectly to the asynchronous way of
communication between JADE agents.

The search result was proven by an application
in which we have exchanged messages between
JADE agents and JIAC agents as shown in Fig 1.
We used the result of communication between the
two MAS to transfer agents between JIAC and

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 10th September 2013. Vol. 55 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

154

JADE, and also to assure communication between
agents of different MAS (Figure1).

Figure 1: transfer of messages between the Producers
agents of JADE and Consumers agents of JIAC

7. THE AGENT’S MIGRATION BETWEEN
DIFFERENT MASS:

While seeking answers to the question that we

asked about the data the agent will need to work in
the other MAS. We found answers in the search
results on the migration of mobile agents. We
conclude that the transfer of mobile agents between
different MAS is actually a generalization of
agent’s migration between parts of the same MAS.
In general the state of the art of mobile agent’s
migration research has distinguished between two
types of migration:

Strong migration, where the complete of the
agent (i.e. code, data and execution unit) migrates
to the new site. For the actual migration, the agent
is suspended or captured before being transferred.
Once at the remote site, it restarts execution at the
previous checkpoint, maintaining the state of the
process. Another option proposed is to stop the
execution of the agent before the migration and to
create an identical remote copy at the remote site.

Weak migration, only transfer the agent's code
and data. On the destination site, the agent restarts
its execution from the beginning by calling the
method which represents the input of the agent
execution, and test the agent execution context.

So we can extend this distinction between
different modes of mobile agents’ migration and
project it on the transfer of mobile agents between
different mobile agents systems, to say that there
are two transfer modes. Strong transfer where the
complete agent is transferred to the new MAS,
weak transfer is where only the code and data of the
agent are transfered. The algorithms developed and
presented in this paper allow capture and transfer of
the executed state of agents that we can consider as
a strong migration, just as a migration between
different multi-agents systems.
8. THE TRANSFER AND PROCESSING OF

AGENTS

Once an agent needs to migrate to new MAS, it

sends a message to the Agents System of (ASTT)
Transformation and Transfer and transfer agents
Fig 2a (1). Then the ASTT sends a message that
contains the agent identifier to the agent’s current
MAS (2). When the source MAS receives the
transfer request it executes the algorithm described
in Figure 2b: starting by suspending of the agent in
2b (1), second by identifying transferable agent
state 2b (2) to serialize the agent class and its
condition 2b (3), and encoding it according to the
transport protocol 2b (4), before sending it in a
serialized state to the ASTT that transform and
transfer the agent to the destination MAS. Once the
destination system receives the ASTT 2b (5), the
ASTT records the identifier and the location, and
adds the header of the MAS destination to the agent
serialized code 2a (4) before sending it to the
destination MAS. Then run the algorithm presented
in Figure 2c begins by decoding the agent 2c (1),
deserializes its state and class 2c (2), to instantiated
it in 2c (3) and restores its state in 2c (4), and finish
boost its executing in 2c (5). The MAS destination
must resend the identifier of the agent copy on the
new system to the ASTT, to allow it to find the new
agent in case it needs to recover it.

JADE

Send

JADE

 Receive

JIAC

ActiveMQ

Message

Consumer
Agent

Message
Producer

Agent

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 10th September 2013. Vol. 55 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

155

a) Agent transfers and transformation (sender

side).

b) Initiating agent transfer (sender side).

c) Receiving an agent (receiver side).

Figure 2: Algorithms for agent transfer

Each JADE agent belongs to a Container, so a

receiving container must be created on JADE by
which the ASTT transfers transforming agents from
other mobile agents systems. The class of the
source agent system is needed to instantiate the
transferred agent. since it is possible that classes are

1Suspend the agent

Identify transferable agent’s state

Serialize the Agent class and state

Encode it for the chosen transport protocol

Transfer the agent to the ASTT

2

3

4

5

de.dailab.jiac.agent.beans=\
de.dailab.control.component.FactBean \
de.dailab.control.component.GoalBean \
de.dailab.control.component.SelectionBe
an \
de.dailab.control.component.ExecutionBe
an \
de.dailab.control.component.Communicati
onBean \
de.dailab.control.transport.component.J
VMCommunicationBean \
de.dailab.control.transport.component.A
ctiveMQCommunicationBean \
de.dailab.control.component.TimerBean \
de.dailab.control.debugging.component.D
ebuggerBean \
de.dailab.jiac.component.CommunityBean
\
de.dailab.jiac.component.AMSUserBean \
de.dailab.ASTT_contactor.component.Extr
aBean

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 10th September 2013. Vol. 55 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

156

needed after instantiation of the agent, a solution is
to provide to the transferred agent all classes need
in the new MAS, by calling the code source of
JIAC, as an EXTERNAL JAR in the JADE project.
In this way the JIAC agents will be executed using
JIAC classes, they will be identified on JADE.

Both JADE and JIAC contain serialization
methods that allow serializing and deserializing the
agent class and state. When the system attempts to
move the serialized agent to a new host, the native
system retrieves from the agent a container holding
objects that represent the agent’s state. Each
object’s value in the container is then converted to
XML notation containing its name, data type and
value. Then to restore the agent state, this XML
notation is parsed, and the state of the agent is
reconstructed using JADE deserialization methods.

9. APPLICATION:

We will show the results of our research with an
application that create an agent in JIAC and
transform it using ASTT in order to move the agent
on JADE. This application is based on our previous
result which we detail in our article
“communication between the JADE agents and
JIAC” [11], we achieve it using the followed the
steps.

9.1 prepare the agent to be transferred from
JIAC

We will begin begun by executing the algorithm
of agent transfer presented in the Figure 2b. We
have chose JIAC as the agents originate system. We
used JIAC Aclass class that implements the class
java.io.Serializable a special class to represent
serializable JAVA objects stored in attributes and
used for the communication between JADE and
JIAC in our precedent work [11], instead of the
transfer protocol that have used on the migration
service. It can be loaded in the plan-library by
including the file
de/dailab/jiac/knowledge/MigrationService.know in
the properties file.

To simplify the management of the agents
transferred from JIAC to ASTT, we have added a
controlling agent that will execute the agent’s
transfer algorithm in JIAC and communicate with
the ASTT. The properties file for the controlling
agent is shown in the Figure 3.

Figure 3 the properties file for the controlling agent

The agent is created in an active state. It has the
permission to monitor speech acts and is mobile.
While migrating, the agent should transport the
archive ExtraBean.jar that contains all

supplementary information about the agent as
shown in Figure 4.

Figure 4 The Archive Extrabean.Jar Content

We have already proven that the agent

conversion between different MASs is based on the
agents migration principles. We have exploited this
result to simplify how agents are sent to the ASTT.
For this purpose we have added following files to
the plans and services libraries of JIAC Table 4.

Table 4: the plan added files and services libraries

The added component Description
MigrationService The service for agent

migration
TransmitAgentProvider Providing script that

implements the
service defined in
TransmitAgentService

TransmitAgentService The service
responsible for agent’s
transmission from the
source to the
destination platform.

MigrationSupport Plan-element that is
used by the
MigrationService

For all management functionalities provided, the

manager agent requires protocol plan-elements for
the provider as well as for the user role. Services
including those functionalities for migration are
also required by the MAS as it is shown in Figure 5.
Figure 5: Services migration

9.2 ASTT
To simplify the transformation of the agents, we

have integrated Camel with ActiveMQ as shown in
Fig 6. Camel supports the Message Translator in
the routing logic, by using a beans to perform the
transformation, or by using transform() in the DSL.
Here we will give the principles interfaces, and
their prototypes of essentials methods, that allow

(ASTT_contactor.agent):
de.dailab.jiac.agent.permissions=mo
bile
de.dailab.jiac.agent.permission.mon
itor
de.dailab.jiac.agent.state=active
de.dailab.jiac.agent.codebase=backs
lash
de/dailab/ASTT_contactor/ExtraBean.
jar

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 10th September 2013. Vol. 55 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

157

the management of the transfer and the
transformation of agents on the ASTT. The
ASTT’s places registration, agents’ registration,
searches, transformations, statute verifications,
receptions and agents’ locations lists of declared
like it was shown in the Fig 7.

Figure 6: Agents transfer and transformation using
ActiveMQ, Camel and ASTT

Figure 7: The ASTT abstract interfaces code par

t

9.3 Receive transferred agent on JADE
The mobile agent that was transferred to the

ASTT will be retransferred to JADE, which will
then execute the algorithm shown in Figure 2c
based on the methods of different classes of JADE
that implement serializable classes of Java for the
deserialization of received messages, prior to
restoring of the agent’s state. Agents will be hosted
on a dedicated container for receiving agents to
help the ASTT to identify them in case it needs to
recover them after they are transferred.

de.dailab.control.role.ServiceLibraryRo
le.services=\
de/dailab/jiac/knowledge/APService.know
\
de/dailab/jiac/knowledge/AMSService.kno
w \
de/dailab/jiac/knowledge/DFService.know
\
de/dailab/jiac/knowledge/MigrationServi
ce.know \
de/dailab/jiac/knowledge/TransmitAgentS
ervice.know

interface ASTTAgentFinder {

void register_agent (Name agent_name, Location
agent_location, AgentProfile agent_profile);
void register_place (string place_name,
Location place_location);
Locations lookup_agent (Name agent_name,
AgentProfile agent_profile);
Location lookup_place (string place_name);

}

interface ASTTAgentSystem {

Name transfom_agent (Name agent_name,
AgentProfile agent_profile, OctetString agent,
string place_name, Arguments arguments,
ClassNameList class_names, ASTTAgentSystem
class_provider);
OctetStrings fetch_class(ClassNameList
class_name_list, AgentProfile agent_profile);
Location find_nearby_agent_system_of_profile
(AgentProfile profile);
AgentStatus get_agent_status(Name agent_name);
AuthInfo get_authinfo(Name agent_name);
ASTTFinder get_ASTTFinder();
NameList list_all_agents();
Locations list_all_places();
void receive_agent(Name agent_name,
AgentProfile agent_profile, OctetString agent,
string place_name, ClassNameList class_names,
ASTTAgentSystem agent_sender);

}

JIAC

JADE

ActiveMQ

A

A

ASTT

Camel Serialized
agent

Serialized
agent

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 10th September 2013. Vol. 55 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

158

Figure 8 the transformed agent execution result in JADE

10. CONCLUSION AND PERSPECTIVES

In this paper we have developed the algorithm to

transform and transfer and mobile agents between
JIAC and JADE, taking the information contained
in a JIAC agent and creating its equivalent in JADE.
We did that by migrating an agent with its functions
and attributes, and its added features and their
attributes, from one of the two systems to another
MAS, based on our previous solution presented in
our previous paper, which takes into consideration
the application programming interfaces, the
architecture language with which both systems
were developed.

The research will not stop at this stage. It can be
more developed to handle the following cases: 1)
when the agent wants to return to his native
platform 2) security management in the transfer of
agents between different systems. Another line of
research that can be developed, managing decision
processing agents i.e. to find answers to questions
such as: 1) the agent that voluntary decide to return
to native MAS, 2) the system that decide to return
the agent to its native MAS, 3) how to prioritize
several agents that must transferred instantly, 4)
how to optimize the management of resource that

are shared among agents of different mobile agent
systems.

REFERENCES

[1] X. Feng, "A user-oriented approach for

selecting information resource service"
Information Management and Engineering
(ICIME), 2010 The 2nd IEEE International
Conference, 16-18 April 2010, pp. 550 - 553

[2] A. Espinoza, M. Ortega, C. Fernandez, J.
Garbajosa, A. Alvarez "Software-intensive
systems interoperability in Smart Grids: A
semantic approach" in Industrial Informatics
(INDIN), 2011 9th IEEE International
Conference, 26-29 July 2011, pp. 739 - 744

[3] N. Ide, J. Pustejovsky, "What Does
Interoperability Mean, Anyway? Toward an
Operational Definition of Interoperability for
Language Technology" in 2nd International
Conference on Global Interoperability
Language for global resource, January 2010

[4] François B. Vernadat, “Technical, semantic
and organizational issues of enterprise
interoperability and networking”in the Annual
Reviews in Control, Volume 34, Issue 1, April
2010, pp. 139–144

[5] V. Fionda, G. Pirró, “Semantic Flow
Networks: Semantic Interoperability in
Networks of Ontologies Lecture Notes” in
Computer Science Volume 7185, 2012, pp.
64-79

[6] Ke-Qing He,Jian Wang, Peng Liang,
“Semantic Interoperability Aggregation in
Service Requirements Refinement” in Journal
of Computer Science and Technology,
November 2010, Volume 25, Issue 6, pp. 1103-
1117

[7] A. Grimstrup, R. Gray, D. Kotz, M. Breedy, M.
Carvalho, T. Cowin, D. Chacon, J. Barton, Ch.
Garrett and M. Hofmann “Toward
Interoperability of Mobile-Agent Systems” in
the Sixth IEEE International Conference on
Mobile Agents, Springer-Verlag October 2002,
Barcelona, Spain, pp. 106–120.

[8] D. Milojicic et al. MASIF: The OMG mobile
agent system interoperability facility. In Proc.
of the Second International Workshop on
Mobile Agents, volume 1477 of Lecture

[9] Notes in Computer Science, pp. 50–67.
Springer-Verlag, September 1998.

[10] M.Higashino,K.Takahashi, T. Kawamura,
K. Sugahara, "Mobile Agent Migration
Based on Code Caching" in Advanced
Information Networking and Applications

Workshops (WAINA), 2012 26th
International Conference March 2012 pp.
651 – 656

[11] Alfonso Fuggetta and Gian Pietro Picco and
Giovanni Vigna,Understanding Code

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 10th September 2013. Vol. 55 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

159

Mobility. IEEE Transactions on Software
Engineering, 1998, pp. 342—361

[12] A. SOKLABI, M. BAHAJ, I. CHERTI,
“JIAC Systems and JADE Agents
Communication” in international IJET, May
2013.

[13] G. Stoian, C. Popirlan “A Proposal for an
Enhanced Mobile Agent Architecture
(EMA)” in annals of the University of
Craiova, Mathematics and Computer
Science Series, Volume 37(1), 2010, pp. 71-
79

[14] N. Suri, J. Vitek “Mobile Agents” in
Computational Complexity , 2012, pp 1880-
1893

[15] F. Bellifemine, G. Caire, T. Trucco “JADE
PROGRAMMER’S GUIDE” 2010.

[16] B. Hirsch,T. Konnerth, A. Heßler "Merging
Agents and Services — the JIAC Agent
Platform" in Multi-Agent Programming,
2009, pp. 159-185

[17] M. Lützenberger, T. Küster, T. Konnerth, A.
Thiele, N. Masuch, A. Heßler, J. Keiser, M.
Burkhardt, S. Kaiser, S. Albayrak "JIAC V:
A MAS framework for industrial
applications" in 13 Proceedings of the 2013
international conference on Autonomous
agents and multi-agent systems" 2013, pp.
1189-1199

http://www.jatit.org/

