
Journal of Theoretical and Applied Information Technology
 10th September 2013. Vol. 55 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

90

SPECIFYING CLASS HIERARCHIES IN Z

YOUNES EL AMRANI
CCM Team, LRI laboratory, Faculty of Sciences, Mohammed V Agdal University, Rabat, MOROCCO

E-mail: elamrani@fsr.ac.ma

ABSTRACT

The main target of this research is to provide a formal meta model for object-oriented systems. It provides a
formal definition of the object-oriented concepts along with major consistency rules for object-oriented
systems. This research is a contribution to the formalization of object-oriented systems. Other existing
models fail to define the notion of virtual function and virtual class. In this article both concepts are
specified in the proposed model and used to clarify the OO related concepts. To illustrate the
expressiveness of the model a formal specification of the MOOD metric suite is provided using the model.
The formal definition of the POF metric is successfully defined, providing one of the first Z formal
specification for the POF metric thereof.

Keywords: Formal Language, Z, Metrics, MOOD, Formal Model, Software Engineering, Measurement

1. INTRODUCTION

 Formal methods for software development are
becoming necessary as software became an
unavoidable part of everyday life. To handle the
large scale software systems complexity, these
formal methods should be combined with object
orientation that provides a sound development
methodology which supports modularity, re-
usability, encapsulation and polymorphism for
collections of interacting objects whose behaviors
are specified by classes. The object-oriented
paradigm is itself a source of potential confusion:
the rich terminology makes it difficult to formalize
the profusion of terms and concepts. This paper
presents a formal specification of class hierarchies
in Z. The provided framework is used to formally
specify the MOOD metrics suite. The rest of this
paper is organized as follows: Section 2 discusses
related works. Section 3 presents a formal
specification of class hierarchies in Z. Section 4
presents the extensional view of the model. In
section 5, the inheritance tree is provided along
with UML consistency rules formally specified in
Z. The section 6 illustrates the formal specification
of the MOOD metrics suite using the proposed
model. Finally, conclusion and perspectives are
drawn in section 7.

2. RELATED WORK

There is a great amount of research on the
combination of formal methods and object-
orientation [1]. Three main approaches were

identified: the first approach is to specify the
system in an object-oriented fashion that keeps the
proof systems and tool support available. The
second approach extends the syntax, using
transformational semantics: new constructs should
be mapped to the non-object-oriented version. The
third approach incarnates in the definition of a new
formal language, not necessarily compatible with
the original one, syntax and semantics are generally
redefined. The third approach requires the
fundamental notions of classes, inheritance,
polymorphism and encapsulation to be formally
defined, and integrated within the semantic model
of the formal language. The second approach
modifies the syntax and requires a new set of tools
to enable the proof system to mathematically
manipulate the new features. Finally, the first
approach is the best trade-off: it keeps the proof
system available and discards away from the formal
language any hindering terminology. The adopted
approach in this paper emanates from the first
approach. The first approach to the object-
orientation using Z [2] could be partitioned into two
dominant styles, depending on whether the
properties are modeled as functions from identities
to property values, or modeled by a value in the
object state. Hall’s style [3-4] belongs to the latter
approach, and France’s style [5-6] belongs to the
former approach. However, in both styles, the
operations are specified using schema-operations.
The name of the operation is the name given to the
schema-operation: in other words the name of the
operation is not separated from the specification of
the implementation. In both styles it makes
impossible to override an operation in Z [2]

http://www.jatit.org/
mailto:elamrani@fsr.ac.ma

Journal of Theoretical and Applied Information Technology
 10th September 2013. Vol. 55 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

91

because a schema-operation cannot be renamed;
whereas in this paper, the name of an operation is
separated from its implementation, which makes
the specification powerful enough to define the
overriding object-oriented concept, and allows, for
the first time, to specify formally the POF from the
MOOD metrics suite [7] thereof. This paper
provides also a specification of methods’
implementations that enables the formal
specification of the CBO metric from the MOOD
metrics suite [7] in a concise and complete way.
Such a specification could not be achieved before
for a simple reason: there is no way to specify, in a
given specification, if a schema-operation uses
state-variables from another schema, in order to
calculate coupling.

This article provides, on one hand, a
formalization of object-oriented consistency rules,
found in the UML standard [9]. Several rules are
provided in the predicates of the formal
specification of the inheritance tree. On a second
hand, the formal specification of the MOOD
metrics [7] is provided to illustrate the
expressiveness of the presented model.

3. THE INTENTIONAL VIEW

Z [1] is a formal specification language created
by J.-R. Abrial and developed further by the
Programming Research Group at Oxford. It is
based upon set theory and first order logic. One
essential construct of the Z notation is the schema.
The notion of schema in Z relates to the concept of
a class in object-oriented. A class can have
attributes and methods, both share common
features. The intentional view of a class is the
formal definition of a class and its properties.

 We start by specifying class methods and
attributes.

3.1 Basic Sets Specification

To set the ground to specify the central concept

of a class, this model starts by the specification of
the following five given sets.

These five sets are used to specify the type, the

name and identifiers for classes, methods and
attributes. The given sets are the most basic
construct in Z. It is used when no further
specification is needed to specify a concept.

Actually the given set ID is used to define the set
of all unique identifiers throughout the
specification. ID is used to define objects, methods
and attributes identifiers.

3.2 The Visibility Specification

The notion of visibility is crucial in object-
oriented methodology; it is used to determine how
attributes and methods are inherited by subclasses.
The formal definition of visibility is represented by
a Z enumerated set:

3.3 Attributes And Methods

Attributes and methods define what is called
properties in the object-oriented terminology. Their
identifiers define a partition of all properties
identifiers. The double equality introduces a
syntactic equivalence that alleviates the formalism.
Two syntactic equivalences are introduced: Method
and Attribute. The use of the Cartesian product or
the syntactic equivalent name is strictly equivalent.

Attributes are called variables and vice-versa.

The sets Attribute and Variable are formally
syntactically equivalent.

Now, one can define access functions to access

members of Cartesian products as follows:

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 10th September 2013. Vol. 55 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

92

3.4 Method Body Specification

A genuine separation between method’s

implementation and the other characteristics of a
method (visibility, signature, etc) is guaranteed by
providing a separate specification of the method’s
body.

3.5 Abstract Method Specification

A function implementation in the class will

associate a method to its body. This separation
allows postponing the definition of a method
implementation, providing room for the concept of
abstract methods. This separation allows also
changing the method body of any method by
modifying the mapping of the function
implementation. This provides the ground for the
OO concept of method overloading.

Complexity is defined here as an integer. An
axiomatic declaration of the function called
isMethodAbstractInParentClass is provided to
define the concept of abstraction for class and
methods. Since Z does not support forward
declarations, the full specification of these
axiomatic definitions comes after the Class
specification. However, a preliminary declaration is
provided then the full definition follows in an
axiomatic definition.

3.6 Class Specification

Now, the concept of a class can be formally

specified.

The formal specification of the class separates

inherited properties, namely inherited methods and
inherited attributes, from properties defined in the
class itself. The former are named imethods and
iattributes, the latter are named methods and
attributes.

3.7 Abstract Class Specification

A state variable named isAbstract is used to

specify if the class is abstract or not. The type
YesNo can be easily replaced by a Boolean type.

The first predicate states that if a defined method
has no implementation defined, it implies that the
class is abstract.

The second predicate states that if an inherited
method has not been associated to an
implementation in the class’s ancestry, and has no
implementation associated in the current class, it
implies that the current class is abstract.

We draw the attention of the reader that the
concept of abstraction has never been defined in
previous definitions of object-oriented constructs in
Z, B or AMS.

3.8 Inheritance Specification

A formal definition of the inheritance

relationship is formally provided by the relation
inheritsFrom, it can be compared the relation
subSuper defined in [3] and used to define

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 10th September 2013. Vol. 55 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

93

inheritance.

The relation inheritsFrom formally specifies the

inheritance relationship between two classes.

The function getAncestry is obtained with the
transitive closure of inheritsFrom, it is used, in our
model, to formally specify the function that checks
whether a method is abstract or not in a class.

The getOffspringOf function is obtained by

using the transitive closure of the relation inverse
inheritsFrom.

Now, we can define the extensional v iew of our model.

4. THE EXTENSIONAL VIEW

The extensional view of a class relates a class
identifier to the set of all existing objects that are
instances of that class. Each object is in turn
characterized by an identifier. The function

instances is performing this association: mapping a
class identifier to the set of its instances.

The given set OBJECT is the set of all objects in
the system.

The relation instances, relates a Class to the set of
its instances.

Now, we can define the concept of disjoint

classes. The domain of instances contains all the
identifiers of classes. The objects of the system
define the range of the relation instances.

The concept of disjoint classes comes naturally

as a relation that states the following: two classes
are disjoint if the sets of their instances are disjoint.

The getAttributeVisibility method returns the

visibility of the attribute in parameter.

The getMethodVisibility function returns the

visibility of the method provided as parameter to
the function.

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 10th September 2013. Vol. 55 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

94

5. THE INHERITANCE TREE

We define now the inheritance tree. This is the

most central definition that provides most the
properties of the OO properties in the schema
predicate. Properties required in the inheritance
relationship appear as predicates in the second part
of the schema.

 The predicates thirteen and fourteen, state that

private properties of a given class are not inherited
by its offspring:

The predicate fifteen states the abstraction

concept:

The sixteen predicate establishes a constraint,

easily violated in object-oriented designs, stating
that two disjoint classes must not have any
offspring in common:

The first predicate states that a class cannot be

among its own children. The fifth predicate states
that a class cannot be among its own parents. The
tenth predicate states that a class cannot belong to

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 10th September 2013. Vol. 55 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

95

the set of its offspring. The twelfth predicate states
that a class cannot be among its own ancestry.

The model is used in the next section to
formalize the MOOD metrics suite [7].

6. THE MOOD METRIC SUITE

The MOOD metrics suite consists of a set of six
metrics, all of which are formally defined. An
additional metric from the MOOSE metric suite
named CBO [8] is formally defined and then used
to define the COF metric.

The MOOD metric suite is defined on a set of
classes. A formal specification of a set of classes is
required. A set of classes is called a package in the
OO terminology. If we add all relationships
between classes and constraints on classes in the
package, we obtain the Design. We need to
formally specify a package as a set of classes.

6.1 The Coupling Factor

The COF metric [7] is the sum of all class’s

coupling for each class in a package, divided by all
the possible couplings. If a package contains N
classes, the maximum of class couplings would be
N*(N-1) in other words, each class is coupled to all
the other classes in the package.

A class is said to be coupled to another class if
it uses one of its methods or if it uses, at least one,
of its variables.

The function useMethods indicates if the
coupling occurs due to a method use.

 Two classes are also coupled if one uses the
variables of the other, the formal function
useVariables checks whether a class uses the
variables of a given class in its own methods’
implementation. The function useVariables
indicates if the coupling occurs due to a variable
usage.

It is now possible to state formally when two
classes are coupled. The following function returns
takes two classes as parameters and returns 1 if the
two classes are coupled, otherwise it returns 0. It is
used to formally define the CBO metric.

The CBO metric from [8] counts classes to

which a class is coupled in a given package:

Now, the COF metric [7] can be formally

defined, it is the sum of all coupling count in a
given package, divided by all the possible
couplings.

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 10th September 2013. Vol. 55 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

96

6.2 The Attribute Hidden Factor

The AHF metric [7] computes the percentage of

attributes that are hidden in the package. A function
that returns the sum of hidden and visible attributes
is first defined, and then used to specify formally
the AHF metric.

Now we can formally define the AHF metric.

6.3 The Method Hidden Factor

The MHF metric [7] counts the percentage of

methods that are private in the package. A function
that counts the total number of hidden and visible
methods is first defined then used in the formal
specification of MHF. It is worth noting here, that a
visible method, defined in root, would appear in all
the properties imethod of the root’s offspring,
therefore it will be counted several times. The
definition could be modified to count it only once,
depending on the software engineer’s interpretation
of the MHF metric.

The MHF metric is now formally defined.

6.4 The Attribute Inherited Factor

The AIF metric [7] counts the percentage of

attributes that are inherited in the package. A
function that counts the total number of defined and
inherited attributes is first defined then used in the
formal specification of AIF.

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 10th September 2013. Vol. 55 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

97

Now, we can formally define the AIF metric.

6.5 The Method Inherited Factor

The MIF [7] metric counts the percentage of

methods that are inherited in the package. A
function that counts the total number of defined and
inherited methods is first defined then used in the
formal specification of MIF.

Now we can formally define the MIF metric,

6.6 The Polymorphism Factor

The POF [7] metric provides a percentage of the

methods that are overridden in the package. A
function that returns a method’s name is defined
then used in the POF formal specification.

Now, the POF metric can be formally defined.

The

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 10th September 2013. Vol. 55 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

98

The MOOD metric suite has been defined in
order to illustrate the clarity and expressiveness of
the model provided in the sections 3 and 4. The
proposed model provides a solid ground to specify
any metric family with the same expressiveness.

7. CONCLUSION

The main target of this research is to provide a
formal meta model for object-oriented systems by
formally defining the main object-oriented
concepts. The MOOD [7] metrics set is formally
specified in section 6 to illustrate the
expressiveness of the model. Any other metric suite
could have been used instead. The section 6 is not
the primary goal of this research, it was provided
only to exemplify the expressiveness of the
proposed model.

This paper provides also several consistency
rules for object-oriented systems. These
consistency rules can easily be augmented by
providing additional predicates in the inheritance
tree provided in section 5. This research is a
contribution to the formalization of object-oriented
systems. Other models belonging to the first
approach discussed in section 2 fail to define the
notion of virtual function and virtual class; these
models fall short to cover all the OO concepts. This
is why we hope this article will help at clarifying
the concepts used in the dominant OO methodology
of this last decade. All the presented specifications
were thoroughly tested using the Z/EVES [10]
system.

REFRENCES:

[1] A. Ruiz-Delgado, D. Pitt and C. Smythe, “A
Review of Object-oriented Approaches in
Formal Methods”, J. Comp. Vol. 38, 1995, pp.
777-784.

[2] J.M. Spivey, “The Z Notation: A Reference
Manual”, Prentice Hall International, Oxford,
1998.

[3] J.A. Hall, “Specifying and Interpreting Class
Hierarchies in Z”, Z User Workshop, Bowen
J.P., Hall J.A. (eds.) Cambridge 1994, Springer
(New York), pp. 120-138.

[4] J.A. Hall, “Using Z as a Specification Calculus
for Object-Oriented Systems”. In: Bjorner, D.,
Hoare, C.A.R., Langmaack, H. (eds.) VDM
and Z, Third International Symposium on VDM
Europe Kiel, Springer, (Heidelberg). LNCS,
vol. 428, 1990, pp. 290-318.

[5] R.B. France, J.M. Bruel, M.M. Larrondo-Petrie
and M. Shroff, “Exploring the Semantics of
UML Type Structures with Z”, Proceedings of
the Formal Methods for Open Object-based
Distributed Systems. FMOODS, Springer,
(New York), 1997, pp. 247-257.

[6] M.Shroff, R.B.France, “Towards a
Formalization of UML Class Structures in Z”,
21th Computer Software and Application.
COMPSAC, IEEE Press, New York, 1997, pp.
646-651.

[7] F.B. Abreu, “The MOOD Metrics Set. In:
Workshop on Metrics”, ECOOP, Aarhus,
1995.

[8] S.R.Chidamber, C.F.Kemerer, “A metric suite
for Object Oriented Design”, J. Trans. on Soft.
Eng. vol. 20, IEEE Press, New York, 1994.

[9] The Object Management Group: UML 2.3
superstructure specification.
http://www.uml.org/ (last access, March 01,
2013)

[10] M. Saaltink, “The Z/EVES System”, Bowen,
J.P., Hinchey, M.G., Hill, D. (eds.) Ten
International Conference of Z Users Reading
1997. LNCS, Springer, Heidelberg, vol. 1212,
1990, pp. 72-85.

http://www.jatit.org/

	YOUNES EL AMRANI

