
Journal of Theoretical and Applied Information Technology
 10th August 2013. Vol. 54 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

20

 DESIGN OF GROUP HIERARCHY SYSTEM FOR
MULTICAST COMMUNICATION

1R. VARALAKSHMI, 2Dr. V. RHYMEND UTHARIARAJ

1Ramanujan Computing Centre, Anna University, Chennai, India
2Ramanujan Computing Centre, Anna University, Chennai, India
E-mail: 1rvaralakshmi697@gmail.com, 2rhymend@annauniv.edu

ABSTRACT

Secure and reliable group communication is an active area of research. Its popularity is fuelled by the grow-
ing importance of group-oriented and collaborative applications. The central research challenge is secure
and efficient group key management. The present paper is based on the Design of Group hierarchy system
for multicast communication using the most popular absolute encoder output type code named Gray Code.
The focus is of two folds. The first fold deals with the reduction of computation complexity which is
achieved in our protocol by performing fewer multiplication operations during the key updating process. To
optimize the number of multiplication operations, the Fast Fourier Transform (FFT), divide and conquer
approach for multiplication of polynomial representation of integers, is used in this proposed work. The
second fold aims at reducing the amount of information stored in the Group Center and group members
while performing the update operation in the key content. Comparative analysis to illustrate the perfor-
mance of various key distribution protocols is shown in this paper and it has been observed that this pro-
posed algorithm reduces the computation and storage complexity significantly.

Keywords: Multicast Group Key Management, Group Hierarchy System, Fast Fourier Transform, Poly-
nomial Integer Multiplications, Computation Complexity, Storage Complexity.

1. INTRODUCTION

Many applications like pay-per–view, distribu-
tion of digital media etc., require secure multicast
services in order to restrict group membership and
enforce accountability of group members. A major
issue associated with the deployment of secure
multicast delivery services is the scalability of the
key distribution scheme. This is particularly true
with regard to the handling of group membership
changes, such as membership departures and/or
expulsions, which necessitate the distribution of a
new session key to all the remaining group mem-
bers.

As the frequency of group membership change
increases, it becomes necessary to reduce the cost
of key distribution operations. One solution is to let
all authorized members use a shared key to encrypt
the multicast data. To provide backward and for-
ward confidentiality (D.M. Wallner and Agee,
1999), this shared key has to be updated on every
membership change and redistributed to all author-
ized members securely which is referred to as re-
keying. The efficiency of rekeying is an important
issue in secure multicast as this is the most fre-

quently performed activity with dynamic change in
the membership.

Group key must be updated with the group mem-
bership changes to prevent a new member from
deciphering messages exchanged before it join the
group; this is defined as backward secrecy [2].
Group key revocation in case of one member joins
or multiple members join could be achieved by
sending the new group key to the old group mem-
bers encrypted with the old group key. Also, group
key must be must be updated with the group mem-
bership changes to prevent an old member (depart-
ed or expelled) from deciphering current and future
communication which is defined as forward secre-
cy[2]. Group key revocation, when one member
departs or multiple members depart, is more com-
plicated in case of join because of the disclosure of
the old group key. The old group key is known to
the leaving member(s) so there is a need to re-key
the group using valid key(s) in a scalable way. The
trivial scheme for rekeying a group of n members is
through using individual secret key shared between
the Key distribution Centre KDC and each member.
This is not a simple or scalable method and con-
sumed large bandwidth especially for large group
with high membership changes: furthermore it takes

http://www.jatit.org/
mailto:rvaralakshmi697@gmail.com
mailto:rhymend@annauniv.edu

Journal of Theoretical and Applied Information Technology
 10th August 2013. Vol. 54 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

21

more time and needs more resources per hosts than
using multicasting to re-key the group.

In this paper we study the problem of key man-
agement for multimedia multicast services. We
begin in Section2 by introducing the concepts of
key management in multicast communication and
present a gray code[1] based group key manage-
ment scheme that will be used later in the paper in
Section 3. In Section 4, we introduce a HCF based
key distribution protocol for multicast key man-
agement to minimize the computation overhead,
storage complexity and the number of rekeying
operations. Section 5 analyses the performance of
the proposed scheme, followed by the conclusion in
Section 6.

2. KEY MANAGEMENT IN MULTICAST
COMMUNICATION

During the design of a multicast application,
there are several issues that should be kept in con-
sideration when choosing a key distribution
scheme.

The problem of designing efficient key updating
schemes [1-10] has seen recent attention in the lit-
erature. One approach for achieving scalability is to
apply hierarchical subgroups and map the KEKs to
a logical hierarchy. The hierarchy-based approach
to group rekeying was originally presented by
Wallner et al. [3], and in-dependently by Wong et
al. [18]. Due to the hierarchy structure, the commu-
nication overhead is O(log n), while the storage
for the center is O(n) and for the receiver is
O(log n). We note that the O notation is presented
to indicate that the constant factors are implementa-
tion dependent.

In most of the existing Key Management
schemes, different types of group users obtain a
new distributed multicast Group key which is used
for encrypting and decrypting multimedia data for
every session update. Among the various works on
key distribution, Maximum Distance Separable
(MDS) [12] method instead of using encryption
algorithms focuses on error control coding tech-
niques for distributing re-keying information. In
MDS, the key is obtained based on the use of Eras-
ure decoding functions [13] to compute session
keys by the GC/group members. Moreover, the
Group center generates n message symbols by send-
ing the code words into an Erasure decoding func-
tion. Out of the n message symbols, the first mes-
sage symbol is considered as a session key and the
group members are not provided with this particular
key alone by the GC. Group members are given the
(n − 1) message symbols and they compute a code

word for each of them. Each of the group members
uses this code word and the remaining (n − 1) mes-
sage symbols to compute the session key. The main
limitation of this scheme is that it increases both
computation and storage complexity. The computa-
tional complexity is obtained by formulating lr + (n
− 1)m where lr is the size of r bit random number
used in the scheme and m is the number of message
symbols to be sent from the group center to group
members. If lr = m = l, computation complexity is
nl. The storage complexity is given by (log2 L + t)
bits for each member. L is number of levels of the
Key tree. Hence Group Center has to store n (log2
L + t) bits.

Secure communication using the extended Eu-
clidean algorithm [14] was proposed for centralized
secure multicast environments. The main advantage
of this algorithm is that only one message is gener-
ated per rekeying operation and only one key is
stored in each user’s memory. In this algorithm, two
values (δ, L) are computed in the intermediate steps
of GC. The main limitation of the Euclidean algo-
rithm is that the two computed values must be rela-
tively prime. If this is not the case, then the algo-
rithm fails in which the user cannot recover the
secret information sent by GC. Also, the time taken
for defining a new multiplicative group is high,
whenever a new member joins or depart the mul-
ticast operation. This approach is only suitable for a
star based key management scheme.

The Data Embedding Scheme proposed in [15] is
used to transmit a rekeying message by embedding
the rekeying information in multimedia data. In this
scheme, the computation complexity is O(log n).
The storage complexity also increases to the value
of O(n) for the server machine and O(log n) for
group members. This technique is used to update
and maintain keys in a secure multimedia multicast
via a media dependent channel. One of the limita-
tions of this scheme is that a new key called an
embedding key has to be provided to the group
members in addition to the original keys, which
causes a lot of overheads. A level homogeneous key
tree [16] based key management scheme was pro-
posed in [17] to reduce computation and storage
complexity. A Key management scheme using key
graphs has been proposed by Wong Gouda [18]
which consists of the creation of secure group and
basic key management graphs scheme using a Star
and Tree based method. The limitation of this ap-
proach is that scalability is not achieved. A new
group keying method that uses one-way functions
[19] to compute a tree of keys, called the One-way
Function Tree (OFT) algorithm has been proposed

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 10th August 2013. Vol. 54 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

22

by David and Alan. In this method, the keys are
computed up the tree, from the departs to the root.
This approach reduces re-keying broadcasts to only
about log n keys. The major limitation of this ap-
proach is that it consumes more space. However,
the time complexity is more important than space
complexity. The storage complexity of GC is 2nK
and group member is LK , where K is the key size
in bits. In our work, we focused on reduction of
computation of both time complexity as well as
storage complexity.

Wade Trappe and Jie Song proposed a Paramet-
ric One Way Function (POWF) [20] based binary
tree Key Management. Each node in the tree is
assigned a Key Encrypting Key (KEK) and each
user is assigned to a leaf and given the IKs of the
nodes from the leaf to the root node in addition to
the session key. These keys must be updated and
distributed using top down or bottom up approach.
The storage complexity is given by (logτn)+2 keys
for a group center. The amount of storage needed
bythe individual user is given as (τL+1−1) / τ−1
keys. Computation time is represented in terms of
amount of multiplication required. The amount of
multiplication needed to update the KEKs using the
bottom up approach is τ logτ n−1. Multiplication
needed to update the KEKs using the top down
approach is (τ−1) logτ n(logτ n+1) / 2 . This com-
plexity can be reduced substantially if the numbers
of multiplications are reduced. In P. Vijayakumar
et al.,[21] proposed Centralized key distribution
protocol using greatest common divisor method
using a cluster based Key Management Scheme that
reduces computation time by reducing the number
of multiplications required in the existing approach-
es. They use the Karatsuba fast multiplication algo-
rithm to optimize the multiplication operations used
in the key distribution protocol in the GC.

Therefore, in this paper we propose a new Group
hierarchy based Key Management Scheme using
Gray Code [1] that reduces computation time as
well as storage by reducing the number of multipli-
cations required in the existing approaches, and also
refreshes the session key for secure communication.
We also use the fast fourier transform polynomial
integer multiplication algorithm which yields better
results than the previous scheme to optimize the
multiplication operations used in the key distribu-
tion protocol in the GC. The proposed method also
reduces the amount of information that needs to be
stored for updating the keys when there is a change
in the group membership. Our proposed algorithm
is suitable for single or batch join/depart operation
which is achieved by refreshing the session key.

3. DESIGN OF GROUP HIERARCHY
BASED MULTICAST COMMUNICATION

Scalability can be achieved in this proposed key
distribution approach by applying this scheme in a
Group hierarchy based key management scheme to
update the GK and SGK. Fig. 1 shows a Group
hierarchy in which the root is the Group key (kg),
leaf nodes are individual keys, and the intermediate
level is Sub Group Key (SGK-kε). The hierarchy
shown in Fig. 1 consists of only three levels. The
lowest level (0th level) is the group key. The next
higher level (1st level) contains the shared secret
keys, kεi, where εi = 1, 2, . . . , n. The last level (2nd
level) is the user’s level, where M number of users
are grouped into k Groups, Hk. To issue new keys
upon a user event, the main task is to identify the
keys that need to be changed. So, In our scheme
each member of the group is associated with a
unique user ID (UID) which is a Gray code of string
length n. Gray Code is a form of binary that uses a
different method of incrementing from one number
to the next.

Figure 1. Group Hierarchy Based Key Management Scheme Using Gray Code

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 10th August 2013. Vol. 54 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

23

Figure 2. Time Intervals

Table 1. Decimal, Natural Binary And Gray Code Repre-
sentation

Decimal Natural Binary Gray Code
0 0000 0000
1 0001 0001
2 0010 0011
3 0011 0010
4 0100 0110
5 0101 0111
6 0110 0101
7 0111 0100
8 1000 1100
9 1001 1101

10 1010 1111
11 1011 1110
12 1100 1010
13 1101 1011
14 1110 1001
15 1111 1000

Table 1 depicts the Decimal, Natural Binary and
Gray Code Representation. With Gray Code, only
one bit changes state from one position to another.
The length of the UID depends upon the size of the
multicast group. Each Groups is attached to the
upper level (1st level) node and in turn with the
group key node. When the number of joining users
exceeds the Groups size, a new node is created from
the root to form the second Groups . The number of
Groups s formed is based on the Groups size M
which is fixed by GC and the number of joining
users. If the Group hierarchy based key manage-
ment consists of N number of users M1, M2, . . . ,
MN and each Groups size is of size M then there
will be ⌈ N/M⌉ Groups s. In this Group hierarchy
based key management scheme, updating is neces-
sary for each rekeying operation used for member
depart and member join operations.

Due to the dynamic nature of the group, and the
possible expiration of keying material, it is neces-
sary to update both the SK and KEKs using rekey-
ing messages. The Four operations involved are
Key Refreshing, GC Initialization, key updating
when a new user joins the service, and key updating
when a user departs the service. In the discussions
that follow, we use an integer-valued time index to
denote the time intervals during which fundamental
operations occur, and assume that there is a system-

level mechanism that flags or synchronizes the
users to the same time frame. We shall always use
the time index to denote the interval for which the
new key information will become valid. Time inter-
val will correspond to the time interval during
which the new key information is being transmitted.
Further, time interval corresponds to the interval of
time during which a new member contacts the ser-
vice provider wishing to join, or a current member
announces to the service provider his desire to de-
part the service. We have depicted these cases in
Fig. 2. Observe that it is not necessary that the time
intervals have the same duration.

3.1 Key Refreshing

Refreshing the session key is important in secure
communication. As a session key is used, more
information is released to an adversary, which in-
creases the chance that a SK will be compromised.
Therefore, periodic renewal of the session key is
required in order to maintain a desired level of con-
tent protection. By renewing keying material in a
secure manner, the effects of a session key com-
promise may be localized to a short period of data.

The crypto-period associated with a session key
is governed by many application-specific considera-
tions. First, the value of the data should be exam-
ined and the allowable amount of unprotected
(compromised) data should be addressed.

Since the amount of data encrypted using
KEKs is usually much smaller than the amount
of data encrypted by a session key, it is not nec-
essary to refresh KEKs. Therefore, KEKs from the
previous time interval (t-1) carry over to the next
time interval. In order to update the session key
kg(t-1) to a new session key kg(t), the group center
generates kg(t) and encrypts it using the KEK kε(t).
This produces a rekeying message αg(t)= E(kε(t),
kg(t)), where we use E(k,m) to denote the en-
cryption of m using the key K. The message αg(t)is
sent to the users.

3.2 GC Initialization
Initially, the GC selects a large prime number p

and q, where p > q and q ≤ p/4. The value p helps in

defining a multiplicative group and q is used to
fix a threshold value δ, where δ = a + q. The value a

is a random element from the group and hence

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 10th August 2013. Vol. 54 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

24

when the ‘a’ value increases, the value of δ also
increases.

3.3 Member Join
In multimedia services, such as pay-per-view and

video conferences, the group membership will be
dynamic. Members may want to join and depart the
service. It is important to be able to add new mem-
bers to any group in a manner that does not allow
new members to have access to previous data. In a
pay-per-view system, this amounts to ensuring that
members can only watch what they pay for, while
in a corporate video conference there might be sen-
sitive material that is not appropriate for new mem-
bers to know.

3.3.1 Key Updating process steps at Group Cen-
ter Side

1 Initially, GC selects a random element g from

2 GC now computes the shared secret key kε =
kg

a mod p.

3 The GC calculates L=

4 The GC computes a HCF value of (δ, L) by
using the extended Euclidian algorithm de-
scribed in [27] from which it finds x, y, b such
that x× δ + y × L= b.

5 The GC multicasts kg, x, p, q and d to the
group members.

3.3.2 Key Updating process steps at User Side

1 Computes x1 using the relation x mod ki = x1.

2 Computes δ using x1−1 mod ki = δ.

3 Performs the following operation to find the
shared secret key.

kg
b×δ/ kg

q mod p = kg (b×δ)−q mod p = kε .

The kε obtained in this way must be equal to the
kε computed in Step 2 of GC.

Upon receiving all the above information (kg, u,
p, q, b) from the GC, an authorized user ui of the
current group executes the following steps to obtain
the new group key kg .

Suppose that, during time t-2 interval, a new user
contacts the service desiring to become a group
member. If there were n-1 users at time t-2 then
there will be n users at time t.

During time interval t-1, the rekeying infor-
mation must be distributed to the n-1 current mem-
bers. Observe that we must renew both the SK and

KEK in order to prevent the new user for accessing
previous rekeying messages and to prevent access
to prior content.

3.4 Member Departure
The protocol shown in figure 3, depicts the com-

putation of encryption keys for member departure
using gray code.

Fig.3.: Protocol For Computation Of Encryption Keys
For Member Departure Using Gray Code.

Let B1 = Most Significant Bit; B4 = Least Sig-
nificant Bit S = Set contains remaining group
members
C = 0 (Count for no. of sub group with no
members leaving

Step 1: /* No member leaving from that sub
group */
Do 1 to no. of subgroups
If no. of same occurrence at B1B2 = No. of
members in that sub group
S = S – Group members from the sub group C
= C + 1
End if
End Do

Step 2: /* No member leaving in a particular
position in remaining subgroup */
Do 1 to no. of subgroups – C
If no. of occurrence of B3B4 = no. of subgroup
– C
S = S – Group members from the sub group
End if
End Do

Step 3: /* Users at same position in different
sub group */
Do 1 to no. of subgroups – C
If no. of occurrence of B3B4 != 1
S = S – Group members from the sub group
End if
End Do

Step 4: /* Users at different position in different
sub group */
Do 1 to no. of subgroups – C
If no. of occurrence of B1B2 = 1
S = S – Group members from the sub group
End if
End Do
End

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 10th August 2013. Vol. 54 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

25

Let us consider the case when user un departs the
group at timeframe t-1. Since user un knows kg(t-1)
and kε(t-1) these keys must be renewed. First kε is
renewed. Next, the session key kg(t) is updated.
The GC forms a new SKkg(t) and encrypts using
the new KEKkε(t) to form αg(t)= E(kε(t), kg(t)).
This message is then sent to the users.

For example, if a member M7 with user ID
(0101) in Groups 2 from the Fig. 1 departs the
group, then the keys on the path from his leaf node
to the hierarchy’s root node must be changed.

Hence, only the keys kε and kg will become in-
valid. Therefore, these two keys must be updated.
In order to update these two keys, two approaches
are used in the member’s departure operation. In the
first approach, updating of the sub group key,
kε2for the Groups 2 is performed as given in Algo-
rithm 1. When a member M7user ID (0101) departs
from the service, GC computes the protocol given
in Fig.3, step 3 Users at same position in different
sub group L(k5,8) for the existing users using their
own secret keys which are kept in GC. When com-
puting L(k5,8) for the members M5 user ID (0110),
M6 user ID (0111), and M8user ID (0100) the GC
uses k3, k2, and k0 which are the secret keys for the
remaining members of all Groups s . Since the se-
cret key k1 is known to the member M7with user
ID (0101) who had left from the service. GC is not
using the secret key k1 when it computes the func-
tion L(k5,8) for the members M5 user ID (0110),
M6 user ID (0111), and M8 user ID (0100).

 However, the computation time of L(k5,8) can be
reduced by dividing the kε by k1as shown in Step 1
of Algorithm 1 rather than multiplying all users
secret key once again. Next, the GC computes δ,
HCF value of (δ, L(k5,8)) and generates a multicast
message as indicated in Step 4 of Algorithm 1 and
sends the message to all the existing members of
the Groups in order to update the new SGK kε`.

Algorithm 1.

1 L(k5,8) = L(k5,8) / k1

2 GC computers the new kg, q and computers δ
and kε` values.

3 Now GC computes HCF value of (δ, L(k5,8))
and finds out x, y, b values.

4 Finally GC multicasts kg, x, p, q, and b to the
existing group members. Group members M5
user ID (0110), M6 user ID (0111), and M8 us-
er ID (0100) executes the following steps to
obtain the new sub group key kε2.

5 Compute x mod ki = x1.

6 Compute x1−1 mod ki = µ.

7 Perform the following operation to find the
shared secret key.

8 kg
b×δ/ kg

q mod p = kg (b×δ)−q mod p = kε2 .

After updating the above SGK successfully, GC
has to use the second approach in order to update
the group key kg using a different procedure as
explained below. The new group key kg is used to
encrypt the multimedia data. For updating the GK,

GC generates a new group key from , with a
condition that the new group key kg1<kεi. If this
condition is not satisfied then append a value 1 in
front [1] of kεi in order to make kεi a greater value
than kg1. Every time a new Groups is created its
corresponding SGK is multiplied with all other
SGKs and the result is stored in a temporary varia-
ble X. Therefore whenever a new Groups is creat-
ed, only the new kεi of the newly created Groups is
multiplied with the value X which is stored in GC.
Hence only one multiplication is needed for updat-
ing the GK. Similarly when an existing Groups is
completely deleted X is divided by the correspond-
ing ε i value and hence only one division is neces-
sary for updating the GK. In order to understand the
key updation when a single member departs a
group, consider an example using Fig. 1 where only
one member M7with user ID (0101) is allowed to
depart the Groups (Groups 2). In this case, ε2 must
be updated and let the updated ε2 be represented as
ε21. In order to update ε2, the GC must divide X by
ε2 first and then the result must be multiplied with
the newly computed ε21 and the final result is
stored in the variable X. This X is added with the
newly generated group key kg1 to obtain kε and the
rekeying message is formed by using the equation
kε = kg1 + X. In this way, member depart opera-
tions are handled effectively by reducing the num-
ber of multiplications/divisions.

The resultant value kε is broadcast to the remain-
ing members of the group. The members of the
group can recover the updated group key with the
help of εi using the relation,

kε mod (kεi) = kg1 .

The key strength of our algorithm is that the
scalability increases sufficiently. The number of
keys to be used by the GC and group members are
reduced in comparison to the other existing ap-
proaches [1, 2, 15, 4, 22, 6]. Each user has to store
3 keys, since the hierarchy described in the pro-
posed algorithm has 3 levels. If the numbers of
Groups s are c and each Groups consists of cn us-
ers, then the storage complexity of GC is (cn × c) +

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 10th August 2013. Vol. 54 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

26

tc + 1, where tc is used to denote the total number
of L (ki,j) and kεi used for every Groups that are
stored in GC and 1 represents group key storage
area.

4. SECURITY ANALYSIS

To ensure multicast or broadcast security, group
key management should satisfy four security prop-
erties

1. Non-group confidentiality,

2. Collusion freedom,

3. Future confidentiality (forward secrecy), and

4. Past confidentiality (back secrecy).

This Group hierarchy (proposed scheme) satisfies
the above said properties.

5. PERFORMANCE EVALUATION

Assumption Let L= be a multiplication
function which is used for member join operation,
where ki = secret is the key of a user. Now, ‘σi’ is
the size of the ki, where i = 1, 2, 3, . . . , n (n = size
of the group).

Algorithm. Consider a scenario, where σ1 = 2
and σ2 = 2. A set of ‘σi’ are multiplied to form L as
shown in Step 3 in Section 3.3 using the traditional
multiplication operation present in most of the ex-
isting key distribution approaches [4, 13]. In order
to multiply σ1 and σ2 using traditional multiplica-
tion operation, the algorithm takes 4 multiplication
operations. In general, when two ‘σ ’ digit numbers
are to be multiplied, it takes (σ2) multiplication
operations in order to obtain the solution.

For optimizing the number of multiplication op-
erations used for computing there exist faster multi-
plication algorithms, based on the fast Fourier trans-
form, a divide and conquer approach [11,24–26] is
used in our proposed key distribution algorithm.
The idea is : multiplying two numbers represented
as digit strings is virtually the same as computing
the convolution of those two digit strings. Instead of
computing a convolution, one can instead first
compute the discrete Fourier transforms, multiply
them entry by entry, and then compute the inverse
Fourier transform of the result. Based on this idea,
the number of multiplication operations to be per-
formed in total to obtain the solution for the ‘σ ’
digit number will be O σ (n log (n)).

Therefore it is faster than the traditional multipli-
cation, which requires σ2 single-digit products and
the complexity is O σ log24 . The fast Fourier trans-
form multiplication approach works well when the

value of σ > 4000 digits. However, if the number of
digits of σ < 16, this algorithm shall not show a
significant difference. In order to optimize the use
of the fast Fourier transform multiplication ap-
proach, the group size in our proposed key distribu-
tion algorithm can have 16-digits, 32-digits, 64-
digits, 128-digits, etc. In the proposed algorithm
given in Section 3.4, we have analyzed and tested
the algorithm for a group size p as 16-digit, 32-digit
and 64-digit prime numbers. The key values used in
our algorithm are 16 and 32 digit numbers.

Theorem 1. The number of multiplications in the
computation of L is in the order of O(ω log (ω))
when fast fourier transform divide and conquer
multiplication is employed for the key computation
process where the key size is a n digit number.

Proof :Two integers A and B, of length n represent-
ed as a polynomial in base x. It is important to
stress at this stage that the length n has to be a pow-
er of two (n is even). In the implementation there
will be some processing to ensure that n is always
even.

A(x) = A0+ A1x + A2x2 + + An-1
xn-1

B(x) = B0+ B1x + B2x2 + + Bn-1 xn-1

Split A, and B in the following manner:

A0= a0+ a2 + + an-2 and A1 = a1 +
a3 + + an-1

B0= b0 + b2 + + bn-2 and B1 = b1 +
b3+ + bn-1

Both halves are equal to ω/2 as the length n is a
power of two. However, one half possesses the even
positions and the other the odd positions. Given a
sequence A = (a0, a2, … , aω-2), compute its Fouri-
er transform according to the formulae

Choosing for ωk the complex roots of unity

(Note: i is equal to -1)

This formulae is used to compute the complex

roots of unity needed to evaluate thenumber at 2n
distinct points.

This would give us:

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 10th August 2013. Vol. 54 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

27

From above we get the sequence F2n(B) = (d0,

d1, …, d2n-1),

The two sequences are multiplied together and
produce the third sequence E

E = (e0, e1, …, e2n-1), where ek = ak * bk

On sequence E, we use the inverse Fourier Trans-
form. This produces the sequence G

Finally, dividing each of the resulting integers by

2n will give us the coefficients that construct the
product of the multiplication.

Time Complexity of FFT = T(ω)

T(ω) = 2T(ω/2) +O(ω) = O(ωlog ω).

In order to determine whether the Fourier al-
gorithm performs close to its theoretical expecta-
tion or not, the Fourier algorithm is run 10,000
times on multiplicands of length of up to the
eighth power of two (256) and the results are
shown in Table3. Then, the average time for each
power of two is divided by n log n (where n is the
length of the multiplicands). If this ratio (time /
n log n) gets smaller and smaller when increas-
ing the length of the multiplicands then the
Fourier implantation is said to be behaving close
to our theoretical efficiency.

Table 1.Performance of FFT

Integer
Length

Operation
Time (ms) FFT n log n

Big O ratio or
(time / n log n)

2 0.007 2 0.003500
4 0.013 8 0.001625
8 0.024 24 0.001000

16 0.047 64 0.000734
32 0.092 160 0.000575
64 0.191 384 0.000497

128 0.398 896 0.000444
256 0.841 2048 0.000410

Fig.4.Big O ratio for FFT

These results in Figure 4 show that the ‘Big O
ratio’ starts of at 0.00350 and gradually de-
creases to 0.000410 at integers of length 256. It
is predicted to keep decreasing for greater pow-
ers of two than 256. It will eventually reach a
constant c0. Therefore, the implementation of
this FFT algorithm for our scenario in order to
reduce the number of multiplications is considered
successful as it is so close to our theoretical
expectation. Most of the applications like PAY-TV,
Video-on-demand, sporting events are fully based
on the idea of reducing the computation time where
our proposed protocol will be more suitable.

6. CONCLUSION

A comparison between the proposed scheme and
the previous schemes were undertaken while
providing secure multimedia multicast through
effective key management techniques. For this
purpose a new Group hierarchy-based key distribu-
tion protocol (key value = ‘n’ bit numbers) has been
proposed in this paper. The proposed algorithm has
two dimensional focuses—minimal computation
complexity and minimal storage complexity. The
comparison shows that the proposed scheme using
the reflected code called Gray code [1] achieves
lower storage requirements at both the group con-
troller and the group members.

Gray Code is the most popular Absolute encoder
output type because its use prevents certain data
errors which can occur with Natural Binary during
state changes. Therefore Gray Code is more secure
than binary in encoder applications. On the other
hand, with regard to the storage complexity, the
amounts of keys stored by GC and group members
are reduced substantially by employing the Group
hierarchy approach. Further extensions to this work
are to devise techniques for reducing the communi-
cation complexity which is the number of keys to
be sent from GC to the group members’ area in
order to recover the updated keying information and
to reduce rekeying cost for batch join and batch

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 10th August 2013. Vol. 54 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

28

depart operations. The conceptual idea has been
discussed in this paper. Implementation is being
carried out.

REFERENCES

 [1] R. Varalakshmi, Dr.V.RhymendUthariaraj, “A

New Secure Multicast Group Key Management
Using Gray Code”, Paper No: 978-1-4577-
0590-8/11, IEEE-International Conference on
Recent Trends in Information Technology,
ICRTIT 2011,MIT, Anna University, Chennai.
June 3-5, 2011.

 [2] I. Chang, R.Engel, D.Kandlur, D.Pendarakis and
D.Daha. “Key management for secure internet
multicast using Boolean function minimization
technique”. ACM SIGCOMM’99, March 1999.

 [3] Debby M. Wallner, Eric J. Harder, Ryan C.
Agee, “Key Management for Multicast: Issues
and Architectures”, Informational RFC, draft-
Wallnerkey-arch-ootxt, July 1997.

 [4] Mingyan Li, R. Poovendran, A. David McGrew,
Minimizing center key storage in hybrid one-
way function based group key management
with communication constraints, Information
Processing Letters (2004) 191–198. Elsevier.

 [5] R. Poovendran, J.S. Baras, An information-
theoretic approach for design and analysis of
rooted-tree-based multicast key management
schemes, IEEE Transactions on Information
Theory 47 (2001) 2824–2834.

 [6] Sandeep S. Kulkarni, BezawadaBruhadeshwar,
Key-update distribution in secure group com-
munication, Computer Communications 33 (6)
(2010) 689–705. Elsevier.

 [7] BezawadaBruhadeshwar, Kishore Kothapalli,
MaddiSreeDeepya, Reducing the cost of session
key establishment, ARES (2009) 369–373.

 [8] BezawadaBruhadeshwar, Kishore Kothapalli, M.
Poornima, M. Divya, Routing protocol security
using symmetric key based techniques, ARES
(2009) 193–200.

 [9] Shiuh-Jeng Wang, Yuh-Ren Tsai, Chien-Chih
Shen, Pin-You Chen, Hierarchical key deriva-
tion scheme for group-oriented communication
systems, International Journal of Information
Technology, Communications and Convergence
1 (1) (2010) 66–76.

 [10] Mohsen Imani, Mahdi Taheri, M. Naderi,
Security enhanced routing protocol for ad hoc
networks, Journal of Convergence 1 (1) (2010)
43–48.

 [11] J. M. Pollard. The Fast Fourier Transform in a
Finite Field. Mathematics of Computation,
25(114):365-374, April 1971.

 [12] Mario Blaum, JehoshuaBruck, Alexander
Vardy, MDS Array codes with independent par-
ity symbols, IEEE Transactions on Information
Theory 42 (2) (1996) 529–542.

 [13] LihaoXu, Cheng Huang, Computation-efficient
multicast key distribution, IEEE Transactions
on Parallel and Distributed Systems 19 (5)
(2008) 1–10.

 [14] J.A.M. Naranjo, J.A. Lopez-Ramos2, L.G.
Casado, Applications of the extended Euclidean
algorithm to privacy and secure communica-
tions, in: Proceedings of the 10th International
Conference on Computational and Mathemati-
cal Methods in Science and Engineering,
CMMSE, 2010.

 [15] Wade Trappe, Jie Song, RadhaPoovendran,
K.J. Ray Liu, Key distribution for secure mul-
timedia multicasts via data embedding, in: IEEE
International Conference on Acoustics, Speech,
and Signal Processing, vol. 3, 2001, pp. 1449–
1452.

 [16] J.S. Lee, J.H. Son, Y.H. Park, S.W. Seo, Opti-
mal level-homogeneous tree structure for logi-
cal key hierarchy, in: Proc. of IEEE Conference
on Communication System Software and Mid-
dleware Workshop, COMSWARE, 2008.

 [17] Dong-Hyun Je, Jun-Sik Lee, Yongsuk Park,
Seung-Woo Seo, Computation-and-storage-
efficient key tree management protocol for se-
cure multicast communications, Computer
Communications 33 (6) (2010) 136–148.

 Elsevier.
 [18] C. Wong, M. Gouda, S. Lam, Secure group

communications using key graphs, IEEE/ACM
Transactions on Networking 8 (2002) 16–30.

 [19] A. David McGrew, Alan T. Sherman, Key
establishment in large dynamic groups using
one-way function trees, IEEE Transactions on
Software Engineering 29 (5) (2003) 444–458.

 [20] Wade Trappe, Jie Song, RadhaPoovendran,
K.J. Ray Liu, Key management and distribution
for secure multimedia multicast, IEEE Transac-
tions on Multimedia 5 (4) (2003) 544–557.

 [21] P. Vijayakumar et al,Centralized key distribu-
tion protocol using the greatest common divisor
method, Computers and Mathematics with Ap-
plications (2012).

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 10th August 2013. Vol. 54 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

29

 [22] Ng W. Hock Desmond, M. Howarth, Z. Sun, H.
Cruickshank, Dynamic balanced key tree man-
agement for secure multicast communications,
IEEE Transactions on Computers 56 (5) (2007)
590–605.

 [23] Wade Trappe, Lawrence C. Washington, Intro-
duction to Cryptography with Coding Theory,
second ed., Pearson Education, 2007, pp. 66–
70.

 [24] M. Scott. An Implementation of the Fast-
Fourier Multiplication Algorithm. Technical
Rep ort CA-0790,Dublin City University, 1990.

 [25] Tom St Denis, BigNum Math Implementing
Cryptographic Multiple Precision Arithmetic,
SYNGRESS Publishing, 2003.

 [26] Richard Cz. Singleton, On computing the fast
fourier transform, Communications of the AGM
10 (1967), 647-654.

http://www.jatit.org/

	1R. VARALAKSHMI, 2Dr. V. RHYMEND UTHARIARAJ
	Table 1. Decimal, Natural Binary And Gray Code Representation
	3.1 Key Refreshing
	3.2 GC Initialization
	3.3 Member Join
	3.4 Member Departure

	Table 1.Performance of FFT
	REFERENCES

