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ABSTRACT 
 

In this paper, an application of a novel chemical reaction optimization (CRO) algorithm for training higher 
order neural networks (HONNs), especially the Pi-Sigma Network (PSN) has been presented. In contrast to 
basic CRO algorithms, the proposed CRO algorithm used to train HONN possesses two modifications. The 
reactant size (population size) remains fixed throughout all the iteration, which makes it easier to 
implement; and adaptive chemical reactions followed by a strictly greedy reversible reaction have been 
used which assist to reach the global minima in less number of iterations. The performance of proposed 
algorithm for HONN training is evaluated through a well-known neural network training benchmark i.e. to 
classify the parity-p problems. The results obtained from the proposed algorithm to train HONN have been 
compared with results from the following algorithms: basic CRO algorithm and the two most popular 
variants of differential evolution algorithm (DE/rand/1/bin and DE/best/1/bin). It is observed that the 
application of the proposed CRO algorithm to HONN training (CRO-HONNT) performs statistically better 
than that of other algorithms. 
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1. INTRODUCTION  

Conventionally artificial neural network (ANN) 
models have been used predominantly to perform 
pattern matching, pattern recognition and 
mathematical function approximation. Compared to 
traditional ANNs, higher order neural networks 
(HONNs) have several unique characteristics, 
including: 1) stronger approximation property; 2) 
faster convergence; 3) greater storage capacity; and 
4) higher fault tolerance capability. Thus, HONN 
models have shown superior performance than 
traditional ANNs on forecasting, classification and 
regression problems. 

In this paper the class of HONNs and in 
particular Pi-Sigma Networks (PSNs) has been 
studied. The PSNs were introduced by Shin and 
Ghosh [1]. The PSNs have addressed several 
difficult tasks such as zeroing polynomials [2] and 
polynomial factorization [3] more effectively than 
traditional feed-forward neural networks (FFNNs). 
Moreover, PSN employ less number of weights 
than other HONNs, but still manage to incorporate 
the capability of first order HONN indirectly. The 
efficiency of HONN models depend on the 
algorithm used for its training. The objective of any 

supervised HONN training is to minimize the error 
between the approximation by the HONN and the 
target output. For this the optimal weight set of a 
HONN must be obtained. The optimal weight set of 
a HONN can be obtained by using either gradient 
or evolutionary learning algorithms. The objective 
function of HONN training is going to be a 
multimodal search problem, since it depends on 
number of parameters. Therefore, the gradient 
based training algorithms often suffer from several 
shortcomings, including: 1) easily getting trapped 
to local minima; 2) have slow convergence 
properties; 3) training performance is sensitive to 
initial values of its parameters. Due to these 
disadvantages, research on different optimization 
techniques that are dedicated to HONN training is 
still required. There are many optimization 
techniques such as differential evolution (DE) [4], 
genetic algorithm (GA) [5], particle swarm 
optimization (PSO) [6], ant colony optimization 
(ACO) [7], a bee colony optimization (BCO) [8], 
an evolutionary strategy (ES) [9], quantum inspired 
algorithms (QEA) [10], chemical reaction 
optimization (CRO) [11],[12],[13] etc. can be used 
for HONN training. Chemical reaction optimization 
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(CRO) is a new optimization technique, inspired by 
the nature of chemical reactions. CRO has 
demonstrated excellent performance in solving 
many engineering problems such as the mining 
classification rules [14], quadratic assignment 
problem [11], knapsack problem [15], ANN 
training problem [16] and multimodal continuous 
problems. This paper proposes a novel chemical 
reaction CRO which has better performance than 
basic CRO algorithm [16] and two most popular 
variants of DE algorithm, and is used for training 
the PSN.  

The rest of this paper is organized as follows. 
Section-2 briefly describes the background related 
to architecture and mathematical model of PSN; 
chemical reaction optimization; and differential 
evolution. The proposed training algorithm for PSN 
has been explained in Section-3. Experimental 
results are presented in section-4. And finally 
conclusion and future works are described in 
Section-5.  

2. RELATED WORKS 

2.1 PI-SIGMA NEURAL NETWORK (PSN) 

Pi–Sigma Network (PSN) is a feed forward 
neural network that calculates the product of sum of 
the input components and passes it to a nonlinear 
function. The network architecture of PSN (shown 
in Fig.1) consists of a single hidden layer of 
summing units and an output layer of product units 
(instead of summing). The weights connecting the 
input neurons to the neurons of the hidden layer are 
adapted during the learning process by the training 
algorithm, while those connecting the neurons of 
the hidden layer to the output layer are fixed to one 
and they are not trainable. Such a network topology 
with only one layer of trainable weights drastically 
reduces the training time [1], [17], [18]. Moreover, 
the product units of PSN gives higher order 
capabilities which increase its computational 
power. This is because, the product units enable to 
expand the input space into higher dimensional 
space which leads to an easy separation of 
nonlinearly separable classes where linear 
separability is possible or a reduction in the 
dimension of the nonlinearity is achieved. Thus, 
PSN provides nonlinear decision boundaries 
offering a better classification capability than the 
linear neuron (Guler and Sahin, 1994). In addition, 
Shin and Ghosh (1991) argued that PSNs not only 
offers better classification over a broad class of 
problems but also requires less memory and need at 
least two orders of magnitude less number of 
computations as compared to MLP for similar 
performance level. 

Consider a PSN with NOIN (number of input 
neurons), NOHN (number of hidden neurons) and 
one output neuron. The number of hidden neurons 
in the hidden layer defines the order of a PSN. For 
a NOHNth order PSN the number of trainable 
weights is NOIN × NOHN considering each 
summing unit is associated with NOIN weights. 
The output of the PSN is computed by making 
product of the output of NOHN hidden units and 
passing it to a nonlinear function, which is defined 
as follows: 

)(
1
∏
=

=
NOHN

j
jhY σ  

Where σ  is a nonlinear transfer function and hj is 
the output of jth hidden unit which is computed by 
making sum of the products of each input (xi) with 
the corresponding weight (wij) between ith input 
and jth hidden unit. The output of hidden unit is 
computed as follows: 
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Figure 1: Architecture of a Typical Pi-Sigma Network 
 
2.2 CHEMICAL REACTION OPTIMIZATION 

Chemical reaction optimization (CRO) algorithm 
was proposed recently by Lam [11], is a 
population-based metaheuristic optimization 
technique inspired by the nature of chemical 
reactions. It does not attempt to capture every detail 
of chemical reaction rather loosely couples 
chemical reaction with optimization. A chemical 
reaction is a process that transforms one set of 
chemical substances (reactants/molecule) to other. 
Each molecule consists of some atoms and is 
associated with enthalpy (minimization problem) 
and/or entropy (maximization problem).During 
chemical reaction the intra-molecular structure of a 
reactant changes. Most of the reactions are 
reversible in nature i.e. they can occur in either 
direction to achieve better enthalpy/entropy. Basing 
on the number of reactants take part in a reaction, 
the reaction may be: monomolecular (one reactant 
takes part in reaction) or bimolecular (two reactants 
take part in chemical reaction) and so on. The 
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monomolecular reactions assist in intensification 
while the bimolecular reactions give the effect of 
diversification. The CRO can be thought of as a 
new evolutionary technique. The reactants or 
molecules are similar to chromosomes; the atoms 
are similar to genes; enthalpy/entropy is equivalent 
to fitness function; different reactions are similar to 
crossover and mutation strategies; and reversible 
reaction is equivalent to selection procedure of any 
evolutionary algorithm. The major difference 
between CRO and other evolutionary techniques is 
that, the population size (that is the number of 
reactants) may vary from one generation to other 
where as in evolutionary techniques the population 
size remains fixed. To have an elaborated 
description regarding CRO algorithm, interested 
readers may go through the tutorial of CRO [19].  
Every chemical reaction optimization algorithm 
consists of following steps: 
Step 1: Problem and algorithm parameter 
initialization 
Step 2: Setting initial reactants (chromosomes) and 
evaluation of entropy/enthalpy (fitness function) 
Step 3: Applying Chemical reactions (equivalent to 
mutation and crossover strategies) 
Step 4: Reactants update (Equivalent to Selection) 
Step 5: Termination criteria check if satisfied go to 
step-6 otherwise go to step-3 
Step 6: Use the reactant having best enthalpy (for 
minimization)/entropy (for maximization) as the 
solution. 
 
2.3 DIFFERENTIAL EVOLUTION 

The differential evolution (DE) algorithm is a 
simple and efficient stochastic direct search method 
for global optimization of multimodal function over 
a continuous space, was introduced several years 
ago (1997) [4]. Since then it has been upgraded 
intensively in recent years [20].Compared to most 
other EAs, DE is much more simple and 
straightforward to implement. Although particle 
swarm optimization (PSO) is also very easy to 
code, the performance of DE and its variants 
outperforms the PSO variants over a wide variety 
of problems as has been indicated by studies like 
[22], [23] and the CEC competition series. Hence, 
for comparative performance analysis of the 
proposed training algorithm, the two most popular 
variants of DE i.e. DE/best/1/bin and DE/rand/1/bin 
have been used. The conventions used above is 
DE/a/b/c, where ‘DE’ stands for ‘differential 
evolution’, ‘a’ represents the base vector to be 
perturbed, ‘b’ represents number of difference 
vectors used for perturbation of ‘a’ and c represents 
the type of crossover used (bin: binary, exp: 

exponential). Interested reader may go through [4], 
[20] to have a detail description regarding DE 
algorithm and its variants.  

 
3. CRO-HONNT METHOD 
 
Algorithm 1 (CRO-HONNT) 
Set the iteration-counter i=0 
/*Randomly Initialize the ReacNum of Reactants 
from a uniform distribution [U;L]: Pi={R1

i, R2
i , 

R3
i…., RReacNum

i}, with Rj
i ={ Wj,1

i,…….,Wj,D
i} 

for j=1,2,3..... ReacNum, D=length of each 
Reactant (NOIN×NOHN), Wj,k

i=kth atom of jth  
reactant in ith iteration representing a weight of 
PSN.   
for j=1 to ReacNum 
       Calculate the enthalpy e(Rj)  
end of for 
While (termination criteria is not satisfied) do    
    begin 
    for j=1 to ReacNum 
       // perform all reaction over the reactants of Pi 
       Get rand1 randomly in an interval [0, 1] 
       if rand1 ≤ 0.7 
           Get rand2 randomly in an interval [0, 1] 
           if rand2 ≤ 0.5 
                Decomposition (Rj); 
           else 
                Redox1(Rj) 
           end of if 
       else 
           Get rand3 randomly in an interval [0, 1] 
           if  rand3 ≤ 0.33 
                Select the best reactant Rk(Rk≠ Rj) 
                Synthesis (Rj, Rk) 
           else if rand3 ≤ 0.66 
                Select another reactant Rk (Rk≠ Rj)  

  randomly  
                Displacement(Rj, Rk); 
           else 
                Select another reactant Rk(Rk≠ Rj)  

  randomly  
                Redox2(Rj, Rk) 
           end of if           
       end of if 
       Apply strictly greedy Reversible Reaction for  
       increased enthalpy to update reactants 
    end of for 
   Set the iteration counter i=i+1  
end of while 
Use the reactant having best enthalpy as the optimal 
weight set of PSN. 
 

The proposed CRO-HONNT operates in three 
phases: initialization phase, iteration phase and 
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final phase. The initial phase assigns the value to 
initial parameters like termination criterion, length 
of reactants/molecules (i.e. number of atoms in a 
molecule), ReacNum (popsize i.e. total number of 
reactants in a population) and generates initial 
reactants. The iteration phase simulates the reaction 
processes. The reactions may be monomolecular or 
bimolecular. For monomolecular reaction, 
Decomposition and Redox1 reactions are 
considered; and for bimolecular reactions three 
types of reactions such as: Synthesis, Displacement 
and Redox2 are considered. The reaction types are 
chosen considering both intensification and 
diversification. Moreover, a strictly greedy 
reversible reaction is used to update the reactants. 
All the reactions have been elaborated in the 
following subsequent subsections. In final phase the 
reactant having best enthalpy is used as the optimal 
solution (i.e. optimal weight set of a PSN). The 
pseudo-code of the proposed method is explained in 
Algorithm 1. 
 
3.1 Reactant Encoding 

A set of real numbers are used to represent one 
reactant, with each reactant corresponding to a 
weight set of the PSN. The length of a reactant 
depends on the number of input and hidden neurons 
of the PSN (i.e. NOIN×NOHN). 
 
3.2 Enthalpy Of A Reactant 

Each reactant is associated with some enthalpy. 
As each reactant represents a weight set of the PSN, 
the mean square error (MSE) on the train set is 
considered as enthalpy. The lower the value of 
enthalpy the better the reactant is. The MSE is 
defined as follows: 

MSE=
NOP

TYNOP

i ii∑=
−

1
2)(

 
Where Yi and Ti are the output of PSN and target 
for ith train pattern. 
 
3.3 Chemical Reactions 
3.3.1 Monomolecular reactions 

In monomolecular reactions only one reactant 
takes part in the reaction and one product is 
produced by modifying one atom of the reactant. 
These reactions assist in intensification of the 
solution by making local search. In our algorithm 
monomolecular reactions are performed with a 
probability of 70%, there by glorifying the chances 
to obtain a better solution around the current 
solution. Two monomolecular reactions are 
considered such as: Decomposition and Redox1. 

 

 
3.3.1.1 Decomposition Reaction 

In this reaction a randomly selected atom of the 
reactant takes part in the reaction. Consider a 
reactant Rj={Wj,1,Wj,2…….,Wj,D} with Wj,x 
(x∈[1,n]) be an atom of the reactant-j. The pseudo-
code of the decomposition reaction is described in 
Algorithm-2. 
 
Algorithm 2 (Decomposition(Rj)) 
Input: A reactant Rj 
Duplicate Rj to produce R1 
Select an atom x (x∈  [1, n]) randomly. 
W1,x=L+ λ × (U-L) 
Where the rate of reaction (λ) is a random number 
generated randomly from uniform distribution 
between [0, 1].    
Output: A new reactant R1 
 
3.3.1.2 Redox1 Reaction 

It is similar to decomposition reaction except that 
the rate of reaction(λ)used in this algorithm is 
obtained randomly from a Cauchy distribution 
because it diversifies the solution more as 
compared to traditional normal or uniform 
distribution. The pseudo-code is described in 
Algorithm-3. 
 
Algorithm 3 (Redox1(Rj)) 
Input: A reactant Rj 
Duplicate Rj to produce R1 
Select a point x (x∈  [1:n]) randomly 
W1,x =L+ λ × (U-L) 
Where λ= cauchyrnd(0.5,0.1), is a random number 
generated randomly from Cauchy distribution with 
a location parameter 0.5 and scale parameter  0.1. It 
is regenerated if the random number falls out of the 
range [0, 1].  
Output: A new reactant R1   
 
3.3.2 Bimolecular reactions   

Here two reactants Rj={Wj,1,…….,Wj,D} and 
Rk={Wk,1,Wk,2 …….,Wk,D} will take part in the 
reaction. These reactions help in diversification of 
the solution by generating a new solution that is 
significantly different from the current solution. 
These reactions occur with a probability of 30%. 
Below types of bimolecular reactions are used. 
 
3.3.2.1 Synthesis Reaction 

In this reaction one reactant is produced due to 
reaction between a reactant and the best reactant of 
the iteration. Here, instead of traditional normal or 
uniform distribution; the rate of reaction (λ) is 
generated from a Cauchy distribution with a 
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location parameter ‘M’ and scale parameter 0.1. 
The value of ‘M’ is initially set to 0.7 and self 
adaptively determined in the following manner. 
Mt+1=0.8×Mt+0.2×mean (λsuccess) with t= Number 
of times the reaction occurs. 
Where λsuccess memorizes the successful rate of 
reactions that generates reactants with better 
enthalpy than target reactant in the current iteration, 
thereby glorifying the chance of generating better 
reaction rates as more and more this reaction 
occurs. Moreover, the use of best reactant for 
perturbation intensifies the solutions. Hence, both 
intensification and diversification can be achieved. 
 
Algorithm 4 (Synthesis (Rj,Rbest)) 
Input: Two reactants Rj, Rbest 
R1=RJ+ λ× (Rbest-RJ) 
Whereλ =cauchyrnd(Mt,0.1), is a random number 
generated randomly from Cauchy distribution with 
location parameter Mt and scale parameter 0.1. It is 
regenerated if the random number falls put of the 
range [0, 1.5].    
Output: A new reactant R1 
 
3.3.2.2 Displacement Reaction  

Two solutions R1 and R2 are obtained from 
reaction between two reactants Rj and Rk. This 
reaction is adopted from Bilal altas [14]. The 
pseudo-code of this reaction is explained in 
Algorithm 5. 
Algorithm 5 (Displacement (Rj, Rk)) 
Input: Two reactants Rj, Rk 
R1=λt×Rj+λt × (1- Rk)  
R2=λt×Rk+λt × (1-Rj) 
Where λt is initialized to a random number [0,1]and 
is updated in the following manner every time this 
reaction reoccurs (t=number of time the reaction 
occurs). 
λt+1=2.3(λt)2sin(л λt) 
Output: Two reactants R1 and R2 
 
3.3.2.3 Redox2 Reaction 
 
Algorithm 6 (Redox2 (Rj,Rk)) 
Input: Two reactants Rj, Rk 
R1=Rj+ λ× (Rk- Rj) 
Where the rate of reaction (λ) is obtained similar to 
the way that in synthesis reaction. 
Output: A new reactant R1 
 

This reaction is similar to that of synthesis 
reaction, but here, instead of best reactant a random 
reactant is selected for the reaction. This reaction 
assists in more diversification of the solution as 
compared to synthesis reaction, since in synthesis 

reaction the solutions converge towards the best 
solution. 

 
3.3.3 Reactant update 

Every monomolecular or bimolecular reaction is 
followed by a strictly greedy reversible reaction to 
update the reactants. In the strictly greedy 
reversible reaction, for a monomolecular reaction 
the product produced replaces the reactant that has 
taken part in the reaction for better enthalpy; and 
for a bimolecular reaction if two products are 
produced, these products replace the corresponding 
reactants for better enthalpy whereas if one product 
is produced then it replaces the target reactant under 
consideration. Thus the number of reactants of the 
population remains same throughout the reaction 
process. This not only simplifies the algorithm for 
implementation but also have better performance 
(in terms of convergence) than the basic CRO 
algorithm. Moreover, keeping the reactant size 
fixed avoids the problem of running out of reactants 
(this may occur if the initial number of reactants is 
small and number of Redox2 and/or Synthesis 
reaction is more which produces a product 
consuming (replacing) two or more reactants taking 
part in the reaction) in case of variable population 
size CRO algorithms. The pseudo-code of the 
strictly greedy reversible reaction is elaborated in 
algorithm 7. 
 
Algorithm 7 (Reversible Reaction ()) 
For Monomolecular Reactions 

Let Rj under goes monomolecular reaction to 
produce R1 

    If enthalpy(R1)<enthalpy(Rj) 
Replace Rj by R1 

    end of if 
For Bimolecular Reactions 

If Rj and Rk under goes reaction to produce R1   
(e.g. Synthesis and Redox2 reaction) 

          If enthalpy (R1) < enthalpy(Rj) 
Replace Rj by R1 

          end of if 
   end of if 
   If Rj and Rk under goes reaction to produce R1  
       and R2 (e.g. Displacement reaction) 
          If enthalpy(R1)<enthalpy(Rj) 
                 Replace Rj by R1 
          end of if 
          If enthalpy(R2)<enthalpy(Rk) 
   Replace Rk by R2 
          end of if 
   end of if 
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4. SIMULATION RESULTS 
For comparative performance analysis of 

proposed training method with DE/rand/1/bin, 
DE/best/1/bin and CRO [16] to train PSN, parity-p 
problems (p∈  [3;6]) have been considered. These 
problems are widely used benchmarks and are 
suitable for testing the non-linear mapping and 
generalization capabilities of training algorithms. 
The parity-p problem is described as follows: if P 
represents the number of inputs, and each input can 
accept values “1” or “−1”, then, the output of the 
network is “1” if and only if the number of “1” in 
the inputs of the PSN is odd. Otherwise “−1” 
occurs in the output of the PSN. Although these 
problems are easily defined, they are hard to solve, 
because of their sensitivity to initial weights and 
possession of large number of local minima. To 
classify parity-p (p∈  [3;6]) problem, PSNs having 
structure p-p-1 without bias units were considered 
and trained using proposed method and other 
methods for comparison. For each parity problem 
the training set was equal to the testing set and 
contained 2p patterns.  

The termination criterion applied to the training 
algorithms for parity-p (p∈  [3;4]) was the mean 
square training error (MSE) and it was different for 
each parity problem (0.025,0.0125 respectively); 
and for parity-p(p∈  [5;6]) was either MSE (0.125, 
0.125 respectively, this termination criterion is 
dominant in the experiments) or maximum 
generation exceeded (1000, 1000 respectively). 
These termination criteria have been set based on 
authors own experience. The PSNs trained here 
have threshold activation function at output layer; 
and the upper and lower bound of initial weight sets 
for parity-p problem is set to 2p to -2p. For DE 
algorithms the crossover probability Cr and scale 
factor F were set to 0.7 and 0.5 respectively. For 
each problem and each algorithm, the popsize 
(population size/reactant size) is fixed to 10. By 
making above experimental set up we have 
conducted 1000 independent simulations using each 
method for each parity problem. All the simulations 
were carried out on a system with Intel ® core(TM) 
2Duo E7500 CPU, 2.93 GHz  with 2GB RAM and  
implemented using MATLAB (R2009a, The 
Mathworks, Inc., and Version-7.8.0.347). 

The following tables show the experimental 
results for parity-p (p∈  [3; 6]) problems. The table 
shows Min the minimum number; Mean the mean 
value; Max the maximum number; and St.D. the 
standard deviation of the number of training 
generations for parity-p (p∈  [3; 6]) problems and 
the correct classification percentage for parity-p 
(p∈  [5; 6]). To have a better comparison among 

the methods, we have performed post hoc analysis 
and ANOVA on the results obtained from 1000 
independent simulations for each problem using 
each method. Correct classification percentage is 
computed as follows: 

Correct classification (%)=
NOP

CNOP

i i∑=1  

Where NOP is number of testing patterns 
(NOP=2p); p- Number of inputs to the PSN; Ci- the 
coefficient representing the correctness of the 
classification of the ith testing pattern which is 
determined as follows: 








−=−=

==
=

Otherwise  0,
1T and 1Y  when 1,

1T and 1Y  when ,1
C ii

ii

i  

Where Yi and Ti are the output of PSN and target 
for ith test pattern. 
 

TABLE 1: Simulation results on parity-3 problem (best 
results in bold) 

Algorithms Generations                                                                       
Mean ± St.D.               Min            Max 

CRO-HONNT 1.86 ± 1.64a 1 12 
CRO 2.65 ± 4.03c 1 65 

DE/rand/1 2.12 ± 1.52b 1 17 
DE/best/1 2.11 ± 1.46b 1 9 

*Means within a column the same letter(s) are not 
statistically significant (p=0.05) accordance to 
Duncan’s Multiple Range Test (SPSS V.16.0.1) 
 

TABLE 2: Simulation results on parity-4 problem (best 
results in bold) 

Algorithms Generations                                                                       
Mean ± St.D.               Min            Max 

CRO-HONNT 17.41 ± 15.27a 1 187 
CRO 23.04 ± 40.49b 1 920 

DE/rand/1 18.21 ± 15.38a 1 193 
DE/best/1 18.79 ± 15.74a 1 163 

*Means within a column the same letter(s) are not 
statistically significant (p=0.05) accordance to 
Duncan’s Multiple Range Test (SPSS V.16.0.1) 
 

All the training methods gave perfect 
generalization (100% correct classification) 
capabilities for parity-3 and 4 problems 
respectively; hence for these two problems only 
number of generations to attain the termination 
criteria was measured.  One can see from table-1 
and table-2 that the traditional CRO algorithm took 
statistically more number of generations than other 
algorithms. But, the proposed method took least 
number of generations to obtain the optimal 
solutions than the other methods considered. 
Although for parity-4 problem the number of 
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generations taken by proposed algorithm is 
statistically same to that of DE variants, for parity-3 
problem it takes statistically less number of 
iterations. 

TABLE 3: Simulation results on parity-5 problem (best 
results in bold) 

Algorithms Generations                                                                       
Mean ± St.D.               Min            Max 

CRO-HONNT 173.61 ± 160.95a 2 1000 
CRO 194.45 ± 235.14b 6 1000 

DE/rand/1 245.30 ± 227.84c 10 1000 
DE/best/1 248.62 ± 224.79c 5 1000 

*Means within a column the same letter(s) are not 
statistically significant (p=0.05) accordance to 
Duncan’s Multiple Range Test (SPSS V.16.0.1) 
 

TABLE 4: Simulation results on parity-5 problem (best 
results in bold) 

Algorithms Correct Classification (%)                                                                       
Mean ± St.D.               Min            Max 

CRO-HONNT 99.87 ± 0.87b 93.75 100 
CRO 99.67 ± 1.43a 87.50 100 

DE/rand/1 99.82 ± 1.03b 93.75 100 
DE/best/1 99.79 ± 1.15b 87.50 100 

*Means within a column the same letter(s) are not 
statistically significant (p=0.05) accordance to 
Duncan’s Multiple Range Test (SPSS V.16.0.1) 
 

Table-3 and Table-4 show the simulation results 
obtain on parity-5 problem. It can be observed that, 
although all methods gave 100% generalization 
most of the time but none of the methods gave 
100% correct classification for all the 1000 
independent simulations. The percentage of correct 
classification by proposed method is not statistical 
significant to that of DE variants whereas 
statistically significant to that of traditional CRO 
methods. However, the proposed method takes 
statistically less number of generations than other 
methods to obtain the optimal solutions. 

 
TABLE 5: Simulation results on parity-6 problem (best 

results in bold) 

Algorithms Generations                                                                       
Mean ± St.D.               Min            Max 

CRO-HONNT 783.49 ± 275.93c 28 1000 
CRO 728.97 ± 340.57b 23 1000 

DE/rand/1 535.43 ± 332.98a 29 1000 
DE/best/1 547.46 ± 336.36a 30 1000 

*Means within a column the same letter(s) are not 
statistically significant (p=0.05) accordance to 
Duncan’s Multiple Range Test (SPSS V.16.0.1) 
 

Table-5 and Table-6 show the experimental 
results for parity-6 problem. None of the methods 
gave perfect generalization capabilities for parity- 6 
problem for all the 1000 simulations. Although the 

proposed method takes significantly more number 
of generations to attain the termination criteria, but 
have shown significantly superior performance in 
terms of classification accuracy than the other 
methods considered. 
 

TABLE 6: Simulation results on parity-6 problem (best 
results in bold) 

Algorithms Correct Classification (%)                                                                       
Mean ± St.D.               Min            Max 

CRO-HONNT 97.58 ± 3.20c 81.250 100 
CRO 94.02 ± 3.69a 78.125 100 

DE/rand/1 95.12 ± 5.52b 78.125 100 
DE/best/1 95.21 ± 5.30b 78.125 100 

*Means within a column the same letter(s) are not 
statistically significant (p=0.05) accordance to 
Duncan’s Multiple Range Test (SPSS V.16.0.1) 
 
5. CONCLUSION 

In this paper, we have studied HONN models 
especially; the Pi–Sigma network and used a novel 
chemical reaction optimization for its training. The 
use of CRO-HONNT method incorporates efficient 
and effective searching mechanisms, such that it 
has less chance to trap to local minima and thus 
enhance the higher order neural network training 
procedure. Additionally, this method provides the 
ability to apply them for training “hardware 
friendly” PSNs, i.e. PSNs with threshold activation 
functions and small integer weights can be easily 
implemented using hardware. The simulation 
results demonstrate that the proposed training 
algorithm has superior performance when 
compared with most popular DE variants and 
traditional CRO for all test instances considered. 
The new training algorithm obtains statistically 
better solutions (e.g. parity-5, 6) and converges 
quickly (e.g. parity-3, 4, 5) than other evolutionary 
algorithms considered. Moreover, the fixed 
population sized CRO makes it easier to implement 
and still has superior performance than variable 
sized CRO method. 
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