
Journal of Theoretical and Applied Information Technology
 31st July 2013. Vol. 53 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

402

A NOVEL CHEMICAL REACTION OPTIMIZATION
ALGORITHM FOR HIGHER ORDER NEURAL NETWORK

TRAINING

1K. K. SAHU, 2SIBARAMA PANIGRAHI, 3H. S. BEHERA
123 Veer Surendra Sai University Of Technology (VSSUT), Department Of Computer Science And

Engineering, Burla, 768018, Odisha, India

E-mail: 1 itkishore2000@gmail.com , 2panigrahi.sibarama@gmail.com , 3hsbehera_india@yahoo.com

ABSTRACT

In this paper, an application of a novel chemical reaction optimization (CRO) algorithm for training higher
order neural networks (HONNs), especially the Pi-Sigma Network (PSN) has been presented. In contrast to
basic CRO algorithms, the proposed CRO algorithm used to train HONN possesses two modifications. The
reactant size (population size) remains fixed throughout all the iteration, which makes it easier to
implement; and adaptive chemical reactions followed by a strictly greedy reversible reaction have been
used which assist to reach the global minima in less number of iterations. The performance of proposed
algorithm for HONN training is evaluated through a well-known neural network training benchmark i.e. to
classify the parity-p problems. The results obtained from the proposed algorithm to train HONN have been
compared with results from the following algorithms: basic CRO algorithm and the two most popular
variants of differential evolution algorithm (DE/rand/1/bin and DE/best/1/bin). It is observed that the
application of the proposed CRO algorithm to HONN training (CRO-HONNT) performs statistically better
than that of other algorithms.

Keywords: Artificial Neural Network, Higher Order Neural Network, Pi-Sigma Neural Network, Chemical
Reaction Optimization, Differential Evolution

1. INTRODUCTION

Conventionally artificial neural network (ANN)
models have been used predominantly to perform
pattern matching, pattern recognition and
mathematical function approximation. Compared to
traditional ANNs, higher order neural networks
(HONNs) have several unique characteristics,
including: 1) stronger approximation property; 2)
faster convergence; 3) greater storage capacity; and
4) higher fault tolerance capability. Thus, HONN
models have shown superior performance than
traditional ANNs on forecasting, classification and
regression problems.

In this paper the class of HONNs and in
particular Pi-Sigma Networks (PSNs) has been
studied. The PSNs were introduced by Shin and
Ghosh [1]. The PSNs have addressed several
difficult tasks such as zeroing polynomials [2] and
polynomial factorization [3] more effectively than
traditional feed-forward neural networks (FFNNs).
Moreover, PSN employ less number of weights
than other HONNs, but still manage to incorporate
the capability of first order HONN indirectly. The
efficiency of HONN models depend on the
algorithm used for its training. The objective of any

supervised HONN training is to minimize the error
between the approximation by the HONN and the
target output. For this the optimal weight set of a
HONN must be obtained. The optimal weight set of
a HONN can be obtained by using either gradient
or evolutionary learning algorithms. The objective
function of HONN training is going to be a
multimodal search problem, since it depends on
number of parameters. Therefore, the gradient
based training algorithms often suffer from several
shortcomings, including: 1) easily getting trapped
to local minima; 2) have slow convergence
properties; 3) training performance is sensitive to
initial values of its parameters. Due to these
disadvantages, research on different optimization
techniques that are dedicated to HONN training is
still required. There are many optimization
techniques such as differential evolution (DE) [4],
genetic algorithm (GA) [5], particle swarm
optimization (PSO) [6], ant colony optimization
(ACO) [7], a bee colony optimization (BCO) [8],
an evolutionary strategy (ES) [9], quantum inspired
algorithms (QEA) [10], chemical reaction
optimization (CRO) [11],[12],[13] etc. can be used
for HONN training. Chemical reaction optimization

http://www.jatit.org/
mailto:itkishore2000@gmail.com
mailto:2panigrahi.sibarama@gmail.com
mailto:3hsbehera_india@yahoo.com

Journal of Theoretical and Applied Information Technology
 31st July 2013. Vol. 53 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

403

(CRO) is a new optimization technique, inspired by
the nature of chemical reactions. CRO has
demonstrated excellent performance in solving
many engineering problems such as the mining
classification rules [14], quadratic assignment
problem [11], knapsack problem [15], ANN
training problem [16] and multimodal continuous
problems. This paper proposes a novel chemical
reaction CRO which has better performance than
basic CRO algorithm [16] and two most popular
variants of DE algorithm, and is used for training
the PSN.

The rest of this paper is organized as follows.
Section-2 briefly describes the background related
to architecture and mathematical model of PSN;
chemical reaction optimization; and differential
evolution. The proposed training algorithm for PSN
has been explained in Section-3. Experimental
results are presented in section-4. And finally
conclusion and future works are described in
Section-5.

2. RELATED WORKS

2.1 PI-SIGMA NEURAL NETWORK (PSN)

Pi–Sigma Network (PSN) is a feed forward
neural network that calculates the product of sum of
the input components and passes it to a nonlinear
function. The network architecture of PSN (shown
in Fig.1) consists of a single hidden layer of
summing units and an output layer of product units
(instead of summing). The weights connecting the
input neurons to the neurons of the hidden layer are
adapted during the learning process by the training
algorithm, while those connecting the neurons of
the hidden layer to the output layer are fixed to one
and they are not trainable. Such a network topology
with only one layer of trainable weights drastically
reduces the training time [1], [17], [18]. Moreover,
the product units of PSN gives higher order
capabilities which increase its computational
power. This is because, the product units enable to
expand the input space into higher dimensional
space which leads to an easy separation of
nonlinearly separable classes where linear
separability is possible or a reduction in the
dimension of the nonlinearity is achieved. Thus,
PSN provides nonlinear decision boundaries
offering a better classification capability than the
linear neuron (Guler and Sahin, 1994). In addition,
Shin and Ghosh (1991) argued that PSNs not only
offers better classification over a broad class of
problems but also requires less memory and need at
least two orders of magnitude less number of
computations as compared to MLP for similar
performance level.

Consider a PSN with NOIN (number of input
neurons), NOHN (number of hidden neurons) and
one output neuron. The number of hidden neurons
in the hidden layer defines the order of a PSN. For
a NOHNth order PSN the number of trainable
weights is NOIN × NOHN considering each
summing unit is associated with NOIN weights.
The output of the PSN is computed by making
product of the output of NOHN hidden units and
passing it to a nonlinear function, which is defined
as follows:

)(
1
∏
=

=
NOHN

j
jhY σ

Where σ is a nonlinear transfer function and hj is
the output of jth hidden unit which is computed by
making sum of the products of each input (xi) with
the corresponding weight (wij) between ith input
and jth hidden unit. The output of hidden unit is
computed as follows:

∑
=

=
NOIN

i
iijj xwh

1
)(

Figure 1: Architecture of a Typical Pi-Sigma Network

2.2 CHEMICAL REACTION OPTIMIZATION

Chemical reaction optimization (CRO) algorithm
was proposed recently by Lam [11], is a
population-based metaheuristic optimization
technique inspired by the nature of chemical
reactions. It does not attempt to capture every detail
of chemical reaction rather loosely couples
chemical reaction with optimization. A chemical
reaction is a process that transforms one set of
chemical substances (reactants/molecule) to other.
Each molecule consists of some atoms and is
associated with enthalpy (minimization problem)
and/or entropy (maximization problem).During
chemical reaction the intra-molecular structure of a
reactant changes. Most of the reactions are
reversible in nature i.e. they can occur in either
direction to achieve better enthalpy/entropy. Basing
on the number of reactants take part in a reaction,
the reaction may be: monomolecular (one reactant
takes part in reaction) or bimolecular (two reactants
take part in chemical reaction) and so on. The

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 31st July 2013. Vol. 53 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

404

monomolecular reactions assist in intensification
while the bimolecular reactions give the effect of
diversification. The CRO can be thought of as a
new evolutionary technique. The reactants or
molecules are similar to chromosomes; the atoms
are similar to genes; enthalpy/entropy is equivalent
to fitness function; different reactions are similar to
crossover and mutation strategies; and reversible
reaction is equivalent to selection procedure of any
evolutionary algorithm. The major difference
between CRO and other evolutionary techniques is
that, the population size (that is the number of
reactants) may vary from one generation to other
where as in evolutionary techniques the population
size remains fixed. To have an elaborated
description regarding CRO algorithm, interested
readers may go through the tutorial of CRO [19].
Every chemical reaction optimization algorithm
consists of following steps:
Step 1: Problem and algorithm parameter
initialization
Step 2: Setting initial reactants (chromosomes) and
evaluation of entropy/enthalpy (fitness function)
Step 3: Applying Chemical reactions (equivalent to
mutation and crossover strategies)
Step 4: Reactants update (Equivalent to Selection)
Step 5: Termination criteria check if satisfied go to
step-6 otherwise go to step-3
Step 6: Use the reactant having best enthalpy (for
minimization)/entropy (for maximization) as the
solution.

2.3 DIFFERENTIAL EVOLUTION

The differential evolution (DE) algorithm is a
simple and efficient stochastic direct search method
for global optimization of multimodal function over
a continuous space, was introduced several years
ago (1997) [4]. Since then it has been upgraded
intensively in recent years [20].Compared to most
other EAs, DE is much more simple and
straightforward to implement. Although particle
swarm optimization (PSO) is also very easy to
code, the performance of DE and its variants
outperforms the PSO variants over a wide variety
of problems as has been indicated by studies like
[22], [23] and the CEC competition series. Hence,
for comparative performance analysis of the
proposed training algorithm, the two most popular
variants of DE i.e. DE/best/1/bin and DE/rand/1/bin
have been used. The conventions used above is
DE/a/b/c, where ‘DE’ stands for ‘differential
evolution’, ‘a’ represents the base vector to be
perturbed, ‘b’ represents number of difference
vectors used for perturbation of ‘a’ and c represents
the type of crossover used (bin: binary, exp:

exponential). Interested reader may go through [4],
[20] to have a detail description regarding DE
algorithm and its variants.

3. CRO-HONNT METHOD

Algorithm 1 (CRO-HONNT)
Set the iteration-counter i=0
/*Randomly Initialize the ReacNum of Reactants
from a uniform distribution [U;L]: Pi={R1

i, R2
i ,

R3
i…., RReacNum

i}, with Rj
i ={ Wj,1

i,…….,Wj,D
i}

for j=1,2,3..... ReacNum, D=length of each
Reactant (NOIN×NOHN), Wj,k

i=kth atom of jth
reactant in ith iteration representing a weight of
PSN.
for j=1 to ReacNum
 Calculate the enthalpy e(Rj)
end of for
While (termination criteria is not satisfied) do
 begin
 for j=1 to ReacNum
 // perform all reaction over the reactants of Pi
 Get rand1 randomly in an interval [0, 1]
 if rand1 ≤ 0.7
 Get rand2 randomly in an interval [0, 1]
 if rand2 ≤ 0.5
 Decomposition (Rj);
 else
 Redox1(Rj)
 end of if
 else
 Get rand3 randomly in an interval [0, 1]
 if rand3 ≤ 0.33
 Select the best reactant Rk(Rk≠ Rj)
 Synthesis (Rj, Rk)
 else if rand3 ≤ 0.66
 Select another reactant Rk (Rk≠ Rj)

 randomly
 Displacement(Rj, Rk);
 else
 Select another reactant Rk(Rk≠ Rj)

 randomly
 Redox2(Rj, Rk)
 end of if
 end of if
 Apply strictly greedy Reversible Reaction for
 increased enthalpy to update reactants
 end of for
 Set the iteration counter i=i+1
end of while
Use the reactant having best enthalpy as the optimal
weight set of PSN.

The proposed CRO-HONNT operates in three
phases: initialization phase, iteration phase and

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 31st July 2013. Vol. 53 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

405

final phase. The initial phase assigns the value to
initial parameters like termination criterion, length
of reactants/molecules (i.e. number of atoms in a
molecule), ReacNum (popsize i.e. total number of
reactants in a population) and generates initial
reactants. The iteration phase simulates the reaction
processes. The reactions may be monomolecular or
bimolecular. For monomolecular reaction,
Decomposition and Redox1 reactions are
considered; and for bimolecular reactions three
types of reactions such as: Synthesis, Displacement
and Redox2 are considered. The reaction types are
chosen considering both intensification and
diversification. Moreover, a strictly greedy
reversible reaction is used to update the reactants.
All the reactions have been elaborated in the
following subsequent subsections. In final phase the
reactant having best enthalpy is used as the optimal
solution (i.e. optimal weight set of a PSN). The
pseudo-code of the proposed method is explained in
Algorithm 1.

3.1 Reactant Encoding

A set of real numbers are used to represent one
reactant, with each reactant corresponding to a
weight set of the PSN. The length of a reactant
depends on the number of input and hidden neurons
of the PSN (i.e. NOIN×NOHN).

3.2 Enthalpy Of A Reactant

Each reactant is associated with some enthalpy.
As each reactant represents a weight set of the PSN,
the mean square error (MSE) on the train set is
considered as enthalpy. The lower the value of
enthalpy the better the reactant is. The MSE is
defined as follows:

MSE=
NOP

TYNOP

i ii∑=
−

1
2)(

Where Yi and Ti are the output of PSN and target
for ith train pattern.

3.3 Chemical Reactions
3.3.1 Monomolecular reactions

In monomolecular reactions only one reactant
takes part in the reaction and one product is
produced by modifying one atom of the reactant.
These reactions assist in intensification of the
solution by making local search. In our algorithm
monomolecular reactions are performed with a
probability of 70%, there by glorifying the chances
to obtain a better solution around the current
solution. Two monomolecular reactions are
considered such as: Decomposition and Redox1.

3.3.1.1 Decomposition Reaction

In this reaction a randomly selected atom of the
reactant takes part in the reaction. Consider a
reactant Rj={Wj,1,Wj,2…….,Wj,D} with Wj,x
(x∈[1,n]) be an atom of the reactant-j. The pseudo-
code of the decomposition reaction is described in
Algorithm-2.

Algorithm 2 (Decomposition(Rj))
Input: A reactant Rj
Duplicate Rj to produce R1
Select an atom x (x∈ [1, n]) randomly.
W1,x=L+ λ × (U-L)
Where the rate of reaction (λ) is a random number
generated randomly from uniform distribution
between [0, 1].
Output: A new reactant R1

3.3.1.2 Redox1 Reaction

It is similar to decomposition reaction except that
the rate of reaction(λ)used in this algorithm is
obtained randomly from a Cauchy distribution
because it diversifies the solution more as
compared to traditional normal or uniform
distribution. The pseudo-code is described in
Algorithm-3.

Algorithm 3 (Redox1(Rj))
Input: A reactant Rj
Duplicate Rj to produce R1
Select a point x (x∈ [1:n]) randomly
W1,x =L+ λ × (U-L)
Where λ= cauchyrnd(0.5,0.1), is a random number
generated randomly from Cauchy distribution with
a location parameter 0.5 and scale parameter 0.1. It
is regenerated if the random number falls out of the
range [0, 1].
Output: A new reactant R1

3.3.2 Bimolecular reactions

Here two reactants Rj={Wj,1,…….,Wj,D} and
Rk={Wk,1,Wk,2 …….,Wk,D} will take part in the
reaction. These reactions help in diversification of
the solution by generating a new solution that is
significantly different from the current solution.
These reactions occur with a probability of 30%.
Below types of bimolecular reactions are used.

3.3.2.1 Synthesis Reaction

In this reaction one reactant is produced due to
reaction between a reactant and the best reactant of
the iteration. Here, instead of traditional normal or
uniform distribution; the rate of reaction (λ) is
generated from a Cauchy distribution with a

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 31st July 2013. Vol. 53 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

406

location parameter ‘M’ and scale parameter 0.1.
The value of ‘M’ is initially set to 0.7 and self
adaptively determined in the following manner.
Mt+1=0.8×Mt+0.2×mean (λsuccess) with t= Number
of times the reaction occurs.
Where λsuccess memorizes the successful rate of
reactions that generates reactants with better
enthalpy than target reactant in the current iteration,
thereby glorifying the chance of generating better
reaction rates as more and more this reaction
occurs. Moreover, the use of best reactant for
perturbation intensifies the solutions. Hence, both
intensification and diversification can be achieved.

Algorithm 4 (Synthesis (Rj,Rbest))
Input: Two reactants Rj, Rbest
R1=RJ+ λ× (Rbest-RJ)
Whereλ =cauchyrnd(Mt,0.1), is a random number
generated randomly from Cauchy distribution with
location parameter Mt and scale parameter 0.1. It is
regenerated if the random number falls put of the
range [0, 1.5].
Output: A new reactant R1

3.3.2.2 Displacement Reaction

Two solutions R1 and R2 are obtained from
reaction between two reactants Rj and Rk. This
reaction is adopted from Bilal altas [14]. The
pseudo-code of this reaction is explained in
Algorithm 5.
Algorithm 5 (Displacement (Rj, Rk))
Input: Two reactants Rj, Rk
R1=λt×Rj+λt × (1- Rk)
R2=λt×Rk+λt × (1-Rj)
Where λt is initialized to a random number [0,1]and
is updated in the following manner every time this
reaction reoccurs (t=number of time the reaction
occurs).
λt+1=2.3(λt)2sin(л λt)
Output: Two reactants R1 and R2

3.3.2.3 Redox2 Reaction

Algorithm 6 (Redox2 (Rj,Rk))
Input: Two reactants Rj, Rk
R1=Rj+ λ× (Rk- Rj)
Where the rate of reaction (λ) is obtained similar to
the way that in synthesis reaction.
Output: A new reactant R1

This reaction is similar to that of synthesis
reaction, but here, instead of best reactant a random
reactant is selected for the reaction. This reaction
assists in more diversification of the solution as
compared to synthesis reaction, since in synthesis

reaction the solutions converge towards the best
solution.

3.3.3 Reactant update

Every monomolecular or bimolecular reaction is
followed by a strictly greedy reversible reaction to
update the reactants. In the strictly greedy
reversible reaction, for a monomolecular reaction
the product produced replaces the reactant that has
taken part in the reaction for better enthalpy; and
for a bimolecular reaction if two products are
produced, these products replace the corresponding
reactants for better enthalpy whereas if one product
is produced then it replaces the target reactant under
consideration. Thus the number of reactants of the
population remains same throughout the reaction
process. This not only simplifies the algorithm for
implementation but also have better performance
(in terms of convergence) than the basic CRO
algorithm. Moreover, keeping the reactant size
fixed avoids the problem of running out of reactants
(this may occur if the initial number of reactants is
small and number of Redox2 and/or Synthesis
reaction is more which produces a product
consuming (replacing) two or more reactants taking
part in the reaction) in case of variable population
size CRO algorithms. The pseudo-code of the
strictly greedy reversible reaction is elaborated in
algorithm 7.

Algorithm 7 (Reversible Reaction ())
For Monomolecular Reactions

Let Rj under goes monomolecular reaction to
produce R1

 If enthalpy(R1)<enthalpy(Rj)
Replace Rj by R1

 end of if
For Bimolecular Reactions

If Rj and Rk under goes reaction to produce R1
(e.g. Synthesis and Redox2 reaction)

 If enthalpy (R1) < enthalpy(Rj)
Replace Rj by R1

 end of if
 end of if
 If Rj and Rk under goes reaction to produce R1
 and R2 (e.g. Displacement reaction)
 If enthalpy(R1)<enthalpy(Rj)
 Replace Rj by R1
 end of if
 If enthalpy(R2)<enthalpy(Rk)
 Replace Rk by R2
 end of if
 end of if

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 31st July 2013. Vol. 53 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

407

4. SIMULATION RESULTS
For comparative performance analysis of

proposed training method with DE/rand/1/bin,
DE/best/1/bin and CRO [16] to train PSN, parity-p
problems (p∈ [3;6]) have been considered. These
problems are widely used benchmarks and are
suitable for testing the non-linear mapping and
generalization capabilities of training algorithms.
The parity-p problem is described as follows: if P
represents the number of inputs, and each input can
accept values “1” or “−1”, then, the output of the
network is “1” if and only if the number of “1” in
the inputs of the PSN is odd. Otherwise “−1”
occurs in the output of the PSN. Although these
problems are easily defined, they are hard to solve,
because of their sensitivity to initial weights and
possession of large number of local minima. To
classify parity-p (p∈ [3;6]) problem, PSNs having
structure p-p-1 without bias units were considered
and trained using proposed method and other
methods for comparison. For each parity problem
the training set was equal to the testing set and
contained 2p patterns.

The termination criterion applied to the training
algorithms for parity-p (p∈ [3;4]) was the mean
square training error (MSE) and it was different for
each parity problem (0.025,0.0125 respectively);
and for parity-p(p∈ [5;6]) was either MSE (0.125,
0.125 respectively, this termination criterion is
dominant in the experiments) or maximum
generation exceeded (1000, 1000 respectively).
These termination criteria have been set based on
authors own experience. The PSNs trained here
have threshold activation function at output layer;
and the upper and lower bound of initial weight sets
for parity-p problem is set to 2p to -2p. For DE
algorithms the crossover probability Cr and scale
factor F were set to 0.7 and 0.5 respectively. For
each problem and each algorithm, the popsize
(population size/reactant size) is fixed to 10. By
making above experimental set up we have
conducted 1000 independent simulations using each
method for each parity problem. All the simulations
were carried out on a system with Intel ® core(TM)
2Duo E7500 CPU, 2.93 GHz with 2GB RAM and
implemented using MATLAB (R2009a, The
Mathworks, Inc., and Version-7.8.0.347).

The following tables show the experimental
results for parity-p (p∈ [3; 6]) problems. The table
shows Min the minimum number; Mean the mean
value; Max the maximum number; and St.D. the
standard deviation of the number of training
generations for parity-p (p∈ [3; 6]) problems and
the correct classification percentage for parity-p
(p∈ [5; 6]). To have a better comparison among

the methods, we have performed post hoc analysis
and ANOVA on the results obtained from 1000
independent simulations for each problem using
each method. Correct classification percentage is
computed as follows:

Correct classification (%)=
NOP

CNOP

i i∑=1

Where NOP is number of testing patterns
(NOP=2p); p- Number of inputs to the PSN; Ci- the
coefficient representing the correctness of the
classification of the ith testing pattern which is
determined as follows:








−=−=

==
=

Otherwise 0,
1T and 1Y when 1,

1T and 1Y when ,1
C ii

ii

i

Where Yi and Ti are the output of PSN and target
for ith test pattern.

TABLE 1: Simulation results on parity-3 problem (best
results in bold)

Algorithms Generations
Mean ± St.D. Min Max

CRO-HONNT 1.86 ± 1.64a 1 12
CRO 2.65 ± 4.03c 1 65

DE/rand/1 2.12 ± 1.52b 1 17
DE/best/1 2.11 ± 1.46b 1 9

*Means within a column the same letter(s) are not
statistically significant (p=0.05) accordance to
Duncan’s Multiple Range Test (SPSS V.16.0.1)

TABLE 2: Simulation results on parity-4 problem (best
results in bold)

Algorithms Generations
Mean ± St.D. Min Max

CRO-HONNT 17.41 ± 15.27a 1 187
CRO 23.04 ± 40.49b 1 920

DE/rand/1 18.21 ± 15.38a 1 193
DE/best/1 18.79 ± 15.74a 1 163

*Means within a column the same letter(s) are not
statistically significant (p=0.05) accordance to
Duncan’s Multiple Range Test (SPSS V.16.0.1)

All the training methods gave perfect
generalization (100% correct classification)
capabilities for parity-3 and 4 problems
respectively; hence for these two problems only
number of generations to attain the termination
criteria was measured. One can see from table-1
and table-2 that the traditional CRO algorithm took
statistically more number of generations than other
algorithms. But, the proposed method took least
number of generations to obtain the optimal
solutions than the other methods considered.
Although for parity-4 problem the number of

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 31st July 2013. Vol. 53 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

408

generations taken by proposed algorithm is
statistically same to that of DE variants, for parity-3
problem it takes statistically less number of
iterations.

TABLE 3: Simulation results on parity-5 problem (best
results in bold)

Algorithms Generations
Mean ± St.D. Min Max

CRO-HONNT 173.61 ± 160.95a 2 1000
CRO 194.45 ± 235.14b 6 1000

DE/rand/1 245.30 ± 227.84c 10 1000
DE/best/1 248.62 ± 224.79c 5 1000

*Means within a column the same letter(s) are not
statistically significant (p=0.05) accordance to
Duncan’s Multiple Range Test (SPSS V.16.0.1)

TABLE 4: Simulation results on parity-5 problem (best
results in bold)

Algorithms Correct Classification (%)
Mean ± St.D. Min Max

CRO-HONNT 99.87 ± 0.87b 93.75 100
CRO 99.67 ± 1.43a 87.50 100

DE/rand/1 99.82 ± 1.03b 93.75 100
DE/best/1 99.79 ± 1.15b 87.50 100

*Means within a column the same letter(s) are not
statistically significant (p=0.05) accordance to
Duncan’s Multiple Range Test (SPSS V.16.0.1)

Table-3 and Table-4 show the simulation results
obtain on parity-5 problem. It can be observed that,
although all methods gave 100% generalization
most of the time but none of the methods gave
100% correct classification for all the 1000
independent simulations. The percentage of correct
classification by proposed method is not statistical
significant to that of DE variants whereas
statistically significant to that of traditional CRO
methods. However, the proposed method takes
statistically less number of generations than other
methods to obtain the optimal solutions.

TABLE 5: Simulation results on parity-6 problem (best

results in bold)

Algorithms Generations
Mean ± St.D. Min Max

CRO-HONNT 783.49 ± 275.93c 28 1000
CRO 728.97 ± 340.57b 23 1000

DE/rand/1 535.43 ± 332.98a 29 1000
DE/best/1 547.46 ± 336.36a 30 1000

*Means within a column the same letter(s) are not
statistically significant (p=0.05) accordance to
Duncan’s Multiple Range Test (SPSS V.16.0.1)

Table-5 and Table-6 show the experimental
results for parity-6 problem. None of the methods
gave perfect generalization capabilities for parity- 6
problem for all the 1000 simulations. Although the

proposed method takes significantly more number
of generations to attain the termination criteria, but
have shown significantly superior performance in
terms of classification accuracy than the other
methods considered.

TABLE 6: Simulation results on parity-6 problem (best
results in bold)

Algorithms Correct Classification (%)
Mean ± St.D. Min Max

CRO-HONNT 97.58 ± 3.20c 81.250 100
CRO 94.02 ± 3.69a 78.125 100

DE/rand/1 95.12 ± 5.52b 78.125 100
DE/best/1 95.21 ± 5.30b 78.125 100

*Means within a column the same letter(s) are not
statistically significant (p=0.05) accordance to
Duncan’s Multiple Range Test (SPSS V.16.0.1)

5. CONCLUSION

In this paper, we have studied HONN models
especially; the Pi–Sigma network and used a novel
chemical reaction optimization for its training. The
use of CRO-HONNT method incorporates efficient
and effective searching mechanisms, such that it
has less chance to trap to local minima and thus
enhance the higher order neural network training
procedure. Additionally, this method provides the
ability to apply them for training “hardware
friendly” PSNs, i.e. PSNs with threshold activation
functions and small integer weights can be easily
implemented using hardware. The simulation
results demonstrate that the proposed training
algorithm has superior performance when
compared with most popular DE variants and
traditional CRO for all test instances considered.
The new training algorithm obtains statistically
better solutions (e.g. parity-5, 6) and converges
quickly (e.g. parity-3, 4, 5) than other evolutionary
algorithms considered. Moreover, the fixed
population sized CRO makes it easier to implement
and still has superior performance than variable
sized CRO method.

REFRENCES:
[1] Y. Shin and J. Ghosh, “The pi–sigma network:

An efficient higher-order neural network for
pattern classification and function
approximation”, International Joint
Conference on Neural Networks, 1991.

[2] D. S. Huang, H. H. S. Ip, K. C. K. Law and Z.
Chi, “Zeroing polynomials using modified
constrained neural network approach”, IEEE
Transactions on Neural Networks, Vol. 16, No.
3, 2005, pp. 721–732.

[3] S. Perantonis, N. Ampazis, S. Varoufakis and
G. Antoniou, “Constrained learning in neural

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 31st July 2013. Vol. 53 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

409

networks: Application to stable factorization of
2-d polynomials”, Neural Processing Letter,
Vol.7, No. 1, 1998, pp. 5–14.

[4] R. Storn and K.Price, “Differential evolution-
A simple and efficient heuristic for global
optimization over continuous spaces”, Journal
of Global Optimization, Vol. 11, No.4, 1997,
pp. 341-359.

[5] D. Goldberg, “Genetic Algorithms in Search”,
Optimization and Machine Learning. Reading,
MA:Addison-Wesley (1989).

[6] J. Kennedy, R. C.Eberhart and Y.Shi, “Swarm
intelligence”, San Francisco, CA:Morgan
Kaufmann, 2001.

[7] K. Socha and M. Doringo, “Ant colony
optimization for continuous domains”,
Europian Journal of Operation Research, Vol.
185, No. 3, 2008, pp. 1155-1173.

[8] D. T. Pham, A. Ghanbarzadeh, E. Koc, S. Otri,
S. Rahim and M. Zaidi, “The bees algorithm-
A novel tool for complex optimization
problems”, in IPROMS Oxford, U.K.: Elsevier,
2006.

[9] H.G. Beyer and H.P. Schwefel, “Evolutionary
Strategies: A Comprehensive introduction”,
Nat. Comput., Vol. 1, No. 1, 2002, pp. 3-52.

[10] K. H. Han and J.H. Kim, “Quantum-inspired
evolutionary algorithm for a class of
combinatorial optimization”, IEEE
Transactions on Evolutionary Computation,
Vol. 6, 2002, pp. 580–593.

[11] A. Y. S. Lam and V. O. K. Li, “Chemical-
Reaction-inspired metaheuristic for
optimization”, IEEE Transactionson on
Evolutionary Computation, Vol. 14, No.3,
2010, pp. 381–399.

[12] A.Y.S. Lam, “Real-Coded Chemical Reaction
Optimization”, IEEE Transaction on
Evolutionary Computation, Vol. 16, No. 3,
2012, pp. 339-353.

[13] B. Alatas, “ACROA: Artificial Chemical
Reaction Optimization Algorithm for global
optimization”, Expert Systems with
Applications, Vol. 38, 2011, pp. 13170–13180.

[14] B. Altas, “A novel chemistry based
metaheuristic optimization method for mining
of classification rules”, Expert Systems with
Applications, Vol. 39, 2012, pp. 11080-11088.

[15] T. K. Truong, K. Li and Y. Xu, “Chemical
reaction optimization with greedy strategy
for the 0–1 knapsack problem”, Applied Soft
Computing, Vol. 13, 2013, pp. 1774-1880.

[16] J.J.Q. Yu, A.Y.S. Lam and V.O.K. Li,
“Evolutionary Artificial Neural Network based
on chemical reaction optimization”, in:

IEEE Congress on Evolutionary
Computation (CEC), 2011, pp. 2083–2090.

[17] J. Ghosh and Y. Shin, “Efficient higher-order
neural networks for classification and function
approximation”, in: International Journal on
Neural Systems, Vol. 3, 1992, pp. 323–350.

[18] Y. Shin and J. Ghosh, “Realization of Boolean
functions using binary pi-sigma networks”, in:
C. H. Dagli, S. R. T. Kumara, Y. C. Shin (Eds.),
Intelligent Engineering Systems through
Artificial Neural Networks, ASME Press, 1991,
pp. 205–210.

[19] A. Y. S. Lam and V. O. K. Li, “Chemical
Reaction Optimization: a tutorial”, Memetic
Computing Vol. 4, 2012, pp. 3-17.

[20] S. Das and P. N. Suganthanam, “Differential
Evolution: A Survey of the state-of-the-Art”,
IEEE Transaction on Evolutionary
Computation, Vol. 15, No. 1, 2011, pp. 4-31.

[21] M. G. Epitropakis, V. P. Plagianakos and M.
N. Vrahatis, “Hardware-friendly Higher-Order
Neural Network Training using Distributed
Evolutionary Algorithms”, Applied Soft
Computing, Vol. 10, 2010, pp. 398-408.

[22] S. Das, A. Abraham, U. K. Chakraborty and A.
Konar, “Differential evolution using a
neighbourhood based mutation operator”, IEEE
Transaction on Evolutionary Computation,
Vol. 13, No. 3, 2009, pp. 526-553.

[23] S. Rahnamayan, H. R. Tizhoosh and M. M. A.
Salama, “Opposition based differential
evolution”, IEEE Transaction on Evolutionary
Computation, Vol. 12, No. 1, 2008, pp. 64-79.

http://www.jatit.org/

	1K. K. SAHU, 2SIBARAMA PANIGRAHI, 3H. S. BEHERA
	3. CRO-HONNT METHOD

