
Journal of Theoretical and Applied Information Technology 
 31st July 2013. Vol. 53 No.3 

© 2005 - 2013 JATIT & LLS. All rights reserved.  
 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195 

 
392 

 

ADAPTIVE DYNAMIC RESOURCE SYNCHRONIZATION 
DISTRIBUTED MUTUAL EXCLUSION ALGORITHM 

(ADRS) 

 

P

1
PMARIAM ITRIQ, P

 2
PWAFA DBABAT, P

3
PAHMAD SHARIEH 

P

1
PInstructor, BIT Dept., King Abdullah II School for Information Technology, The University   of Jordan 

P

2
PInstructor, SE Dept., Prince Abdullah Bin Ghazi Faculty of Information Technology, Balqa’ Applied 

University 
P

3
PProf., CS Dept., King Abdullah II School for Information Technology, The University   of Jordan 

E-mail:  0TP

1
PUm.itriq@ju.edu.jo U0T  , 0TP

2
PUw.dababat@bau.edu.jo U0T , 0TP

3
PUsharieh@ju.edu.jo U0T  

ABSTRACT 

 

Existing mutual exclusion algorithms for distributed systems are not well suitable for mobile system, 
because of several limitations: small memory, a relatively slow processor, low power batteries, and 
communicate over low bandwidth wireless communication links. In this paper, we adapted the DRS mutual 
exclusion algorithm applying it on the infrastructure machines that communicate directly with the mobile 
hosts, called Mobile Support Stations (MSS) with some modifications. As DRS algorithm, the adapted 
version ADRS tends to minimize the number of messages needed to be transmitted in the system, by 
reducing the number of sites involved in the mutual exclusion decision, and reducing the amount of storage 
needed at different sites of the system. 
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1. INTRODUCTION  
 

The resource allocation problem is one of 
the most important problems in mobile systems due 
to the special characteristic of mobile environment: 
the sites do not share any memory and 
communicate completely by message passing. The 
wireless communication channels were used by the 
mobile system have lower bandwidth than the 
wired communication links. Any distributed mutual 
exclusion algorithm should take this constraint into 
consideration [1][2]. 
Many distributed algorithms for mutual exclusion 
that have been proposed since last decade classified 
in two categories: token based and permission 
based [3], permission based mutual algorithms 
[4][5][6][7] impose that a requesting node must 
receive permission from other nodes through cycles 
of messages exchanged among nodes. Examples of 
permission based mutual exclusion algorithms are 
Lamport’s algorithm which require 3(n-1) messages 
[8], Ricart and Agrawala [13] for requires 2(n - 1) 
messages per CS entry, Mamoru Maekawa 
proposed a distributed mutual exclusion algorithm 

[5] which requires only 3√n to 5√n messages per 
mutual exclusion. In token based mutual exclusion 
algorithms [1][9][2] a unique token is shared 
among set of nodes, if the token is available locally 
no communication is needed and the node that hold 
the token can enter critical section (CS), otherwise 
an adequate mechanism must be taken to locate 
it[10]. In addition, an expensive regenerate protocol 
needed if the node that holds the token fails during 
holding it. Suzuki and Kasami's token-based 
algorithm requires n messages per CS entry [11]; 
Raymond's algorithm [2] complexity is O(log n) 
under light demand. Algorithm proposed by 
Pranay, Chaudhuri, Mehmet Hakan Karaata [12] 
achieves the message complexity as O(n1/3) per 
mutual exclusion 
In most of the previously proposed mutual 
exclusion algorithms, a requesting site must 
consider every site in the system whether that site is 
requesting CS or not. These algorithms have a 
drawback because sites that are not competing for 
the CS also sent request messages; such algorithms 
are not suitable for mobile computing systems that 
use low bandwidth. Some of the algorithms also 
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based on the idea of queues, which require a 
relatively large amount of storage that is not 
available in the mobile systems. 

In the last ten years a new approach has been taken 
to allocate resource in mobile ad-hoc network 
(MANET), different Cluster based algorithms are 
proposed [13][14][15] to  reducing the message 
complexity, in this algorithms no need for specific 
coordinator (message router) for a cluster. Thus, no 
reelection of coordinator is required. The Dynamic 
resource synchronizer (DRS) algorithm [16], it’s 
called dynamic because the node that manage the 
critical section “synchronizer” is dynamically 
changed according to certain criteria that reduce 
massage traffic among the nodes[16 ]. 
In this paper we proposed an idea to achieve the 
synchronization, also its try to overcome the 
limitations for the literature distributed mutual 
exclusion algorithms. This idea is an updated 
version from a DRS algorithm mentioned in [16]. 
 
The organization of this paper is as follows: Section 
2 presents briefly describes the DRS algorithm. The 
Mobile System Environment and Model described 
in section 3. In section 4 we describe our adaptive 
DRS algorithm and its assumptions. Section 5 
traces the execution rules of the algorithm. The 
correctness of ADRS is presented in section 6. In 
section 8 we discuss the performance issues of 
ADRS. And finally we conclude our work in 
section 8. 
 
2. OVERVIEW OF DRS 

DRS algorithm assumed that the system 
consists of n independent mobile nodes labeled 
(N0, N1, …, Nn), communicating by message 
passing over a wireless network. Each node in the 
system is assumed to be running an application 
whose states are partitioned into four sections: 

 
WAITING: where the node has requested access to 
the CS. 
CRITICAL: in which the node is executing the 
CS. 
SYNCHRONIZER: node currently responsible for 
handling mutual exclusion access to the CS. There 
is one and only one node in this state in the system 
at any instance. Initially one node is set to this state. 
REMINDER: where the node is neither requesting 
nor executing the CS. All nodes are initialized to 
this state. 
Nodes in the system cycle through REMINDER to 
WAITING to CRITICAL to REMINDER to 
SYNCHRONIZER state, and nodes never stop 

executing while CRITICAL. A node exits the 
SYNCHRONIZER state either if any other node 
exits CS. 
 
The major data structures used by DRS algorithm 
were: 
 
-Status: indicates whether a node is in the 

WAITING, CRITICAL,      
SYNCHRONIZER , or REMINDER 
section. 

-Next: pointer to the process next in the logical 
ring. Processes are connected to each other 
forming a logical ring. 

-Queue: pointer to the process next in the waiting 
queue. This pointer is set to nil if the 
process is the one at the end of the queue 
or if it is not involved in the queue. 

-Busy: a Boolean flag used only by the 
SYNCHRONIZER, it is set to TRUE if any 
node in the system is currently CRITICAL. 
Initially this is FALSE in all nodes. 

-Synch: address of the current SYNCHRONIZER 
node.  

-Critical: address of the node currently in the 
CRITICAL state. The node uses this 
variable when it is in the 
SYNCHRONIZER state. 

 
Five types of messages are communicated in the 
system: 
 
-REQUEST: a message sends by a REMINDER 

node that is wishing to be                        
CRITICAL. 

-GRANT: a message sends by the 
SYNCHRONIZER to the next process 
in queue. 

-RELEASE: a message sends by the CRITICAL to 
the SYNCHRONIZER when exiting 
the CS. 

-YAS (You Are Synchronizer): send by the 
SYNCHRONIZER to transfer the 
synchronization state. 

-ADD: a message send by the SYNCHRONIZER 
to add a new node to the queue. 

-GHANGE: a message sends by the 
SYNCHRONIZER to the CRITICAL 
to inform it of the SYNCHRONIZER 
state transfer. 

 
A slightly different version of the DSR algorithm is 
presented also. It takes into consideration the fact 
that it is not desirable in a dynamic system that the 
same node will be in SYNCHRONIZER state for a 

http://www.jatit.org/


Journal of Theoretical and Applied Information Technology 
 31st July 2013. Vol. 53 No.3 

© 2005 - 2013 JATIT & LLS. All rights reserved.  
 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195 

 
394 

 

long time, to insure fairness in the system. Using 
this version, the SYNCHRONIZER state will 
circulate among all nodes in the system and no 
node will remain SYNCHRONIZER forever. In 
this algorithm, a node exits the SYNCHRONIZER 
state either if any other node exits CS, or its time is 
finished. A node that frequently enters the CS, will 
have higher probability to be in SYNCHRONIZER 
state. 
 
So they add a new data structure to the previous 
data structures called timer, which is used by the 
SYNCHRONIZER. Assuming T is the maximum 
period of time a node stays in SYNCHRONIZER 
state.  
 
We will depend on some of the above basic 
structure in our algorithm but with modification 
suitable to our new model. 
 
3. MOBILE SYSTEM ENVIRONMENT AND 

MODEL 

 
      As we mentioned previously, the mobile 
systems have special constraints that cannot be 
captured by traditional distributed systems. These 
constraints are memory limitations, limited battery 
life and working under low bandwidth. 
In this paper, the proposed algorithm takes in 
consideration these constraints based on the same 
system model used in [1] which we represent it as 
in figure 1, where a host that can move while 
retaining its network connections is a Mobile Host 
(MH). The infrastructure machines that 
communicate directly with the mobile hosts are 
called Mobile Support Stations (MSS). A cell is a 
logical or geographical coverage area under an 
MSS. All MHs that have identified themselves with 
a particular MSS, are considered to be local to the 
MSS. An MH can directly communicate with an 
MSS (and vice versa) only if the MH is physically 
located within the cell will be served by the MSS, 
and each MH belongs to only one cell at time. 
 

 
Figure 1: System Model 

 
4. ADAPTATION DYNAMIC 

SYNCHRONIZER ALGORITHM FOR 
MSS (ADRS) 

 
      In this section, another version of the dynamic 
synchronizer algorithm; in which nodes are MSSs 
not MHs. A MH that needs to access a CS sends its 
request to its local MSS, which then inserts it at the 
tail of a request queue. If that MH was the first in 
the request queue the MSS initializes a REQUEST 
message and sends it to its neighbor, it become in 
WAITING state, and continue working. It may 
receive other requests for the CS from other MHs in 
its region, which it adds to the tail of the request 
queue. When the WAITING MSS eventually 
receives a GRANT message, it moves all MHs in 
the request queue to a grant queue, where they are 
allowed to enter the CS sequentially. After 
servicing all MHs in the grant queue, the MSS 
sends a RELEASE message to the 
SYNCHRONIZER MSS, then the algorithm 
proceeds in the normal way. 
 
4.1 System Description and Assumptions 
 
4.1.1 Assumptions 
The proposed idea was applied on the MSS side to 
manage the synchronization, also its try to 
overcome the above limitations for the literature 
distributed mutual exclusion algorithms mentioned 
in section 2. 
Our solution needs to consider the following 
assumptions and conditions for the distributed 
environment: 
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1.All nodes in the system are assigned unique 
identification numbers from 1 to N. 

2.There is only one requesting process executing at 
each node. Mutual exclusion is implemented at 
the node level. 

3.Processes are competing for a single resource. 
4.At any time, each process initiates at most one 

outstanding request for mutual exclusion. 
 

The proposed idea should consider the following 
aspects about the reliability of the communications 
[15]: 

• Message delivery guaranteed. 
• Message-order preservation. 
• Message transfer delays are finite, but 

unpredictable. 
• The topology of the network is known. 

 
Like DRS algorithm , assuming that the nodes in 
the system are  (NR1R, NR2R,…,NRnR) but in this algorithm 
it stands for the n MSSs in the system, another 
system component which is the MHs need also to 
be considered in this version. So assume we have m 
MHs each with a unique identifier (MR1R, 
MR2R,…,MRmR). 
 
Also in this version of DRS algorithm we must 
consider the following assumptions: 
1. The nodes (even MH or MSS) have unique node 
identifiers, (i.e. node i have identifier Ni). 
2. A node failure does not occur. 
3. Communication links are bi-directional and 
FIFO. 
4. Communication links failures are predictable, 
providing a reliable communication. 
5. A partition in network does not occur. 
 
4.1.2  Description 
 
In this version the MHs need to maintain only 2 
data structures: 
 

• Status: CRITICAL, WAITING or 
REMINDER, as discussed above. Note 
that a MH cannot be in SYNCHRONIZER 
state since it is the MSSs that will do 
synchronization in this algorithm. 

• Mss: this contains the address of the local 
MSS. 

 
Two new data structures need to be maintained by 
each MSS in this algorithm: 

• Request: which is a queue of MHs; its 
entries are addresses to MHs that currently 
requesting the CS in this region. 

• Grant: which is a queue of MHs; its 
entries are addresses to MHs that will 
enter the CS sequentially in this region. 

 
Three new types of messages that are 
communicated between a MSS and the MHs in its 
region are also added: 

• MHREQUEST: a MH sends this message 
to its MSS when it wishes to enter the CS. 

• MHGRANT: this message is sent by a 
MSS to a MH in its region allowing it to 
enter the CS. 

• MHRELEASE: a MH sends this message 
to its MSS when it exits the CS. 

 
A general snapshot of the system is show in Figure 
2. Which describe how the MHs communicate with 
their local MSS, and How MSSs connected through 
logical ring. 
   
5.  EXECUTION RULES OF THE 

ADAPTIVE (DRS) ALGORITHM 

5.1 Variation from DRS 
Handling of some events will differ from the 
ordinary node DRS, and new events will occur. 
This is explained through the following rules:  
 
Rule1: Handling a REQUEST message: when a 
REQUEST message arrives at a node (here node is 
MSS), it checks its status, if it is not 
SYNCHRONIZER it simply forwards the message 
to next. If  it is SYNCHRONIZER, the node checks 
busy, if other node currently uses the CS, 
SYNCHRONIZER adds the requesting node to the 
end of the queue.  
To add a node to the end of the queue, the 
SYNCHRONIZER checks its queue pointer, if it is 
not nil a message is prepared with the address of 
the requesting node and sent to the node in queue, 
then queue is set to the address of the requesting 
process, else, the address of the requesting process 
is stored in queue. However, if no node is currently 
CRITICAL, a GRANT message is sent to the 
requesting node, the address of the requesting node 
is stored in critical and busy is set to TRUE. 
 
Rule2: Handling a GRANT message: when a node 
receives a GRANT message from the 
SYNCHRONIZER, it sets status to CRITICAL and 
saves the address of SYNCHRONIZER in synch, 
and then it moves all entries in the request queue to 
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the grant queue. All MHs in the grant queue are 
then sent a MHGRANT message in turn. 
Rule3: Handling a RELEASE message: when the 
SYNCHRONIZER receives a RELEASE message, 
it changes its status to REMINDER, sets busy to 
FALSE, and sends YAS message to the node that 
completed the CS (i.e. node from which it received 
the RELEASE message). Together with the 
message, the SYNCHRONIZER sends the address 
of the node currently at the end of the queue 
(current contents of queue), sending nil if no nodes 
currently in the queue. 
 
Rule4: Handling a YAS message: when a node 
receives a YAS message, if it is not in REMINDER 
state, it forwards the message to next, and sends a 
CHANGE message containing next to critical (note 
that it knows critical from the YAS message). 
However, if the node is currently in REMINDER 
state, it should handle the message. First, it changes 
its status to SYNCHRONIZER. Then, the node 
checks the contents of queue, if not nil, a GRANT 
message is sent to the node in queue and busy is set 
to TRUE. After that, the node stores the address 
attached with the message in queue. 
 
 
Rule5: Handling an ADD message: when a node 
receives an ADD message, it stores the address in 
the message in queue. 
 
Rule6: Handling a CHANGE message: when a 
node receives a CHANGE message, it overwrites 
its synch to the address in the message. 
 
Rule7: Requesting the CS: when a MH wishes to 
enter the CS it prepares a MHREQUEST message 
containing its address and send it to  
its local MSS , then waits for a MHGRANT from 
the MSS. 
 
Rule8: Handling a MHREQUEST message: when a 
MHREQUEST message arrives at a node, the 
requesting MH is first added to the tail of the 
request queue. The node then checks status, if it is 
WAITING or CRITICAL, nothing is done. If status 
is REMINDER, the MSS prepares a REQUEST 
message containing its address and sends it to next, 
then changes its status to WAITING. If status is 
SYNCHRONIZER and busy is TRUE, the 
SYNCHRONIZER send ADD message with the 
address of  itself and sent to the node in next, then 
queue is set to the address of the 
SYNCHRONIZER, then SYNCHRONIZER sends 
a YAS message to the node in next to make it the 

SYNCHRONIZER, then it sets status to 
WAITING. In case that status is SYNCHRONIZER 
and busy is FALSE, SYNCHRONIZER sets busy 
to TRUE, stores its address in queue, send 
MHGRANT message to the requesting MH, sends 
a YAS message to the node in next and finally 
changes status to CRITICAL. 

 
Rule9: Handling a MHGRANT message: when a 
MHGRANT message arrives at an MH, it enters the 
CS. 
 
Rule10: Exiting CS: when a MH exits the CS, it 
sends MHRELEASE message to local MSS and 
changes status to REMINDER. 
 
Rule11: Handling a MHRELEASE message: when 
a MHRELEASE message arrives at an MSS, it 
checks grant queue, if not empty the next MH in the 
queue is sent a MHGRANT message, else, it sends 
a RELEASE message to the SYNCHRONIZER 
(using the address stored in synch). And change its 
status to REMINDER.  
 
Pseudo code 
 
Accordingly, theDRS algorithm in [16] will be 
modified as follows: 
 
Rule1: When a REQUEST(Nj, Ni) is received by a 
node Nj: 

• if status ≠ SYNCHRONIZER, 
REQUEST(next, Ni). 

• if status = SYNCHRONIZER and busy 
= FALSE. 

• GRANT(Ni, Nj). 
• critical = Ni. 
• queue = Ni. 
• busy = TRUE. 

1. if status = SYNCHRONIZER and busy 
= TRUE. 

• ADD(queue, Ni). 
• queue = Ni. 

 
Rule2 & Rule11: When a GRANT(Ni, Nj) is 
received by node Ni: 

1.  synch = Nj. 
2.  status = CRITICAL. 
3.  grant = request  
4.  while grant not empty 

• remove Mj from head of grant 
•  
• MHGRANT(Ni, Mj) 
• Wait MHRELEASE(Mj, Ni) 
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5. RELEASE(synch, Ni). 
6.status = REMINDER.   

 
Rule3: When a node Nj receives RELEASE(Nj, 
Ni): 

• YAS(Ni, nil, queue). 
• status = REMINDER. 
• busy = FALSE. 

 
Rule4: When a node Nj receives YAS(Nj, Ni, Nk): 

1. if status ≠ REMINDER. 
• forward YAS(next, Ni, Nk) to next. 
• CHANGE(Ni, next). 

2. if status = REMINDER. 
 status = SYNCHRONIZER. 
• if queue ≠ nil 
• GRANT(queue, Nj). 

• busy = TRUE. 
• queue = Nk. 

 
Rule5: When a node Ni receives an ADD(Ni, Nj): 
  1. queue = Nj. 
 
 
Rule6: When a node Ni  receives CHANGE(Ni, 
Nj). 
 

1. synch = Nj. 
 
Rule7: When a MH Mi requests access to the CS: 

1. status = WAITING. 
2. MHREQUEST(Mi, mss).   

 
Rule8: When a node Nj receives 
MHREQUEST(Mi, Nj): 

1. Add Mi to request. 
2. if status = REMINDER. 

• REQUEST(next, Nj). 
• Status = WAITING.  

3.  if status = SYNCHRONIZER and 
busy = TRUE. 
• ADD (next, Ni) 
• queue = Ni 
• YAS (next, queue) 
• Status = WAITING 

4. if status = SYNCHRONIZER and 
busy = FALSE. 
• Busy = TRUE 
• queue = Ni 
• MHGRANT(Ni, Mj) 
• YAS (next, queue) 
• Status = CRITICAL  

 

Rule9: When a MH Mi receives MHGRANT(Nj, 
Mi): 

1. status = CRITICAL. 
2. Enter CS. 

  
Rule10: When a MH Mi exits the CS: 

1.status = REMINDER. 
2.MHRELEASE(Mi, mss). 

 
Rule11: When a node Ni receives 
MHRELEASE(Mj, Ni): 

1.if grant empty 
2.RELEASE(synch, Ni). 
3.status = REMINDER 

 
5.2 Example on ADRS 
 
In Figure2, while MSSs receives MREQUEST 
message from their MHs , MSS1 initiate a 
REQUEST message that follow the logical ring to 
MSS2 then to SYNCHRONIZER (MSS3) which in 
its turn check busy, since there are no nodes 
(MSSs) currently CRITICAL  it send GRANT 
message to MSS1. 
When MSS1 received GRANT message, this will 
move all MHs in the request queue to grant queue, 
where they allowed entering the CS sequentially as 
FIFO based. While MSS1 CRITICAL, MSS3 
Receive another   REQUEST message  
 
from MSS4, since MSS3 busy flag is true it placed 
MSS4 in its queue. 

 
6.  CORRECTNESS OF THE ALGORITHM 
 

      6.1 Mutual Exclusion 
     To show that the algorithm achieves mutual 
exclusion, we have to show that two or more nodes 
can never execute the CS simultaneously; that is, 
one node exits the CS before the next node can 
enter the CS. This will be shown by contradiction. 
Assume that two nodes Ni and Nj are executing the 
CS simultaneously. This means that both nodes 
have received a GRANT message from the 
SYNCHRONIZER MSS.   
But according to our algorithm, a GRANT massage 
is sent only by the SYNCHRONIZER(MSS) when 
it receives a REQUEST message and busy is 
FALSE, but even if busy is TRUE, the node will 
wait its turn to enter the CS. So in both cases (no 
other process is currently in the CS). 
 
6.2 Deadlock Freedom 
The system of nodes is said to be deadlocked when 
no requesting node can ever proceed to critical 
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section, and this can occurs as consequence for any 
of the following situations: 

- either, no node is SYNCHRONIZER or 
SYNCHRONIZER node is not aware that 
other nodes request critical section. 

As mention above one node must be initiated as 
SYNCHRONIZER, and while the algorithm is 
working the YAS message is used to transfer the 
synchronization state from one node to another. 
Rule1 in adaptive DRS shows how the 
SYNCHRONIZER become aware when other 
nodes require the grant to enter the critical section, 
it either store the address of requesting node in its 
queue or send it to the node in its queue when busy 
true which is in turn serve the waiting, this is 
applied on both sides either between MSSs or MHs 
within the cell, so our algorithm is deadlock free. 
 
6.3 Freedom from starvation 
Starvation occurs when few sites repeatedly 
execute their CS while other sites wait indefinitely 
for their turns to do so. It means that there exists a 
node (call  
Ni) that can enter the CS two or more times before 
another node in WAITING state (call Nj) can enter 
the CS , but according to the DRS algorithm, when 
a node Ni exits the CS, it changes it’s state to 
REMINDER, and to enter the CS again it must 
send a REQUEST message. Using rule 1, if there 
are any other node in WAITING state (node Nj), 
node Ni will be added to the queue after node Nj. 
So, node Nj will enter the CS before node Ni. 
Accordingly, there is no starvation. 
 
7. PERFORMANCE ISSUES 

 
The number of messages generated per critical 
section invocation has traditionally evaluated the 
performance of most distributed mutual exclusion 
algorithms. Also, a useful mutual exclusion 
algorithm is characterized as fair to all nodes in the 
distributed system, being starvation-free and 
deadlock-free [2, 13]. 
Adaptive Dynamic Resource Synchronizer (ADRS) 
mutual exclusion algorithm reduces the message 
traffic generated due to CS execution, the number 
of messages incurred is much lower than in some 
other algorithms according to system assumptions 
that illustrated previously, and our implementation 
results. This is achieved because the nodes within 
the cell have to send at most three messages, and 
this happen because the existence of MSS, and 
there is no logical ring. Every node make a request 
directly to the Synchronizer which is in its turn 

decides to put the node in the queue or grant it the 
CS. 
 
7.1 Best case performance 
If we look to the performance between the MSSs: 
It happens when the synchronizer is the immediate 
neighbor from the direction of sending, and no one 
waiting the resource, in this case: 
Number of messages to enter and exit CS    
=1(REQUEST)+1(GRANT)+1(RELEASE) [16] 
Suppose the E is the message transfer time, so 
number of messages will be 
= 3E 
And waiting time in queue=0  .[16] 
 
 
- But if we discuss the performance within the cell 
itself (between MHs): which is done when there is 
only one node in the MSS queue 
So its = 1(MHREQUEST)+1(MHGRANT)+1(MH 
RELEASE) ,so its 3E in best case. 
 
Waiting time can be calculated as follow: 
Assume: 
M : number of the MHs within the cell 
Mq: number of the nodes in the queue 
T: the time needed to access the CS, we assume that 
it is fixed for all nodes 
At best case there is no nodes in the queue the 
requester will enter the CS directly so Mq=0. 
Waiting time = waiting time in queue + execution 
time in CS 

= (Mq*T ) 
= 0*T 
=0 
 

7.2 Worst case performance 
Again the performance between the MSSs, which is 
like the MHs in the DRS,It happens when the 
synchronizer in the far middle of the ring(longest 
path node),and all other processors want the 
resource(waiting in queue) and each one of them 
will use the resource for the longest possible 
time(max resource use). 
     Number of messages to enter and exit 
CS=1(REQUEST)*(n/2)+(n-1)(GRANT)*(n-
1)/2+(n-1)(RELEASE)*(n-1)/2 
 
= E((n/2)+(n-1)(n-1)/2+(n-1)(n-1)/2) 
 
 And waiting time in queue=(n-1)*max time for 
allocating the resource  . 
    Where n = number of processors.[16]  
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- The performance within the cell itself (between 
MHs): here is the enhancement in performance 
appeared using the ADRS algorithm,  
 Number of messages to enter and exit CS    = 
3E*M 
      This case happens if all of nodes try to enter the 
CS at the same time. 
Comparing it with the DRS, we notice that the total 
number of messages will be increased, so the 
network traffic will be decreased also. 
Waiting time in queue  
 = (Mq) *T 
 = (M-1)*T 
 
These results abbreviated in table 1. 
 

Table 1: Comparison between DRS and ADRS 
Algorithm Message#  

(Best case) 
Messagge#  

(Worst case) 
 

DRS 
 

3E 
 

 
E((n/2)+(n-1)(n-

1)/2+(n-1)(n-1)/2) 
 

 
ADRS 

 
          3E 

 

 
3E*M 

E: Message transfer time  
T: Max time in critical region 
N: number of nodes  
M: number of nodes / cell (ADRS) 
 
Also, we add a new Characteristic to the network 
which is the network become incrementally growth. 
The power energy of the nodes will be saved, 
because they will not involved in every GRANT or 
RELEASE process as in DRS algorithm, every 
node will just send and recieve it's own messages . 
Just MSS must have the higher energy within the 
cell. 
 
8. CONCLUSION 

We have presented an ADRS mutual exclusion 
algorithm for mobile networks. We directed the 
reader to the full proof that this algorithm provides 
mutually exclusive access to a critical section. 
We also have developed a technique to improve the 
fairness of the algorithm, as shown above we proof 
our algorithm correctness, so no starvation and no 
deadlock. These key points arise also in our 
implementation on the algorithm. 
 
We also compared the performance of the ADRS 
algorithm with the previous version DRS algorithm, 
to show that this algorithm enhanced the 
performance when it is reduce the number of 
messages to be transferred, so it minimize the 

traffic load in the network, this is happen because 
of the MSS existence. 
Moreover, using the ADRS the network growth 
will be achieved and energy saving also. 
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Figure 2: Snapshot For Mobile System Using Adaptive Version Of DRS Algorithm 
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