
Journal of Theoretical and Applied Information Technology
 31st July 2013. Vol. 53 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

392

ADAPTIVE DYNAMIC RESOURCE SYNCHRONIZATION
DISTRIBUTED MUTUAL EXCLUSION ALGORITHM

(ADRS)

P

1
PMARIAM ITRIQ, P

 2
PWAFA DBABAT, P

3
PAHMAD SHARIEH

P

1
PInstructor, BIT Dept., King Abdullah II School for Information Technology, The University of Jordan

P

2
PInstructor, SE Dept., Prince Abdullah Bin Ghazi Faculty of Information Technology, Balqa’ Applied

University
P

3
PProf., CS Dept., King Abdullah II School for Information Technology, The University of Jordan

E-mail: 0TP

1
PUm.itriq@ju.edu.jo U0T , 0TP

2
PUw.dababat@bau.edu.jo U0T , 0TP

3
PUsharieh@ju.edu.jo U0T

ABSTRACT

Existing mutual exclusion algorithms for distributed systems are not well suitable for mobile system,
because of several limitations: small memory, a relatively slow processor, low power batteries, and
communicate over low bandwidth wireless communication links. In this paper, we adapted the DRS mutual
exclusion algorithm applying it on the infrastructure machines that communicate directly with the mobile
hosts, called Mobile Support Stations (MSS) with some modifications. As DRS algorithm, the adapted
version ADRS tends to minimize the number of messages needed to be transmitted in the system, by
reducing the number of sites involved in the mutual exclusion decision, and reducing the amount of storage
needed at different sites of the system.

Keywords: Distributed systems, Permission, Synchronization, Mutual exclusion, MSS.

1. INTRODUCTION

The resource allocation problem is one of
the most important problems in mobile systems due
to the special characteristic of mobile environment:
the sites do not share any memory and
communicate completely by message passing. The
wireless communication channels were used by the
mobile system have lower bandwidth than the
wired communication links. Any distributed mutual
exclusion algorithm should take this constraint into
consideration [1][2].
Many distributed algorithms for mutual exclusion
that have been proposed since last decade classified
in two categories: token based and permission
based [3], permission based mutual algorithms
[4][5][6][7] impose that a requesting node must
receive permission from other nodes through cycles
of messages exchanged among nodes. Examples of
permission based mutual exclusion algorithms are
Lamport’s algorithm which require 3(n-1) messages
[8], Ricart and Agrawala [13] for requires 2(n - 1)
messages per CS entry, Mamoru Maekawa
proposed a distributed mutual exclusion algorithm

[5] which requires only 3√n to 5√n messages per
mutual exclusion. In token based mutual exclusion
algorithms [1][9][2] a unique token is shared
among set of nodes, if the token is available locally
no communication is needed and the node that hold
the token can enter critical section (CS), otherwise
an adequate mechanism must be taken to locate
it[10]. In addition, an expensive regenerate protocol
needed if the node that holds the token fails during
holding it. Suzuki and Kasami's token-based
algorithm requires n messages per CS entry [11];
Raymond's algorithm [2] complexity is O(log n)
under light demand. Algorithm proposed by
Pranay, Chaudhuri, Mehmet Hakan Karaata [12]
achieves the message complexity as O(n1/3) per
mutual exclusion
In most of the previously proposed mutual
exclusion algorithms, a requesting site must
consider every site in the system whether that site is
requesting CS or not. These algorithms have a
drawback because sites that are not competing for
the CS also sent request messages; such algorithms
are not suitable for mobile computing systems that
use low bandwidth. Some of the algorithms also

http://www.jatit.org/
mailto:1m.itriq@ju.edu.jo
mailto:2w.dababat@bau.edu.jo
mailto:3sharieh@ju.edu.jo

Journal of Theoretical and Applied Information Technology
 31st July 2013. Vol. 53 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

393

based on the idea of queues, which require a
relatively large amount of storage that is not
available in the mobile systems.

In the last ten years a new approach has been taken
to allocate resource in mobile ad-hoc network
(MANET), different Cluster based algorithms are
proposed [13][14][15] to reducing the message
complexity, in this algorithms no need for specific
coordinator (message router) for a cluster. Thus, no
reelection of coordinator is required. The Dynamic
resource synchronizer (DRS) algorithm [16], it’s
called dynamic because the node that manage the
critical section “synchronizer” is dynamically
changed according to certain criteria that reduce
massage traffic among the nodes[16].
In this paper we proposed an idea to achieve the
synchronization, also its try to overcome the
limitations for the literature distributed mutual
exclusion algorithms. This idea is an updated
version from a DRS algorithm mentioned in [16].

The organization of this paper is as follows: Section
2 presents briefly describes the DRS algorithm. The
Mobile System Environment and Model described
in section 3. In section 4 we describe our adaptive
DRS algorithm and its assumptions. Section 5
traces the execution rules of the algorithm. The
correctness of ADRS is presented in section 6. In
section 8 we discuss the performance issues of
ADRS. And finally we conclude our work in
section 8.

2. OVERVIEW OF DRS

DRS algorithm assumed that the system
consists of n independent mobile nodes labeled
(N0, N1, …, Nn), communicating by message
passing over a wireless network. Each node in the
system is assumed to be running an application
whose states are partitioned into four sections:

WAITING: where the node has requested access to
the CS.
CRITICAL: in which the node is executing the
CS.
SYNCHRONIZER: node currently responsible for
handling mutual exclusion access to the CS. There
is one and only one node in this state in the system
at any instance. Initially one node is set to this state.
REMINDER: where the node is neither requesting
nor executing the CS. All nodes are initialized to
this state.
Nodes in the system cycle through REMINDER to
WAITING to CRITICAL to REMINDER to
SYNCHRONIZER state, and nodes never stop

executing while CRITICAL. A node exits the
SYNCHRONIZER state either if any other node
exits CS.

The major data structures used by DRS algorithm
were:

-Status: indicates whether a node is in the

WAITING, CRITICAL,
SYNCHRONIZER , or REMINDER
section.

-Next: pointer to the process next in the logical
ring. Processes are connected to each other
forming a logical ring.

-Queue: pointer to the process next in the waiting
queue. This pointer is set to nil if the
process is the one at the end of the queue
or if it is not involved in the queue.

-Busy: a Boolean flag used only by the
SYNCHRONIZER, it is set to TRUE if any
node in the system is currently CRITICAL.
Initially this is FALSE in all nodes.

-Synch: address of the current SYNCHRONIZER
node.

-Critical: address of the node currently in the
CRITICAL state. The node uses this
variable when it is in the
SYNCHRONIZER state.

Five types of messages are communicated in the
system:

-REQUEST: a message sends by a REMINDER

node that is wishing to be
CRITICAL.

-GRANT: a message sends by the
SYNCHRONIZER to the next process
in queue.

-RELEASE: a message sends by the CRITICAL to
the SYNCHRONIZER when exiting
the CS.

-YAS (You Are Synchronizer): send by the
SYNCHRONIZER to transfer the
synchronization state.

-ADD: a message send by the SYNCHRONIZER
to add a new node to the queue.

-GHANGE: a message sends by the
SYNCHRONIZER to the CRITICAL
to inform it of the SYNCHRONIZER
state transfer.

A slightly different version of the DSR algorithm is
presented also. It takes into consideration the fact
that it is not desirable in a dynamic system that the
same node will be in SYNCHRONIZER state for a

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 31st July 2013. Vol. 53 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

394

long time, to insure fairness in the system. Using
this version, the SYNCHRONIZER state will
circulate among all nodes in the system and no
node will remain SYNCHRONIZER forever. In
this algorithm, a node exits the SYNCHRONIZER
state either if any other node exits CS, or its time is
finished. A node that frequently enters the CS, will
have higher probability to be in SYNCHRONIZER
state.

So they add a new data structure to the previous
data structures called timer, which is used by the
SYNCHRONIZER. Assuming T is the maximum
period of time a node stays in SYNCHRONIZER
state.

We will depend on some of the above basic
structure in our algorithm but with modification
suitable to our new model.

3. MOBILE SYSTEM ENVIRONMENT AND

MODEL

 As we mentioned previously, the mobile
systems have special constraints that cannot be
captured by traditional distributed systems. These
constraints are memory limitations, limited battery
life and working under low bandwidth.
In this paper, the proposed algorithm takes in
consideration these constraints based on the same
system model used in [1] which we represent it as
in figure 1, where a host that can move while
retaining its network connections is a Mobile Host
(MH). The infrastructure machines that
communicate directly with the mobile hosts are
called Mobile Support Stations (MSS). A cell is a
logical or geographical coverage area under an
MSS. All MHs that have identified themselves with
a particular MSS, are considered to be local to the
MSS. An MH can directly communicate with an
MSS (and vice versa) only if the MH is physically
located within the cell will be served by the MSS,
and each MH belongs to only one cell at time.

Figure 1: System Model

4. ADAPTATION DYNAMIC

SYNCHRONIZER ALGORITHM FOR
MSS (ADRS)

 In this section, another version of the dynamic
synchronizer algorithm; in which nodes are MSSs
not MHs. A MH that needs to access a CS sends its
request to its local MSS, which then inserts it at the
tail of a request queue. If that MH was the first in
the request queue the MSS initializes a REQUEST
message and sends it to its neighbor, it become in
WAITING state, and continue working. It may
receive other requests for the CS from other MHs in
its region, which it adds to the tail of the request
queue. When the WAITING MSS eventually
receives a GRANT message, it moves all MHs in
the request queue to a grant queue, where they are
allowed to enter the CS sequentially. After
servicing all MHs in the grant queue, the MSS
sends a RELEASE message to the
SYNCHRONIZER MSS, then the algorithm
proceeds in the normal way.

4.1 System Description and Assumptions

4.1.1 Assumptions
The proposed idea was applied on the MSS side to
manage the synchronization, also its try to
overcome the above limitations for the literature
distributed mutual exclusion algorithms mentioned
in section 2.
Our solution needs to consider the following
assumptions and conditions for the distributed
environment:

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 31st July 2013. Vol. 53 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

395

1.All nodes in the system are assigned unique
identification numbers from 1 to N.

2.There is only one requesting process executing at
each node. Mutual exclusion is implemented at
the node level.

3.Processes are competing for a single resource.
4.At any time, each process initiates at most one

outstanding request for mutual exclusion.

The proposed idea should consider the following
aspects about the reliability of the communications
[15]:

• Message delivery guaranteed.
• Message-order preservation.
• Message transfer delays are finite, but

unpredictable.
• The topology of the network is known.

Like DRS algorithm , assuming that the nodes in
the system are (NR1R, NR2R,…,NRnR) but in this algorithm
it stands for the n MSSs in the system, another
system component which is the MHs need also to
be considered in this version. So assume we have m
MHs each with a unique identifier (MR1R,
MR2R,…,MRmR).

Also in this version of DRS algorithm we must
consider the following assumptions:
1. The nodes (even MH or MSS) have unique node
identifiers, (i.e. node i have identifier Ni).
2. A node failure does not occur.
3. Communication links are bi-directional and
FIFO.
4. Communication links failures are predictable,
providing a reliable communication.
5. A partition in network does not occur.

4.1.2 Description

In this version the MHs need to maintain only 2
data structures:

• Status: CRITICAL, WAITING or
REMINDER, as discussed above. Note
that a MH cannot be in SYNCHRONIZER
state since it is the MSSs that will do
synchronization in this algorithm.

• Mss: this contains the address of the local
MSS.

Two new data structures need to be maintained by
each MSS in this algorithm:

• Request: which is a queue of MHs; its
entries are addresses to MHs that currently
requesting the CS in this region.

• Grant: which is a queue of MHs; its
entries are addresses to MHs that will
enter the CS sequentially in this region.

Three new types of messages that are
communicated between a MSS and the MHs in its
region are also added:

• MHREQUEST: a MH sends this message
to its MSS when it wishes to enter the CS.

• MHGRANT: this message is sent by a
MSS to a MH in its region allowing it to
enter the CS.

• MHRELEASE: a MH sends this message
to its MSS when it exits the CS.

A general snapshot of the system is show in Figure
2. Which describe how the MHs communicate with
their local MSS, and How MSSs connected through
logical ring.

5. EXECUTION RULES OF THE

ADAPTIVE (DRS) ALGORITHM

5.1 Variation from DRS
Handling of some events will differ from the
ordinary node DRS, and new events will occur.
This is explained through the following rules:

Rule1: Handling a REQUEST message: when a
REQUEST message arrives at a node (here node is
MSS), it checks its status, if it is not
SYNCHRONIZER it simply forwards the message
to next. If it is SYNCHRONIZER, the node checks
busy, if other node currently uses the CS,
SYNCHRONIZER adds the requesting node to the
end of the queue.
To add a node to the end of the queue, the
SYNCHRONIZER checks its queue pointer, if it is
not nil a message is prepared with the address of
the requesting node and sent to the node in queue,
then queue is set to the address of the requesting
process, else, the address of the requesting process
is stored in queue. However, if no node is currently
CRITICAL, a GRANT message is sent to the
requesting node, the address of the requesting node
is stored in critical and busy is set to TRUE.

Rule2: Handling a GRANT message: when a node
receives a GRANT message from the
SYNCHRONIZER, it sets status to CRITICAL and
saves the address of SYNCHRONIZER in synch,
and then it moves all entries in the request queue to

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 31st July 2013. Vol. 53 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

396

the grant queue. All MHs in the grant queue are
then sent a MHGRANT message in turn.
Rule3: Handling a RELEASE message: when the
SYNCHRONIZER receives a RELEASE message,
it changes its status to REMINDER, sets busy to
FALSE, and sends YAS message to the node that
completed the CS (i.e. node from which it received
the RELEASE message). Together with the
message, the SYNCHRONIZER sends the address
of the node currently at the end of the queue
(current contents of queue), sending nil if no nodes
currently in the queue.

Rule4: Handling a YAS message: when a node
receives a YAS message, if it is not in REMINDER
state, it forwards the message to next, and sends a
CHANGE message containing next to critical (note
that it knows critical from the YAS message).
However, if the node is currently in REMINDER
state, it should handle the message. First, it changes
its status to SYNCHRONIZER. Then, the node
checks the contents of queue, if not nil, a GRANT
message is sent to the node in queue and busy is set
to TRUE. After that, the node stores the address
attached with the message in queue.

Rule5: Handling an ADD message: when a node
receives an ADD message, it stores the address in
the message in queue.

Rule6: Handling a CHANGE message: when a
node receives a CHANGE message, it overwrites
its synch to the address in the message.

Rule7: Requesting the CS: when a MH wishes to
enter the CS it prepares a MHREQUEST message
containing its address and send it to
its local MSS , then waits for a MHGRANT from
the MSS.

Rule8: Handling a MHREQUEST message: when a
MHREQUEST message arrives at a node, the
requesting MH is first added to the tail of the
request queue. The node then checks status, if it is
WAITING or CRITICAL, nothing is done. If status
is REMINDER, the MSS prepares a REQUEST
message containing its address and sends it to next,
then changes its status to WAITING. If status is
SYNCHRONIZER and busy is TRUE, the
SYNCHRONIZER send ADD message with the
address of itself and sent to the node in next, then
queue is set to the address of the
SYNCHRONIZER, then SYNCHRONIZER sends
a YAS message to the node in next to make it the

SYNCHRONIZER, then it sets status to
WAITING. In case that status is SYNCHRONIZER
and busy is FALSE, SYNCHRONIZER sets busy
to TRUE, stores its address in queue, send
MHGRANT message to the requesting MH, sends
a YAS message to the node in next and finally
changes status to CRITICAL.

Rule9: Handling a MHGRANT message: when a
MHGRANT message arrives at an MH, it enters the
CS.

Rule10: Exiting CS: when a MH exits the CS, it
sends MHRELEASE message to local MSS and
changes status to REMINDER.

Rule11: Handling a MHRELEASE message: when
a MHRELEASE message arrives at an MSS, it
checks grant queue, if not empty the next MH in the
queue is sent a MHGRANT message, else, it sends
a RELEASE message to the SYNCHRONIZER
(using the address stored in synch). And change its
status to REMINDER.

Pseudo code

Accordingly, theDRS algorithm in [16] will be
modified as follows:

Rule1: When a REQUEST(Nj, Ni) is received by a
node Nj:

• if status ≠ SYNCHRONIZER,
REQUEST(next, Ni).

• if status = SYNCHRONIZER and busy
= FALSE.

• GRANT(Ni, Nj).
• critical = Ni.
• queue = Ni.
• busy = TRUE.

1. if status = SYNCHRONIZER and busy
= TRUE.

• ADD(queue, Ni).
• queue = Ni.

Rule2 & Rule11: When a GRANT(Ni, Nj) is
received by node Ni:

1. synch = Nj.
2. status = CRITICAL.
3. grant = request
4. while grant not empty

• remove Mj from head of grant
•
• MHGRANT(Ni, Mj)
• Wait MHRELEASE(Mj, Ni)

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 31st July 2013. Vol. 53 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

397

5. RELEASE(synch, Ni).
6.status = REMINDER.

Rule3: When a node Nj receives RELEASE(Nj,
Ni):

• YAS(Ni, nil, queue).
• status = REMINDER.
• busy = FALSE.

Rule4: When a node Nj receives YAS(Nj, Ni, Nk):

1. if status ≠ REMINDER.
• forward YAS(next, Ni, Nk) to next.
• CHANGE(Ni, next).

2. if status = REMINDER.
 status = SYNCHRONIZER.
• if queue ≠ nil
• GRANT(queue, Nj).

• busy = TRUE.
• queue = Nk.

Rule5: When a node Ni receives an ADD(Ni, Nj):
 1. queue = Nj.

Rule6: When a node Ni receives CHANGE(Ni,
Nj).

1. synch = Nj.

Rule7: When a MH Mi requests access to the CS:

1. status = WAITING.
2. MHREQUEST(Mi, mss).

Rule8: When a node Nj receives
MHREQUEST(Mi, Nj):

1. Add Mi to request.
2. if status = REMINDER.

• REQUEST(next, Nj).
• Status = WAITING.

3. if status = SYNCHRONIZER and
busy = TRUE.
• ADD (next, Ni)
• queue = Ni
• YAS (next, queue)
• Status = WAITING

4. if status = SYNCHRONIZER and
busy = FALSE.
• Busy = TRUE
• queue = Ni
• MHGRANT(Ni, Mj)
• YAS (next, queue)
• Status = CRITICAL

Rule9: When a MH Mi receives MHGRANT(Nj,
Mi):

1. status = CRITICAL.
2. Enter CS.

Rule10: When a MH Mi exits the CS:

1.status = REMINDER.
2.MHRELEASE(Mi, mss).

Rule11: When a node Ni receives
MHRELEASE(Mj, Ni):

1.if grant empty
2.RELEASE(synch, Ni).
3.status = REMINDER

5.2 Example on ADRS

In Figure2, while MSSs receives MREQUEST
message from their MHs , MSS1 initiate a
REQUEST message that follow the logical ring to
MSS2 then to SYNCHRONIZER (MSS3) which in
its turn check busy, since there are no nodes
(MSSs) currently CRITICAL it send GRANT
message to MSS1.
When MSS1 received GRANT message, this will
move all MHs in the request queue to grant queue,
where they allowed entering the CS sequentially as
FIFO based. While MSS1 CRITICAL, MSS3
Receive another REQUEST message

from MSS4, since MSS3 busy flag is true it placed
MSS4 in its queue.

6. CORRECTNESS OF THE ALGORITHM

 6.1 Mutual Exclusion
 To show that the algorithm achieves mutual
exclusion, we have to show that two or more nodes
can never execute the CS simultaneously; that is,
one node exits the CS before the next node can
enter the CS. This will be shown by contradiction.
Assume that two nodes Ni and Nj are executing the
CS simultaneously. This means that both nodes
have received a GRANT message from the
SYNCHRONIZER MSS.
But according to our algorithm, a GRANT massage
is sent only by the SYNCHRONIZER(MSS) when
it receives a REQUEST message and busy is
FALSE, but even if busy is TRUE, the node will
wait its turn to enter the CS. So in both cases (no
other process is currently in the CS).

6.2 Deadlock Freedom
The system of nodes is said to be deadlocked when
no requesting node can ever proceed to critical

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 31st July 2013. Vol. 53 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

398

section, and this can occurs as consequence for any
of the following situations:

- either, no node is SYNCHRONIZER or
SYNCHRONIZER node is not aware that
other nodes request critical section.

As mention above one node must be initiated as
SYNCHRONIZER, and while the algorithm is
working the YAS message is used to transfer the
synchronization state from one node to another.
Rule1 in adaptive DRS shows how the
SYNCHRONIZER become aware when other
nodes require the grant to enter the critical section,
it either store the address of requesting node in its
queue or send it to the node in its queue when busy
true which is in turn serve the waiting, this is
applied on both sides either between MSSs or MHs
within the cell, so our algorithm is deadlock free.

6.3 Freedom from starvation
Starvation occurs when few sites repeatedly
execute their CS while other sites wait indefinitely
for their turns to do so. It means that there exists a
node (call
Ni) that can enter the CS two or more times before
another node in WAITING state (call Nj) can enter
the CS , but according to the DRS algorithm, when
a node Ni exits the CS, it changes it’s state to
REMINDER, and to enter the CS again it must
send a REQUEST message. Using rule 1, if there
are any other node in WAITING state (node Nj),
node Ni will be added to the queue after node Nj.
So, node Nj will enter the CS before node Ni.
Accordingly, there is no starvation.

7. PERFORMANCE ISSUES

The number of messages generated per critical
section invocation has traditionally evaluated the
performance of most distributed mutual exclusion
algorithms. Also, a useful mutual exclusion
algorithm is characterized as fair to all nodes in the
distributed system, being starvation-free and
deadlock-free [2, 13].
Adaptive Dynamic Resource Synchronizer (ADRS)
mutual exclusion algorithm reduces the message
traffic generated due to CS execution, the number
of messages incurred is much lower than in some
other algorithms according to system assumptions
that illustrated previously, and our implementation
results. This is achieved because the nodes within
the cell have to send at most three messages, and
this happen because the existence of MSS, and
there is no logical ring. Every node make a request
directly to the Synchronizer which is in its turn

decides to put the node in the queue or grant it the
CS.

7.1 Best case performance
If we look to the performance between the MSSs:
It happens when the synchronizer is the immediate
neighbor from the direction of sending, and no one
waiting the resource, in this case:
Number of messages to enter and exit CS
=1(REQUEST)+1(GRANT)+1(RELEASE) [16]
Suppose the E is the message transfer time, so
number of messages will be
= 3E
And waiting time in queue=0 .[16]

- But if we discuss the performance within the cell
itself (between MHs): which is done when there is
only one node in the MSS queue
So its = 1(MHREQUEST)+1(MHGRANT)+1(MH
RELEASE) ,so its 3E in best case.

Waiting time can be calculated as follow:
Assume:
M : number of the MHs within the cell
Mq: number of the nodes in the queue
T: the time needed to access the CS, we assume that
it is fixed for all nodes
At best case there is no nodes in the queue the
requester will enter the CS directly so Mq=0.
Waiting time = waiting time in queue + execution
time in CS

= (Mq*T)
= 0*T
=0

7.2 Worst case performance
Again the performance between the MSSs, which is
like the MHs in the DRS,It happens when the
synchronizer in the far middle of the ring(longest
path node),and all other processors want the
resource(waiting in queue) and each one of them
will use the resource for the longest possible
time(max resource use).
 Number of messages to enter and exit
CS=1(REQUEST)*(n/2)+(n-1)(GRANT)*(n-
1)/2+(n-1)(RELEASE)*(n-1)/2

= E((n/2)+(n-1)(n-1)/2+(n-1)(n-1)/2)

 And waiting time in queue=(n-1)*max time for
allocating the resource .
 Where n = number of processors.[16]

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 31st July 2013. Vol. 53 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

399

- The performance within the cell itself (between
MHs): here is the enhancement in performance
appeared using the ADRS algorithm,
 Number of messages to enter and exit CS =
3E*M
 This case happens if all of nodes try to enter the
CS at the same time.
Comparing it with the DRS, we notice that the total
number of messages will be increased, so the
network traffic will be decreased also.
Waiting time in queue
 = (Mq) *T
 = (M-1)*T

These results abbreviated in table 1.

Table 1: Comparison between DRS and ADRS
Algorithm Message#

(Best case)
Messagge#

(Worst case)

DRS

3E

E((n/2)+(n-1)(n-

1)/2+(n-1)(n-1)/2)

ADRS

 3E

3E*M

E: Message transfer time
T: Max time in critical region
N: number of nodes
M: number of nodes / cell (ADRS)

Also, we add a new Characteristic to the network
which is the network become incrementally growth.
The power energy of the nodes will be saved,
because they will not involved in every GRANT or
RELEASE process as in DRS algorithm, every
node will just send and recieve it's own messages .
Just MSS must have the higher energy within the
cell.

8. CONCLUSION

We have presented an ADRS mutual exclusion
algorithm for mobile networks. We directed the
reader to the full proof that this algorithm provides
mutually exclusive access to a critical section.
We also have developed a technique to improve the
fairness of the algorithm, as shown above we proof
our algorithm correctness, so no starvation and no
deadlock. These key points arise also in our
implementation on the algorithm.

We also compared the performance of the ADRS
algorithm with the previous version DRS algorithm,
to show that this algorithm enhanced the
performance when it is reduce the number of
messages to be transferred, so it minimize the

traffic load in the network, this is happen because
of the MSS existence.
Moreover, using the ADRS the network growth
will be achieved and energy saving also.

REFERENCES

[1] Naimi,M. , Trehel,M. and A. Arnold, “A log
(N) distributed mutual exclusion algorithm
based on path reversal,” Journal of Parallel and
Distributed Computing, vol. 4, April 1996, pp.
1–13.

[2] Raymond, K. ,“A Tree based Algorithm for
Distributed Mutual Exclusion”, ACM
Transactions on Computer Systems, vol. 7,
February 1989, pp. 61–77.

[3] Raynal, M., “A simple taxonomy for
Distributed mutual exclusion algorithms”,
ACM SIGOPS Operating Systems Review,
vol. 25, 1991, pp. 47-50.

[4] Agarwal ,D. and El Abbadi, A., “An
Efficient and Fault–Tolerant Solution for
Distributed Mutual Exclusion”, ACM
Transactions on Computer Systems, vol.9,
February 1991, pp. 1–20.

[5] Maekawa, M. ,“A �N Algorithm for Mutual
Exclusion in Decentralized Systems”, ACM
Transaction on Computer Systems, vol. 3, No.
2, 1985, pp. 145–159.

[6] Ricart, G. & Agrawala, A. , “An Optimal
Algorithm for Mutual Exclusion in Computer
Networks”, Communications of the ACM, Vol.
24 (1), 1981 , pp. 9-17.

[7] Saxena, P.C., Rai, J., A survey of permission-
based distributed mutual exclusion algorithms.
Computer standards & interfaces, vol. 25, no.
2, 2003,pp. 159-181.

[8] Lamport, L., “Time, Clocks and the Ordering
of Events in a Distributed System”,
Communications of the ACM, Vol. 2, 1978,
pp. 558-565.

[9] Nisho, S. ,K.F. Li and E.G. Manning, “A
resilient mutual exclusion algorithm for
computer networks”, IEEE Transactions on
Parallel and Distributed Systems, vol. 1,
1990,pp. 344–355.

[10] Misra, J. ,“Detecting termination of
distributed computations using markers”,
Proceedings of the 2nd ACM Annual
Symposium on Principles of Distributed
Computing, 1985,pp. 237–249.

[11] Ichiro Suzuki and Tadao Kasami. “A
distributed mutual exclusion algorithm”. ACM
Trans. Comput. Syst., 1985,3(4):344-349.

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 31st July 2013. Vol. 53 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

400

[12] Chaudhuri, P. and Karaata ,M. “An o(n1/3)
algorithm for distributed mutual exclusion.
Journal of Systems Architecture”, 1998,
45(5):409{420.

[13] Abhilasha Gupta, B.V.R. Reddy, Udayan

Ghosh, Ashish Khanna , “A Permission-based
Clustering Mutual Exclusion Algorithm for
Mobile Ad-Hoc Networks” , (IJERA) ISSN:
2248-9622 ww.ijera.com Vol. 2, Issue 4, July-
August 2012.

 [14] Rahman, M. and Akbar, M.,” A Permission
Based Hierarchical Algorithm for Mutual
Exclusion”journal of computers, vol. 5, no. 12,
december 2010

[15] Jennifer Walter, Jennifer Welch and Nitin
Vaidya, “A mutual exclusion algorithm for ad
hoc mobile network”, In Journal of Wireless
Networks, vol. 7, 2001, pp. 585-600.

[16] Sharieh, A., M. Itriq and W. Dbabat, 2008. “A
Dynamic Resource Synchronizer Mutual
Exclusion Algorithm for Wired/Wireless
Distributed Systems”. Am. J. Applied Sci.,
2008, 5: 829-834.

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 31st July 2013. Vol. 53 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

401

Figure 2: Snapshot For Mobile System Using Adaptive Version Of DRS Algorithm

http://www.jatit.org/

	4.1 System Description and Assumptions
	4.1.1 Assumptions
	4.1.2 Description

	5.1 Variation from DRS
	5.2 Example on ADRS
	6.2 Deadlock Freedom
	6.3 Freedom from starvation
	7.1 Best case performance
	7.2 Worst case performance
	Figure 2: Snapshot For Mobile System Using Adaptive Version Of DRS Algorithm

