
Journal of Theoretical and Applied Information Technology
 20th July 2013. Vol. 53 No.2

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

196

IMPLEMENTATION OF STRONGER AES BY USING
DYNAMIC S-BOX DEPENDENT OF MASTER KEY

1SLIMAN ARRAG, 2ABDELLATIF HAMDOUN, 3ABDERRAHIM TRAGHA, AND 4SALAH

EDDINE KHAMLICH
1,2 and 4 Laboratory of treatment of information Universite Hassan II Mohammedia, Casablanca, Morocco
3 Laboratory of Information Technology and Modeling, Universite Hassan II Mohammedia, Casablanca,

Morocco

E-mail: 1arragsliman@yahoo.fr, 2alhamdoun@yahoo.fr, 3a.tragha@univh2m.ac.ma,
4khamlich.salah@gmail.com

ABSTRACT

In this paper we propose and we show a new approach of nonlinear transformation algorithm for AES
SBox to enhance the complexity of the SBox structure,we making AES stronger by using Dynamic
Sbox,with look up table Sbox and Key expansion as modified when we change the initial key, that
effectively providing a high resistance against differential cryptanalysis and especially the linear
cryptanalysis. The structure of the AES S-box has been expanded and modified to be accordance with the
proposed algorithm and to obtain good nonlinearity of the Sbox. This has been done without changing the
basic operations of AES.The proposed modifications of the Advanced Encryption and a modified Sbox are
implemented in Cyclone II Dvice by using VHDL language.

Keywords: AES, Dynamic S-box, Master key, FPGA, Vhdl.

1. INTRODUCTION

The evolution of information technology and in
particular the increase in the speed of processing
devices has necessitated the need to reconsider the
cryptographic algorithms used. The National
Institute of Standards and Technology of the United
States (NIST) in cooperation with industry and
cryptographic communities [1] have worked
together to create a new cryptographic standard.
The primary objective was a federal standard
(Federal Information Processing Standard FIPS) to
establish that specifies a cryptographic algorithm
with the ability to improved protect sensitive
information from the government. It was expected
that the algorithm can be used both in the
governmental structures of the United States and in
the analysis of companies and private full
sectors.After (mathematics, cryptography, statistics,
engineering, etc.) of the algorithms, NIST [8]
announced that the new standard uses the Rijndael
algorithm and since 2001, it is the foundation of the
new encryption standard AES.

In this paper we presente the design and
hardware implementation of the AES (Advanced
Encryption Security) in Cyclonne II, as using Xilinx

ISE synthesis tool and Qaurtus II v9 for great
simulated and synthesized. The architectural design
has been described code in VHDL language. The
AES has for the moment not been broken but the
cryptanalysis of Rijndael (AES) has not stopped, for
that we used a new approach allows us to obtain
competitive performance. This approach will be
studied its effect on the AES focusing on the S-
Boxes wich look up table Sbox and Key expansion
as modified when we change the initial key.
Literatures [4], [10], [11], [12], [13], [18], [20],
[21], [22], [25] describe design and implementation
of AES and AES modified treatment in the FPGA.

2. AES RIJNDAEL ALGORITHM

The AES algorithm (or rijndael) [2], [3],
[5] takes as input a block of 128 bits (16 bytes), the
key is 128, 192 or 256 bits. The 16 bytes are
swapped input according to a predefined table.
These bytes are then placed in a matrix of 4x4
elements and lines are rotated to the right. The
increment for the rotation varies with the number of
the line. A linear transformation is then applied to
the matrix, it consists of the binary multiplication of
each matrix element with polynomials from a
auxiliary matrix, this multiplication is subjected to

http://www.jatit.org/
mailto:arragsliman@yahoo.fr
mailto:alhamdoun@yahoo.fr,
mailto:%203a.tragha@univh2m.ac.ma,
mailto:4khamlich.salah@gmail.com

Journal of Theoretical and Applied Information Technology
 20th July 2013. Vol. 53 No.2

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

197

special rules according GF (28) (or Galois field
finite field). Linear transformation ensures better
diffusion (spread of bits in the structure) over
several turns.Finally, an XOR between the matrix
and other matrix allows to obtain an intermediate
matrix. These operations are repeated several
times and define a "turn." For a 128, 192 or 256,
AES requires respectively 10, 12 or 14 rounds.

The following diagram describes briefly the
progress of encryption Fig 1:

Figure. 1: Structure Of The AES Algorithm.

Three main criteria have been met in its design:

-Resistance against all known attacks.
-Speed code on the widest variety of platforms
possible.
-Simplicity in design.
Rijndael (1998) was strongly influenced by his
predecessor, Square algorithm (1997).Crypton and
Twofish algorithms also use transactions Square.
Rijndael is pronounced "Raindal".

• BYTE_SUB (Byte Substitution) is a nonlinear
function operating independently on each block
from a table called substitution.

Figure 2: Structure Of The Subbyte

Table 1: Look Up Table Of S-BOX.

• SHIFT_ROW is a function operating lags
(typically it takes into 4 pieces of 4 bytes and
operates left shifts of 0, 1, 2 and 3 bytes for the
tracks 1, 2, 3 and 4 respectively).

Figure 3: Structure Of The Shiftrows

• MIX_COL is a function which converts each
input byte into a linear combination of input bytes
and can be mathematically expressed by a product
marticiel on the Galois field (28) [15].

Figure 4: Structure Of The Mixcolumn

63 7c 77 7b f2 6b 6f c5 30 01 67 2b fe d7 ab 76

ca 82 c9 7d fa 59 47 f0 ad d4 a2 af 9c a4 72 c0

b7 fd 93 26 36 3f f7 cc 34 a5 e5 f1 71 d8 31 15

04 c7 23 c3 18 96 05 9a 07 12 80 e2 eb 27 b2 75

09 83 2c 1a 1b 6e 5a a0 52 3b d6 b3 29 e3 2f 84

53 d1 00 ed 20 fc b1 5b 6a cb be 39 4a 4c 58 cf

d0 ef aa fb 43 4d 33 85 45 f9 02 7f 50 3c 9f a8

51 a3 40 8f 92 9d 38 f5 bc b6 da 21 10 ff f3 d2

cd 0c 13 ec 5f 97 44 17 c4 a7 7e 3d 64 5d 19 73

60 81 4f dc 22 2a 90 88 46 ee b8 14 de 5e 0b db

e0 32 3a 0a 49 06 24 5c c2 d3 ac 62 91 95 e4 79

e7 c8 37 6d 8d d5 4e a9 6c 56 f4 ea 65 7a ae 08

ba 78 25 2e 1c a6 b4 c6 e8 dd 74 1f 4b bd 8b 8a

70 3e b5 66 48 03 f6 0e 61 35 57 b9 86 c1 1d 9e

e1 f8 98 11 69 d9 8e 94 9b 1e 87 e9 ce 55 28 df

8c a1 89 0d bf e6 42 68 41 99 2d 0f b0 54 bb 16

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 20th July 2013. Vol. 53 No.2

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

198

• The Add RoundKey operation is a simple bit by
bit XOR operation between the data and the
roundkey (by using initial key or Key
expansion).
The circled ⊕ means exclusive OR operation
(XOR).
Ki is the ith subkey calculated by an algorithm from
the master key K.

• Key Expansion operation: The algorithm for
generating the 10 turns of the round key is as
follows: The fourth column of the i-1 key is rotated
such that each element is moved one row.

Figure 5:Rotated The Last Row

It then places the result by way of an algorithm
forwards Sub-Box that replaces all eight bits of the
matrix with a corresponding 8-bit value of S-Box.

(See figure 7 below for SubByte inverse).

Figure 6:Subbyte The Row By Using Sbox Look Up Table

To generate the first column of the i-th key, this
result is XOR-ed with the first column of the first i-
key and a constant (row constant or Rcon) which
depends on i.

Figure 7:Look Up Table Of The Rcon

Figure 8:Operation Xor Between First Row Of Key And

Last Row After The Modefication And First Row Of Rcon

The second column is generated by XOR-ing the

first column of the i-th key in the second column of
the first key-i.

Figure 9:XOR-Ing Between Modified Row And Second
Row Of Master Key

This iteration continues for the other two columns
to generate the key to ith.

Figure 10: Example Key Extension

In addition, this process continues iteratively to
generate all 10 keys As a final note, all these keys
are stored in a static manner once they have been
calculated first as th key generated is necessary for
the tower (10-i) th decryption.

• Decryption is the process of applying the reverse
operations in the reverse order and with subkeys
also in reverse order.

2.1 Attacks

The AES has for the moment not been
broken and the exhaustive search ("brute force") is
the only solution. Rijndael was designed so as to
make conventional methods such as linear and
differential analysis very difficult[17], [19].

3. DEFINING THE PROBLEM

One of the main functions used in AES is
the "Substitution of bytes (SubBytes)". This
function performs a non-linear substitution, which
is performed independently on each input byte. The
matrix which gives the relationship between the
input and output bytes, called (S-BOX) in the AES
algorithm is invertible.

Each matrix must meet the following criteria:
balance, non-linearity, completeness, strict
avalanche criterion, low Table XOR ,order
diffusion, Invertability, the static criteria
(independence between the input and data output,
the independence between the output and the input
data, the independence between the output and the

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 20th July 2013. Vol. 53 No.2

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

199

output data), the dynamic criteria (Dynamic
independence between the data input and output,
the independence between dynamic the input and
output of data, dynamic independence between the
output and output data), specific criteria (Entire S-
BOX and non-contradiction). These criteria are
defined and described in detail in [9], [14], [23].
Requirements defined so that each S-BOX must
meet are determined by the need to be stable
algorithm for linear cryptanalysis and differential at
a time.

Therefore, to meet the requirements set forth above,
new substitution matrices must be found, which
should be applied in the algorithm parameters or
function key values and at the same time, these S-
boxes must have characteristics same or higher
than those used in the AES standard.

4. PROPOSITION FOR GENERATING

NEW S-BOX DEPENDING OF MASTER
KEY

Having the substitution matrix used in
AES core as a basis, it is necessary to identify other
same matrices with the same or better
characteristic. The principal SBOX (showing in
figure), used in the cryptographic operation is
regarded as a base..

Based on the S-BOX suggested in AES (SBOX
AES) and depending on key used to encrypt the
new plaintext substitution matrices are compted
(SBOXxor) by the following process:

• First of all select one byte from master key
(initial key) Key[i];

• Computting new SBOXxor, where each cell is
equal to XOR with selected byte,
SBOXxor[x,y]=SBOXAES[x,y] ⊕ Key[i];

• A substitution matrix newly calculated is used
for plaintext encryption.

Decryption process will the following approach
is used:

• Selecte same byte from key - Key[i];
• Computing new SBOXxor, where each cell is

equal to XOR with selecte byte,
SBOXxor[x,y]=SBOXAES[x,y] ⊕ Key[i];

• Computing inverse matrices by using
SBOXxor, SBOXxor INV=INV (SBOXxor)
(structure of the SBOXxor inv showing in the
figure);

• A recalculation inverse S-BOX is used to decrypt
the plaintext.

By using the above described method 256
substitution matrices have been obtained. One of
them SBOXAES ⊕ 0hex is equal to original SBOX
suggered in AES core. Some of them are depicted
in Table 1 and Table 2 , respectively, SBOX
computed by XOR with byte equal to 24hex and 6F
hex.

Table 2: SBOX24 (S-BOX ⊕ 24hex).

Table 3: SBOX6F (SBOX ⊕ 6Fhex).

47 58 53 5F D6 4F 4B E1 14 25 43 0F DA F3 8F 52

EE A6 ED 59 DE 7D 63 D4 89 F0 86 8B B8 80 56 E4

93 D9 B7 02 12 1B D3 E8 10 81 C1 D5 55 FC 15 31

20 E3 07 E7 3C B2 21 BE 23 36 A4 C6 CF 03 96 51

2D A7 08 3E 3F 4A 7E 84 76 1F F2 97 0D C7 0B A0

77 F5 24 C9 04 D8 95 7F 4E EF 9A 1D 6E 68 7C EB

F4 CB 8E DF 67 69 17 A1 61 DD 26 5B 74 18 BB 8C

75 87 64 AB B6 B9 1C D1 98 92 FE 05 34 DB D7 F6

E9 28 37 C8 7B B3 60 33 E0 83 5A 19 40 79 3D 57

44 A5 6B F8 06 0E B4 AC 62 CA 9C 30 FA 7A 2F FF

C4 16 1E 2E 6D 22 00 78 E6 F7 88 46 B5 B1 C0 5D

C3 EC 13 49 A9 F1 6A 8D 48 72 D0 CE 41 5E 8A 2C

9E 5C 01 0A 38 82 90 E2 CC F9 50 3B 6F 99 AF AE

54 1A 91 42 6C 27 D2 2A 45 11 73 9D A2 E5 39 BA

C5 DC BC 35 4D FD AA B0 BF 3A A3 CD EA 71 0C FB

A8 85 AD 29 9B C2 66 4C 65 BD 09 2B 94 70 9F 32

0C 13 18 14 9D 04 00 AA 5F 6E 08 44 91 B8 C4 19

A5 ED A6 12 95 36 28 9F C2 BB CD C0 F3 CB 1D AF

D8 92 FC 49 59 50 98 A3 5B CA 8A 9E 1E B7 5E 7A

6B A8 4C AC 77 F9 6A F5 68 7D EF 8D 84 48 DD 1A

66 EC 43 75 74 01 35 CF 3D 54 B9 DC 46 8C 40 EB

3C BE 6F 82 4F 93 DE 34 05 A4 D1 56 25 23 37 A0

BF 80 C5 94 2C 22 5C EA 2A 96 6D 10 3F 53 F0 C7

3E CC 2F E0 FD F2 57 9A D3 D9 B5 4E 7F 90 9C BD

A2 63 7C 83 30 F8 2B 78 AB C8 11 52 0B 32 76 1C

0F EE 20 B3 4D 45 FF E7 29 81 D7 7B B1 31 64 B4

8F 5D 55 65 26 69 4B 33 AD BC C3 0D FE FA 8B 16

88 A7 58 02 E2 BA 21 C6 03 39 9B 85 0A 15 C1 67

D5 17 4A 41 73 C9 DB A9 87 B2 1B 70 24 D2 E4 E5

1F 51 DA 09 27 6C 99 61 0E 5A 38 D6 E9 AE 72 F1

8E 97 F7 7E 06 B6 E1 FB F4 71 E8 86 A1 3A 47 B0

E3 CE E6 62 D0 89 2D 07 2E F6 42 60 DF 3B D4 79

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 20th July 2013. Vol. 53 No.2

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

200

Note: in the table 1 we considered 24 hex first one
byte on master key, and same idea for 6F hex .

4.1 New algorithm using the SBOX depending
on the AES key

Now, with Sbox dependent initial key, AES will be
much stronger. [24] We now present how the
property above of Sbox can be used to master the
function key by using one of the two cases (we can
also use other cases) depending on the level of the
security requirement. In case the demand moderate
level of security Case 1 can be used. For more high
security requirements case 2 may be adopted.

Figure 11:Our Suggestion For Dynamic Sbox Depending

Of Initial Key

Case 1:
Here the various round keys are produceded using a
expansion key algorithm which is similar to that in
AES core key extension algorithm. The round keys
thus produceded will used for find a value that is
used to change the static Sbox.
The similar round keys are used for Add RoundKey
step as well. Supposed for a particular round j, if
the round key value is :

X"6172726167736C696D616E5F6D697469",
eqyivalent “arragsliman_miti” in code ascii.

The first byte 61(Hex) is used to XOR-ing the Sbox
(change the sbox by using XOR operation between
each byte of fixe Sbox(showing in Table 1) and the
first byte of the master key). The resulting
SBOXxor [eache byte,61 hex] is used during the
Subbyte operation.

Case 2:
Here different round keys are generated using a key
expansion algorithm which is similar to that of AES
key expansion algorithm. The round keys thus

generated will used for finding a value that is used
to rotate the S-box.
The same round keys are used for AddRoundKey
stage as well. Suppose for a particular round j, if
the round key value is :
 X"6172726167736C696D616E5F6D697469".

Here XOR operation of all the bytes is taken.

35(Hex)=61⊕72⊕72⊕61⊕67⊕73⊕6C⊕69⊕6D⊕6
1⊕6E⊕5F⊕6D⊕69⊕74⊕69.

The resulting byte value 35(Hex) is used to XOR-
ing the Sbox (change the sbox by using XOR
operation between each byte of fixe Sbox(showing
in Table 1) and the 35 (hex)). The resulting Sbox is
used during the Sub Bytes operation.

On the basis of the surveyed substitution matrices
and depending on the particular value of the
encryption key used in Advanced encryption
standard the following algorithm is offered:

Encryption:

• Chose a key initial for AES;
• The first byte of the Key master is selected

Key[1];
• Computing new SBOXkey[1] =

SBOXAES⊕Key[1] (showing in figure 11);
• Continue according to the algorithm set out in

AES by using new calculated S-BOXkey[1].

Decryption:

• Chose a key initial for AES;
• The first byte of the Key is selected Key[1];
• Computing new SBOXkey[1] =

SBOXAES⊕Key[1];
• Computing inverse SBOXkey[1]INV=INV

(SBOXkey[1])=INV (SBOXAES⊕Key[1]);
• Continue as described in the AES algorithm with

set out in AES by using new computed
SBOXkey[1]INV.

Table 4 : Comparaison Between AES Core And
Our Suggestion.

 AES Dynamique

AES (Our
suggestion)

Block Length 128-bit same
Key Lenght 128-192-256

bits
same

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 20th July 2013. Vol. 53 No.2

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

201

Number of
Rounds

For key length
128-bit.

10 Rounds

same

Rounf Function

Composed of 4
transformations,

namely:
-ByteSub using

SBOX
-Shift Row

-Mix Column
-AddRoundKey.

For last round
Mix Column is

eliminated

Composed of 4
transformations,

namely:
-ByteSub using
SBOXxor key

-Shift Row
-Mix Column

-AddRoundKey.

For last round
Mix Column is

eliminated
SBOX Fixed initial Key

Dependent
Key Expansion Use the master

key and static
SBOX

Use the master
key and

Dynamic
SBOXxor key

5. IMPLEMENTATION OF MODIFIED
PIPELINED AES IN FPGA

Implementation uses the VHDL
programming language that nowadays is commonly
a language used very established for FPGA [16].
The drawing & the software of the simulation is
Quartus II v9.1.

Figure 12: Cryptage AES 128 Pipeline

Figure 13: Decryptage AES 128 Pipeline

Table 5 : I/O functional descriptions of proposed and
modified AES-128.

Table 6: Comparative Table Between Different

implementation constitute AES algorithm

Note: in this different implementation we

use two optimization:
• Architectural optimization by using pipelined
architecture of AES-128 [12], [13].
• Algoritmic optimization by using modified
structure of mixcolumn block (Properties of the
binary calculation) [26], [27].
Depending on comparative table we can notice that
the first architectural of the Crypt_aes_pip
implementation in. occupied more than (13552
units) of the unit when the second Decry_aes_pip
require implementing approximately in. (15827
units) in total capacity of the device, on the other

Pin name I/O Function
description

CLK I System
frequency

Rst I System reset

Donner

I

Plaintext bits
(for

Encryption)
Encryption

bits (for
Decryption)

Clef

I

Key for
Encryption

or
decryption

Sortie

O

Encryption
bits (for

Encryption)
Plaintext bits

(for
Decryption)

Implementation FPGA Device

Total
pins

Total
logic

elements

Peak
virtual

memory
Megabyte

Total
registers

Total
memory

bits

Crypt_aes_pip 386 13552 232 2432 327680
Decry_aes_pip 386 15827 242 2432 327680
Crypt_aes_pip_
SBOXxor key[i]

386 57366 496 3840 0

Decrypt_aes_pip_
SBOXxor key[i]

386 19471 379 2560 327680

donner[127..0]

clef [127..0]

clk

rst

sortie[127..0]

cry ptage_aes_pip

donner[127..0]

clef [127..0]

clk

rst

sortie[127..0]

decry ptage_aes_pip

inst

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 20th July 2013. Vol. 53 No.2

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

202

the third architecture, Crypt_aes_pip_SBOXxor
key[i], need (57366 tranches) of the device, and last
implementation,Decrypt_aes_pip_SBOXxor key[i],
occupied (19471 logic elements).

The first conclusion here ,the advantage in our new
implementation is the SBOX and key expansion is
now dependent on entire initial key (first byte of
master key(case 1) or Xor-ing between each byte
of initial key (case 2)).
But the disadvantage is that it consumes little extra
time and more logic elements.
Second Conclusion we find our new implemention
(crypt_aes_pip_SBOXxor key[i] &
Derypt_aes_pip_SBOXxor key[i]) is more
efficacious than architecture of the first and second
implementation showing in table 5, the occupying
number of resources of the device.

6. SIMULATION & INTERPRETATION

The schemas descripted of the simulation
the processes for the setting in implementation
crypt_aes_pip_SBOXxor key[i] (AES-128 based to
change the static sbox by using XOR operation
between each byte of fixe Sbox (showing in Tble
1and the first byte of the master key (case1) or
(case2)) are presented below, in Figure (15). The
overall length of the encryption process is (126 S),
otherwise the simulation of
decrypt_aes_pip_SBOXxor key[i] (change the
sbox by using XOR operation between each byte of
fixe Sbox(showing in Table 1) and the first byte of
the initial key (case1) or by using case2 when we
Xor-ing each byte of masetr key), presented
following, in figure (16).encryption is the time to (
40 s) and some decoding (s).

Figure 14 : Compile The Circuit

Ciphering :(figure15)

Plaintext: hamdoun_&_tragha

Key: arragsliman_miti

cyphertext:,A![208]2[237]<W[160]Xl[218][225][1
9]|[30]

Figure 15:Simulation Of Crypt_Aes_Pip_Sboxxor Key[I]

Deciphering :(figure 16)

plaintext :,A![208]2[237]<W[160]Xl[218][225][19
]|[30]

Key: arraglsiman_miti

Cyphertext: hamdoun_&_tragha

Figure 16:Simulation Of Decrypt_Aes_Pip_Sboxxor
Key[I]

Note: during our implementation and simulation we
used two different software,the first is altered UP
Simulator and the second is Quartus II v9.1.

7. CONCLUSION

The first conclusion, in this paper new
substitution matrices have been developed by XOR
with byte key and chosen from existing AES S-
BOX. These matrices were tested with simulation
software developed by Quartus II V.9.1. Analysis of
the results shows that the characteristics of the new
256 S-BOX are identical, based on which the
conclusion was reached that it is possible to use

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 20th July 2013. Vol. 53 No.2

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

203

each for encryption. It will not lead to a
deterioration of the stability of the AES linear
cryptanalysis and differential. An algorithm for the
use of these matrices is proposed, as it is based on a
preselected byte of the key used, and depending on
the result in XOR operation, one of the S-BOX 256
is selected.

Second conclusion, we find the changes
proposed (Sbox dependent of initial key) in our
paper although consumes little extra time and more
logic elements, but can be implemented without
changing the block size keys (128, 192 or 256).
Even if the original AES algorithm is very secure,
These proposed changes in the treatment of the
algorithm will encrypt the information by
performing high diffusion and confusion. It also
increases the complexity of the AES algorithm
several times,so AES will be much stronger.

8. POSSIBLE FUTURE WORK

From our perspective is to do:

• Implementation and simulation the other optimize
structure and description based on that same
principle of AES algorithm to encrypt and decrypt
data such as images and sounds.
• Study of FPGA components and choosing the
most suitable architectures for the implementation
of encryption algorithms.
• A combination between the AES algorithm and
genetic algorithm to increase the security.
• Implementation of the AES pipeline architecture
to optimize the encryption and decryption time and
number of clock cycles.
• New instructions ensure a faster and more
affordable encryption of data, as well as better
security.

REFRENCES:

[1] NIST, Advanced Encryption Standard (AES),

Springfield,VA, Nov. 2001
[2] Simon Singh : Histoire des codes secrets. De

l’Egypte des pharaons à l’ordinateur quantique.
Paru chez J.-C. Lattès, Paris, 1999.

[3] Stallings W. “Cryptography and Network
Security: Principles and Practices.”4th ed.
Pearson Education, Inc. pp. 63-173. 2006.

[4] Bhupathi Kakarlapudi and Nitin Alabur,” FPGA
Implementations of S-box vs. T-box iterative
architectures of AES”.

[5] Olivier Frider ETR6 « Advanced Encryption
System », école d’ingénieurs du Canton de
Vaud, Mai 2004.

[6] Ashwini M. D, Mangesh S. D and Devendra N.
K “,FPGA Implementation of AES Encryption
and Decryption”, Proceeding of International
Conference On Control, Automation,
Communication And Energy Conservation -
2009.

[7] Daemen J. and Rijmen V., “Rijndael: The
Advanced Encryption Standard”. Dr. Dobb’s
Journal, March 2001.

[8] NIST, “DRAFT NIST Special Publication 800-
131, Recommendation for the Transitioning of
Cryptographic Algorithms and Key Sizes”,
Federal Information Processing Standards
Publication (FIPS PUB) 197, National Institute
of Standards and Technology (NIST), January,
2010.

[9] Nikolai Stoianov, AES S-BOX generator:
analysis of requirements, International Science
Conference 2009” Communication and
information systems”, Shoumen, Bulgaria,2010.

[10] Qin H., Nonmember, SASAO T. and IGUCHI
Y.,Members ,“A Design of AES Encryption
Circuit with 128 bit keys using Look-UP Table
Ring on FPGA”,IEICE TRANS. INF. &
SYST.,VOL.E89-D,NO.3 MARCH 2006.

[11] Rahman T., Pan S. and Zhang Q., “Design of a
High Throughput 128-bit (Rijndael Block
Cipher)”, Proceeding of International
Multiconferrence of Engineers and computer
scientists 2010 Vol II IMECS 2010, March 17-
19,2010, Hongkong.

[12] Hodjat A. and Varbauwhede I.,“A 21.54 Gbits
Fully Pipelined AES Processor on FPGA”,
IEEE Symposim on Field-Programmable
Custom Computing Machines,April 2004.

[13] Jarvinen et al, “A fully pipelined memoryless
17.8 Gbps AES-128 encrypter”,International
Symposium on Field Programmable Gate
arrays,pp.207-215.2003.

[14] INDECT Consortium, D8.2: Evaluation of
Components, June, 2010, http://www.indect-
project.eu/files/deliverables/public/deliverable
8.2.

[15] Rijndael mix column, available at:
 http://en.wikipedia.org/wiki/Rijndael_mix_col

umns
[16] Mroczkowski P., “Implementation of the block

cipher Rijndael using Altera FPGA”, May 2000.
[17] Eli Biham and Nathan Keller, Cryptanalysis of

Reduced Variants of Rijndael, In Proceedings

http://www.jatit.org/
http://www.indect-project.eu/files/deliverables/public/deliverable%208.2
http://www.indect-project.eu/files/deliverables/public/deliverable%208.2
http://www.indect-project.eu/files/deliverables/public/deliverable%208.2
http://en.wikipedia.org/wiki/Rijndael_mix_columns
http://en.wikipedia.org/wiki/Rijndael_mix_columns

Journal of Theoretical and Applied Information Technology
 20th July 2013. Vol. 53 No.2

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

204

Of The Third Advanced Encryption Standard
Conference. NIST, April 2000.

[18] Zambreno J., Nguyen D. and Choudhary A.,
“Exploring Area/Delay Tradeoffs in an AES
FPGA Implementation”,FPL 2004, LNCS 3203,
pp. 575–585, 2004.

[19] T. Jacobsen and L. R. Knudsen, The
Interpolation Attack on Block Ciphers, Fast
Software Encryption, LNCS 1267, E. Biham,
Ed., Springer – Verlag, 1997, pp. 28 – 40.

[20] Kenny D., “Energy Efficiency Analysis and
Implementation of AES on an FPGA”,
University of Waterloo,2008.

[21] X.Ji-peng ,Z.Xue-cheng, G.Xu, “Ultra-low
power S boxes architecture for AES”, The
journal of China Universities of post and
telecommunications.vol.15,issue1,March 2008.

[22] M.Priya Zach, K.Rahimunnisa and K.Suresh
Kumar, “Compact AES Architecture Using
Efficient S-Box Implementation”, IEEE
International Conference on Computational
Intelligence and Computing Research, 1373-
1376, 2011.

[23] Nikolai Stoianov, One Approach of Using Key-
Dependent S-BOXes in AES, MCSS 2011,
CCIS 149, pp. 331–337, 2011. Springer-Verlag
Berlin Heidelberg, 2011.

[24] William Stallings, Cryptography and Network
Security, Third Edition, Pearson Education,
2003.

[25] Edwin NC Mui,” Practical Implementation of
Rijndael S-Box Using Combinational Logic”.

[26] A. Sliman, H. Abdellatif, T.Abderrahim, K.
Salah eddine. “Implementation of The
Encryption algorithm AES under VHDL
language In FPGA, by using different
architecture of mixcolumn”. Call of paper
WOTIC'11 13-15 Octobre, ENSEM de
Casablanca.

[27] A. Sliman, H. Abdellatif, T.Abderrahim, K.
Salah eddine, “Implementation of The
Encryption algorithm AES under VHDL
language In FPGA by using different
architecture of mixcolumn,” International
Journal of VLSI design & Communication
Systems (VLSICS) Vol.3, No.4, August 2012.

http://www.jatit.org/

	1SLIMAN ARRAG, 2ABDELLATIF HAMDOUN, 3ABDERRAHIM TRAGHA, AND 4SALAH EDDINE KHAMLICH
	2.1 Attacks
	The AES has for the moment not been broken and the exhaustive search ("brute force") is the only solution. Rijndael was designed so as to make conventional methods such as linear and differential analysis very difficult[17], [19].
	2
	3
	4
	4.1 New algorithm using the SBOX depending on the AES key
	Now, with Sbox dependent initial key, AES will be much stronger. [24] We now present how the property above of Sbox can be used to master the function key by using one of the two cases (we can also use other cases) depending on the level of the securi...

