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ABSTRACT 

 
In this paper, a simple and efficient method for detection high impedance fault (HIF) on power distribution 
systems using an intelligent approach the probabilistic neural network (PNN) combined with wavelet 
transform technique is proposed. A high impedance fault has impedance enough high so that conventional 
overcurrent devices, like overcurrent relays and fuses, cannot detect it. While low impedance faults, which 
include comparatively large fault currents are easily detected by conventional overcurrent devices. Both 
frequency and time data are needed to get the exact information to classify and detect no fault from HIF. In 
the proposed method, DWT is used to extract feature of the no fault and HIF signals. The features extracted 
which comprise the energy of detail and approximate coefficients of the voltage, current and power signals 
calculated at a chosen level frequency are utilized to train and test the probabilistic neural network (PNN) 
for a precise classification of no fault from HIFs.  

Keywords: Discrete Wavelet Transform, Fuzzy systems, Power distribution faults, probabilistic neural 
network (PNN). 

  

1 INTRODUCTION  
 

Detection of high impedance fault on 
distribution systems is very hard. It often occurs in 
power distribution systems and, in general, cannot 
operate common protection devices because of high 
impedance, which prevents the fault to draw high 
current value, at the fault point. These types of 
faults usually occur when a loose contact between 
an overhead conductor and high impedance 
surfaces or the conductors touch a high impedance 
object like a tree[1]. The main objective in HIF 
detection, in incompatible with low impedance 
faults, is not to protect the devices, but to provide 
the public safety and prevent fire risks because of 
the electric arcing [2]. HIFs can be classified into 
two types: the passive faults and the active ones. 
Passive HIFs do not make an electric arc. They are 
very dangerous to human and animal life since 
there is no any statement of the energisation case of 
the conductor. Active high impedance faults are 
usually pursued by arc and drawn currents less than 
the protection devices set[3].  Generally, fault 
currents reduce over time until the arc is complete 
extinction[3]. Most of the methods have utilized for 
detection HIFs take advantage of fault signals 

produced by the arc (harmonic and non-harmonic 
components). While, sometime the detection 
system cannot gather enough data to make sure the 
fault due the electric arc may vanish before that.  

 
Few other electrical events also behave 

like the HIF (capacitor bank operation, air 
switching operation, nonlinear load and starting 
induction motor)[4], therefore, the algorithm 
proposed to detect HIF should have ability to 
discriminate HIF from other normal events in 
power distribution system. Most of the detection 
methods require extensive computation in the 
reprocessing stage for feature extraction of the 
input signals. Then a strategy is applied to obtain 
detection parameters. 

 
During the past decades, protection 

engineers and researchers have tried to find a 
complete solution to this type of fault. The fault has 
many characteristics like presence of harmonics and 
high frequency components, detection techniques 
aim to identify useful features of HIF from the 
pattern of the voltage or current signals associated. 
A lot of detection algorithms have been proposed to 
detect HIF, some of these have used frequency-
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based to extract relevant features of the harmonic 
components[5][2][6][7][8] other have utilized 
time–frequency-based features to examine the 
transient phenomena of HIFs signals in both the 
time and frequency domains [3][9–16], the 
extracted features usually can be obtained after 
process the signals with one of methods of signal 
processing like discrete Fourier transform (DFT), 
discrete wavelet transform (DWT) and some other 
time–frequency analysis methods such as discrete 
S-transform (DST) , discrete time–time transform 
(DTT) [3] and the wavelet packet transform (WPT) 
[16]. 

 
This paper represents a HIFs detection 

method that includes capturing the voltage and 
current signals produced in a distribution conductor 
under HIF and non-fault cases. Discrete wavelet 
transform is employed to extract the vector, which 
comprises the energy of detail and approximate 
coefficients of the voltage, current and power 
signals. The findings presented in this research 
relate to a typical 13.8-kV, the faulted signals of 
which are attained using the known Power Systems 
CAD PSCAD software. An embodiment of HIF 
model is involved in this simulation. The system 
generalization is then tested for HIF signals within 
a range of different non-fault and fault cases faced 
in practice.  

2 SYSTEM STUDIED 

2.1 Model of Distribution Feeder 
A 13.8 kV distribution feeder was 

performed in PSCAD/ EMTDC. This comprises a 
substation and three distribution feeders with radial 
network. The Figure 1 illustrates the schematic 
diagrams. The generator is of 30 kV and 10 MV 
connected to the transformer with 30/13.8 kV and 
10 MV.  

The distribution network functions at 13.8 
kV voltages. The linear and nonlinear loads with 
various loading conditions are stimulated. The 

nonlinear load is represented by 6-pulse rectifier. 
The selected sampling rate is 12.8 kHz.  

 
The figure 2 illustrates the waveform of 

HIF current signal under linear and nonlinear loads. 
The fault has occurred at 0.2 sec. Under linear 
loading condition, the signal of HIF comprises 
higher harmonic components compared with the 
signal before the fault (figure 2a). Thus, the 
distinguish HIF from other normal operations, in 
this cases, is easy. However, in case of HIF under 
nonlinear loading condition, the signal before and 
during the HIF has comprised higher harmonic 
components (figure 2b).  Consequently, it becomes 
hard to differentiate HIF from other normal 
condition under nonlinear loading condition and 
this is a crucial problem in power distribution 
network. Additionally, it is mandatory to examine 
the reliability of any HIF method due to the 
transient event generated by capacitor bank 
switching, which is like for those that HIF in 
frequency domain. Many of capacitor energisation 
events have been considered while studying the 
distribution system. 

2.2   HIF Simulation 
In the past, several HIF models have been 

presented based on Emanuel arc model. These 
models have been analyzed by researchers to select 
the best model for HIF. A simplified Emanuel 
model proposed in 2003 comprises pair of DC 
voltage sources, Vn and Vp, which signify the 
beginning voltage of air in soil and between 
distribution line and trees. The two varying 
resistors, Rn and Rp, were employed to signify the 
fault resistance, irregular values enables to simulate 
an asymmetric fault currents. The fault current 
flows to the earth if positive DC voltage is less than 
the phase voltage, however, when the negative DC 
voltage Vn, is higher than the line voltage. No fault 
current flows when values of the phase voltage 
between Vp and Vn. The figure 3 illustrates a 
simplified model of HIF [17]. 
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Figure 1: Graphic Diagram of the Simulated 13.8kV Radial Power System 

 

 
a 

 
b 

Figure 2: Typical HIF Fault Currents (A) HIF Current Signal (Linear Load)  (B) HIF Current Signal 
(Nonlinear Load). 
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Figure 3: Model of A High-Impedance Faults. 

3 PROBABILISTIC NEURAL 
NETWORK 
Neural networks have been utilized for 

application in power system fault detection, 
especially in HIF models since early 1990s. Among 
the networks used were FNN 1992 [18], ANN 
2006-8 and 2011[19], PNN 2008 [3] and 
(MLPNNs) 2011[20]. A typical neural network is 
the multilayer feed-forward network, often called 
the Back propagation network (BPN). The 
problems with using this network are: (i) the 
training time becomes too long if the searching 
space is large (ii) It is need extensive training if 
added or removed training data and (iii) it is 
difficult to decide how many layers and nodes are 
required for a practical application. A more suitable 
candidate for classification of power transients is 
the probabilistic neural network (PNN).  

 
The probabilistic neural network (PNN) 

was proposed by Donald Specht. Bayesian 
classifier technique represents the main part of 
probabilistic neural network. The probability 
density functions are determined, using Parzen 
windows, for every classification class. This is 
employed to calculate the given input vector 
probability affiliating to a given class.  The 
maximum probability class for the given input 
vector is chosen by the PNN through summing with 
the relative frequency of every class [21].  

 
An input is set to the class for which it 

possesses higher value of probability. The training 
of PNN is easy and instantaneous [22]. Weights are 
not “trained” but assigned. Also when add or 
remove training data, existing weights don't need to 
retrain but only new vectors are inputted into 
existing weight matrices when training. So it can be 
used in real time. The speed of PNN is very fast 
because of the training and running procedure can 

be made by matrix manipulation. Figure 4 shows 
the PNN structure used to perform the decision rule 
for classifying the input events into two classes. 
This network has four layers: 

 
Figure 4: PNN Structure 

3.1  (1) Input layer 
In the input layer, there is just one neuron 

for each feature of input vector. The feature vector 
values (the output of The input layer) are fed to 
every neurons in the second layer (hidden layer).  

3.2 (2) Hidden layer 
The second layer is called a hidden or 

pattern layer. It has one neuron which represents 
typical samples set for each case in the training 
input vector. The main function of hidden layer is 
to compute the Euclidean distance of the input test 
case from the center of neuron, and send the 
resulting value to the neurons in the following 
layer. 

3.3  (3) Summation layer 
Summation layer has one pattern node for 

every particular class classification problem. It 
computes the outputs of pattern nodes associated 
with a given class.  A summation layer neuron 
simply sums up the outputs of pattern layer nodes 
that correspond to the class it receives. 

3.4  (4) Decision layer 
The final layer is a decision layer which 

selects the class that has the Maximum probability 
obtained from the last layer. Meaning that, a 
comparison of the weighted votes for each target 
category accumulated in the summation layer and 
uses the largest vote to predict.  

4 INTRODUCTION TO DISCRETE 
WAVELET TRANSFORM (DWT) 
Discrete Wavelet Transform (DWT) was 

developed by Mallat [23]. It is a computationally 
effective way and a common tool to execute time 
localization of the various frequency components of 
a given signal. Using DWT, time and frequency 
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resolution of a signal are achieved through the use 
some important analyzing functions, named mother 
wavelets. The most important characteristic of the 
mother wavelets is that the time intervals are short 
for high-frequency components, whereas the time 
intervals are long for low frequency components. 
The DWT is defined as: 

0 0

00

1( , ) ( )
m

mm
n

k nb aDWR m k x n g
aa

 −
=  

 
∑  (1) 

where x(n) is the input signal, g(n) is the 
mother wavelet, and the translation and scaling 
parameters “b” and “a” are functions of integer 
parameter m. The result is geometric scaling (i.e. 1, 
1/a, 1/a2,…. ) and translation by 0, n, 2n,…. 

 
Figure 5 depicts implementation of the tree 

structure of filter-banks for one dimensional DWT, 
h[n] stands for the low pass filters, where g[n] for 
the high pass filters, and the arrows for the down 
sampling process. 

 
Figure 5: Implementation of The Tree Structure of Filter-

Banks for One Dimensional DWT 

The DWT generates as many wavelet 
coefficients as, there are samples in the original 
signal using a filter system. The decomposition 
procedure begins when a signal passes into these 
filters. The output of low pass filter is the 
approximation signal whereas the output of the high 
pass filter is the detail signal. 

 
Many Wavelet Transform applications for 

analysis transient signals of power system have 
been lately published in the literature. Applications 
of Wavelet transform for distribution network fault 
analysis are enriched by some interesting studies 
and researches. In this paper, different operation 
conditions have been simulated by using PSCAD/ 
EMTDC. The current and voltage signal generated 
in time domain for each case which is analyzed 
using a wavelet transform. A sampling rate of 12.8 
kHz is chosen. Daubechies wavelet Db6 is selected 
as the mother wavelet, where it has presented best 
classification results for fault analysis in power 
system. Based on this sampling time, the signal is 
decomposed into 7 levels. Table 1 shows the 

frequency bands range for coefficients up to 7th 
levels. 

 
Table 1: Wavelet Detail Coefficients for 1–7 Levels and 

Approximation Level 7 

coefficients Frequency band (Hz) 
d1 3200-6400 
d2 1600-3200 
d3 800-1600 
d4 400-800 
d5 200-400 
d6 100-200 
d7 50-100 
a7 0-50 

 

 

5 FEATURE SELECTION 
The main part to the success of any 

classification system relies heavily on the input 
features extracted. The system receives voltage and 
current signals (CT output) as the inputs then by 
multiplying voltage times current to get the power 
signals. These signals are preprocessed using DWT 
to extract different features in the incoming voltage, 
current and power signals.  

 
Different operation conditions (HIF and 

non-fault cases) have simulated by using PSCAD/ 
EMTDC On the modeled distribution system. In 
this paper, feature extracted vectors were produced 
by utilized the Daubechies 6 (db6) mother wavelet. 
Utilized the chosen mother wavelet; the voltage, 
current and power signals are decomposed into 
number of components in various frequency levels, 
which are called also reconstruction wavelet 
coefficients of different levels (scales). The original 
signals can get again by overlay of these 
reconstruction wavelet coefficients. The lowest 
frequency components (output of low pass filter) 
are known the approximation wavelet coefficient 
whereas the other components (output of high pass 
filter) are known detail wavelet coefficients of 
different levels. In this study, After many 
investigations and comparisons between the 
performance of PNN with different types of 
features like standard deviation (STD) and RMS of 
each frequency bands (coefficients and signals), the 
energy of the four levels (4th, 5th, 6th and 7th) of 
detail coefficients and 7th level of approximation 
coefficients of the (current, voltage and power) 
signal is selected to be extracted and used as the 
input data vector to PNN. For signals sampled at a 
rate of 12.8 kHz, the proper feature extracted 
vector, the energies of the detail wavelet 
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coefficients (ED4-ED7) and energy of the 
approximation wavelet coefficients (EA7), is 
established as follows: 

2

1
7 7

N

j
j

EA CA
=

=∑  (2) 

2

1
,        4,5,6,7.

N

i j
j

ED CDi i
=

= =∑  (3) 

where N is the number of sample, EA7 is 
the approximation coefficient of level 7 of the 
(current, voltage and power) signal. EDi (i=4, 5, 6, 
7) is detail wavelet coefficients (CD4, CD5, CD6 
and CD7) of levels 4th, 5th, 6th and 7th. 

  
The relationship among the features is 

illustrated in Figure 6a,b and c, each plot represents 
relation between two features, of which most of the 
features are distinctive, while some are overlapped. 
The plots provide information related to the 
capability of the extracted features for classification 
in raw feature form, for using those features as 
inputs to the designed PNN.   

6   SIMULATION  

6.1  Data Preparation 
It is essential to divide training data into 

two data sets as follows,  
 
a) An input data set which has values for 

the 15 inputs  represent the energy of the7th level 
of approximation coefficients and four levels (4th, 
5th, 6th and 7th) of detail coefficients of the 
(current, voltage and power) signal.  1440 input 
data points were selected from time–frequency 
plane of current, voltage and power signals. These 
points were placed into a single input data set. 

 
b) An output data set which has values for 

the one output (1 or 10). The output of PNN either 
1 for high impedance fault occurs or 10 for other 
normal event in power system.  1440 output data 
points, related to the chosen input points. These 
points were placed into a single output data set. 

 

The remaining 160 input and output data 
points, which are dissimilar from the training data, 
will be employed for the purpose of testing. A 
special Matlab function, which is associated with 
the neural network Toolbox, was employed to 
produce the PNN based system, 

 

 
a 
 

 
b 
 

 
c 
 

Figure 6: The Relationship Among The Features (a) 
Relation Between Features 12-15 (b)Relation Between 

Features 4-5 (c)Relation Between Features 7-10. 
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a 

 
b 

 
c 

Figure 7: Decomposing Signal Under A HIF Condition and Their Detail Coefficients at Levels 4, 5, 6 and 7 and Approximate 
Coefficient at Level 7 Using Db6.   a)  Current Signal    b) Voltage Signal   c) Power Signal. 
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a 

 
b 
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Figure 8: Decomposing Signal Under Capacitor Switching Condition and Their Detail Coefficients at Levels 4, 5, 6 and 7 and 
Approximate Coefficient at Level 7 Using Db6  a)  Current Signal    b)Voltage Signal   c) Power Signal 

7  RESULTS  
After the decomposing process, Figure 7 

depicts voltage, current and power decomposing 
signal under a HIF condition and their detail 

coefficients at levels 4, 5, 6 and 7 and approximate 
coefficient at level 7 using db6. The effect of the 
arc period clearly appears by high transient 
frequencies which are seen in the Wavelet levels 
D4 and D5. While Figure 8 appears the behavior of 
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decomposition signal under capacitor operation 
switching conditions (no fault). Any increasing or 
decreasing in the values of current doesn't effect on 
the method developed results because of the high 
frequency part of the signal show only within a 
short period of time, at the instant of capacitor 
switching (at sample 230).  

 
 There have been 1440 training cases 

which were selected to train the network. Number 
of features in each input vector is 15 features which 
represent the energy of the four levels (4th, 5th, 6th 
and 7th) of detail coefficients and 7th level of 
approximation coefficients of the (current, voltage 
and power) signal. The training sets included 360 
HIF cases and the rest are non-fault cases. The 
PNN has one output, the output is one when the 
system detect HIF case and is ten when other cases. 
Different combinations of inputs are used to train 
and test PNN, to assess the influence on 
classification rate. The rates of classification are 
computed on the training and testing data sets.  

 
Classification results are described using 

confusion matrix, which is a standard tool for 
testing any type of classifier. Table 2 shows the 
confusion matrix along with the classification 
results achieved from this study. From the table, 
one can see that the confusion matrix has one row 
and one column for each class. The row represents 
the original class and the column means the 
predicted class by the PNN classification. The 
classification rate is found that the proposed 
algorithm is capable to categorize 91.67% in case 
of HIF testing and 95.64% for non HIF testing 
cases. The overall classification rate is 94.65%. The 
system is trained properly and has categorized 
different cases effectively. 

 
To evaluate the suitability of proposed 

algorithm, test data cases were fed to the PNN and 
the obtained output is shown in Table 3. It shows 
that the proposed method could classify different 
input categories successfully and reliably. It is 
found that the proposed algorithm is capable to 
categorize 95% in case of HIF testing and 93.33% 
for non HIF testing cases. The overall classification 
rate cases are 93.33% Results of the testing phase, 

which demonstrates that the algorithm is reasonably 
reliable. 

 
Table 2: The Classification Results of PNN With Training 

Data Set 

Confusion Matrix 
Target 

Classification rate 
HIF Non fault 

model HIF 330 30 91.67 
Non fault 47 1033 95.64 

overall Classification rate 94.65 
 

 
Table 3: The Classification Results of PNN With Training 

Data Set 

Confusion Matrix Target Classification rate HIF Non fault 
model HIF 38 2 95 

Non fault 8 112 93.33 
overall Classification rate 93.75 

 

 

Furthermore, three goals are selected to 
validate the method of HIF detection.  The first 
objective is to selection of proper mother wavelet to 
be used in wavelet transform. The second objective 
is to examine the impact of input feature set on the 
classification rate performances of the PNN. And 
finally  

7.1  Selection of proper mother wavelet  
Proper selection of the mother wavelet 

represents a major part in detecting different types 
of signal variations. The selection relies on the 
application nature. For detection of low amplitude, 
short duration, fast decaying and oscillating types 
of signals, Daubechies and Reverse biorthogonal 
families mostly used for detection of low 
amplitude,  fast decaying, short duration and 
oscillating types of signals, (e.g. db2, db3 etc. and 
rbio2.7, rbio3.7 etc.). Also, smoothness and 
wideness of mother wavelet relies on its number. 
So many investigations were done to select the 
proper wavelet family and its number. 

 
After many examinations, the db6 mother 

wavelet was selected. The selection is based on the 
following reasons: 
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Figure 9: HIF Classification Rate of PNN Using Various Mother Wavelets 

• As alternatives, 29 types of wavelets were 
used in training PNN, involving: Daubechie, 
Symlets, Coiflets, Biorthogonal and Discrete 
Meyer (dmey) Figure 9. 

• The standard used to choose the better 
mother wavelet was the percentage of 
classification rate Figure 9. 

• A total of 1440 tests were performed. 
Simulation results show a high average 
accuracy of 94.65% that justifies why db6 
mother wavelet was selected. 

7.2 The impact of input feature sets 
Various feature sets are investigated to 

study the impact of input feature set on the 
classification rate of the PNN. Table 4 illustrates 
these sets, whereas the Table 5 tabulates the 
classification rate of the proposed method for 
each of the sets.  

 
Table 4: Input Feature Set Types 

Feature type No. of 
feature 

FS1 the energy of the four levels 
of (current, voltage and 
power) signal 

15 

FS2 the energy of the four levels 
of (current and voltage) 
signal 

10 

FS3 the energy of the four levels 
of (current and power) signal 

10 
 

 

It is evident that generally the 
FS1feature sets contain more selective 
information as against other feature sets, as 
exposed in average classification rate. Also, it 
can be concluded that the features of the FS1 has 

shown good results. Figure 10 shows the 
classification rate for the different feature set. 
 

Table 5: The Classification Rate Of Input Feature Set 
Types 

Feature set Classification rate for 
 Training set (%) Testing set (%) 

FS1 94.65 93.75 
FS2 91.8 90.62 
FS3 91.87 91.25 

 

 

 

 
Figure 10: Classification Rate for The Different 

Feature Set. 

7.3 The effect of number training data 
 The proposed PNN is trained and tested 

with 1600 stimulated cases.   Various 
combinations of inputs are used to test the PNN, 
to assess the influence on classification rate. The 
rates of classification are computed on the 
training and testing data sets. In this stage, the 
PNN is trained with different numbers of 
training data set to get the best classification rate 
of the PNN. Figure 11 shows the HIF 
classification rate of PNN with input training 
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data set (FS1) that has different number of 
training data. The maximum classification rate is 
94.65% and 93.12% for training and testing data, 
respectively with 90% of training data and 
classification rate is reduced with others 
percentage training data. 

 
Figure 12 show the effect the percentage 

of training data on the classification rate with 
input training data set (FS2, FS2). 

8 DISCUSSION  
A qualitative comparison was made 

among three types of number of features (FS1, 
FS2 and FS3) for HIF detection in power 
distribution feeder, in the proposed algorithm. 
Based on the outcomes, it was found that the 
feature of type FS1 provides better results 
compared with other features. The classification 
rate for radial distribution network is 94.65% for 
feature of FS1compared with 91.8% and 91.87% 
for both features of FS2 and FS3, respectively. 
Also with using 90% training and 10% testing 
data sets to train and test the PNN has given a 
good classification rate result. 

9     CONCLUSIONS  
This study has presented the PNN for 

HIF detection and classification.   An effort has 
been made to classify the HIF from other event 
in distribution system under linear and nonlinear 
loads. In this paper, the energy of the four levels 
(4th, 5th, 6th and 7th) of detail coefficients and 
7th level of approximation coefficients of the 
(current, voltage and power) signal is selected to 
be extracted features using wavelet transform 
and different features like (FS1, FS2 and FS3) 
were computed and used to train and test the 
PNN for HIF classification. HIF classification 
rate is more than 95%, obtained from PNN with 
using energy of details coefficients of current, 
voltage and power feature. Ultimately, the 
proposed approach is quick and precise in 
identifying HIF and can be extended to guard 
huge power distribution networks. 

 
Figure 11: The HIF Classification Rate With Input 

Training Data Set (FS1). 

 
a 

 
b 

Figure 12: The Classification Rate With Input 
Training Data Set  a) FS2 Data Set b) FS3 Data Set. 
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