
Journal of Theoretical and Applied Information Technology
 20th July 2013. Vol. 53 No.2

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

307

AUTOMATIC SELECTION OF FILTERING DEVICES IN A
DISTRIBUTED INTRUSION PREVENSION SYSTEM

1ELMEHDI BENDRISS, 2BOUBKER REGRAGUI

1SI3M, ENSIAS
2 SI3M, ENSIAS

E-mail: 1bendriss@gmail.com , 2regragui@ensias.ma

ABSTRACT

We presented in a previous article [1] a distributed intrusion prevention system based on honeypots for
collecting malicious data. Among important questions to handle there is the choice of filtering device on
which a filtering rule has to be applied. In this paper we propose a solution which will allow automatic
selection of filtering device in the distributed IPMS platform. These devices will be configured to block
unauthorized traffic. This solution must ensure full integration with the IPMS architecture.

Keyword: Intrusion Prevention System (IPS), Distributed System, Network Sensors, Network Filtering

1. INTRODUCTION

Every networked device needs a perimeter
level protection against unauthorized accesses.
Even for standalone computers, major security
vendors give an all in one software integrating an
antivirus, a firewall and sometimes host based
IDS/IPS. For small networks, the use of a linux
based gateway with iptables[2] enabled and
squidguard proxy[3] can be enough to have a good
level of protection in both network and application
levels.

In higher levels of network complexity

multiple filtering devices are needed and a well-
established framework must exist in the security
team to choose on which device a rule must be
implemented. When this action is automated, risk
of implementing rules on wrong device can have
dramatic consequences on business activities.

Through this work we propose a method
that takes into consideration the structure of the
network to select the device to implement a
filtering rule in. The previous work [1] presented
the distributed intrusion prevention system (IPMS)
based on honeyd[4] for data gathering. The
automatic selection of filtering device is very
important for IPMS autonomy and reliability.

Deciding if which IP address will be
blocked is not in the scope of this article. We will

assume that the IP to block was identified and we
will name it IPb.

2. NETWORK STRUCTURE

Enterprises’ networks can be structured on
different parts that have different security needs and
that also have different impact on business when an
incident happens. By incident we mean any “… act
of violating an explicit or implied security policy”
[5].

Most networks can be split into following
blocs:

• Demilitarized Zone (DMZ): the DMZ
contains servers hosting services for public
purpose and that are reachable from
Internet. For example, the email server of
the company, the web server and so on.
These servers will never initiate a
connection to the inside of the company
network.

• Frontend Network (FE): in a
backend/frontend structured network,
servers in the FE network are reachable
from external networks (mainly Internet)
and will relay clients’ requests to backend
servers to handle them. An example of
these servers an SMTP MX relay who will
accept emails from external sources, and
after antivirus/antispam analysis, it will
relay the email to a backend server hosting
the recipient mailbox.

http://www.jatit.org/
mailto:1bendriss@gmail.com
mailto:2regragui@ensias.ma

Journal of Theoretical and Applied Information Technology
 20th July 2013. Vol. 53 No.2

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

308

• Backend Network (BE): these servers are
not reachable from external networks. The
security policy may deny direct access
even for internal company users to this
network without going through FE
network. This network can host all servers
having/providing access to company data
(mailboxes, directories, databases…etc.)

• Users networks (userLan): a network
through which internal users connect to
company network and resources. This can
be structured into VLANs [6] with
different access levels to resources. If such
levels are used, it will be necessary to
consider every VLAN as a userLan by
itself. In the sake of keeping this article
simple, we will consider that we have only
one userLan

• Data Network (dataLan): this network is in
general accessible only through BE
servers. Some storage technologies use IP
for transport (like iSCSI [7] and NAS
storage [8]) that’s why it is important to
have this network in mind when setting up
network security.

We can schematize these networks as

presented in figure 1.
Legend:

1. DMZ
2. FE
3. BE
4. dataLan
5. userLan

Figure 1. Network structure with Levels

In this example, we have three firewalls
and one router which also can have access-list
capabilities for filtering traffic. We will not
consider this case and we will only focus on
firewalls.

3. LEVELS, CRITICALITY, COMMUNITY
AND SID.

In order to implement our selection

algorithm we introduce four notions. Each one will
impact the final decision.

3.1 Levels

Before talking about levels, let’s just
remind the reader that this algorithm is linked to the
IPMS architecture. In IPMS we said that honeyd
based sensors will be put in different places in the
network. So the level will reflect the placement of
each sensor in the network. As a consequence,
when a sensor sends collected data to the analysis
engine, we will have an exact idea about the
network that the attack has reached. So levels will
be: DMZ, FE, BE, DataLan and userLan as defined
previously.

Obviously, an attack which reached the BE

network is more critical than an attack which was
detected in the DMZ or FE networks. Thus, we
associate a weight to every level as follows:

1. DMZ : 10
2. FE : 20
3. BE : 40
4. dataLan : 80
5. userLan : 100

These values can be changed by the IPMS

administrator to reflect the real impact of a security
breach on business. Of course, if we have multiple
VLANs in userLan level (for example, a vlan for
normal users and a VLAN for IT admins) the
administrator must set the weight by VLAN.

3.2 Criticality

The IPMS is mainly based on honeyd
sensors to collect data and trigger other actions. But
at the same time, the IPMS can use data from other
network devices like intrusion detection systems
(IDS) or any device which is IDMEF/IDXP [9, 10]
capable. So we can introduce the notion of
certainty: an IDS is more certain than a honeyd
sensor when it reports an attack because it is based
on attacks’ signatures so the probability of false
positive is nearly inexistent.

Based on this, we can add a factor in

conjunction with the weight to have a more realistic
idea of attack’s impact.

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 20th July 2013. Vol. 53 No.2

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

309

3.3 Community
The IPMS is a distributed and

collaborative prevention system. The principle of
Community is introduced to make a filtering
decision spread beyond the enterprise network to
other subsidiaries or other companies with the same
security needs (like partners for example). If a
community is set all networks sharing the same
community must share the same levels and
criticality, or at least be homogeneous in term of
network structure.

3.4 SID, Sensor Identifier

The three notions previously introduced let
us define the SID of a sensor by the expression:

SID := <level> . <ID> . < Criticality | default := 1>
. [Community | default := 0]

• <level> : mandatory field, contains the
level of the sensor

• <ID> : mandatory field, contains the
unique identifier of the sensor. This
identifier is automatically generated by the
IPMS when a new sensor is added

• < Criticality | default := 1> : mandatory
field, contains the criticality factor, if not
specified by the IPMS administrator the
default value is 1 (neutral)

• [Community | default := 0] : optional
field, contains the community id, if not
specified by the administrator the default
value is 0.

For example, the sensor with ID 15, in the

frontend network with no criticality factor will have
the SID : 20.15.1.0

4. FILTERING DEVICE SELECTION

ALGORITHM.

After having defined level, criticality,
community and SID notions we present the
algorithm to select on which filtering device,
known as filtering subsystem in the IPMS
architecture, will be concerned by a decision of
blocking a specified IP address, or IPb as noted in
the introduction.

4.1 The algorithm
/***** Step 1 : variables definition *****/

Array Tab_levels [] ; /* this array is generated

based on levels defined by the administrator in the

IPMS configuration.*/

Array Tab_SID[] ; /* temporary array to

hold SIDs */

Array Tab_Devs[] ; /* temporary array to

hold IP addresses of determined filtering devices by

the algorithm */

Array Tab_Nets[] ; /* temporary array to

hold networks’ addresses determined by the

algorithm */

Struct A_BLOQUER{

 String IP_SOURCE ;

 String IP_DESTINATION ;

 String PORT_SOURCE ;

 String PORT_SOURCE ;

} /* A structure to hold information used for

filter definition. Elements of the structure are given

as indication */

Struct A_BLOQUER a_bloquer ; /*

definition of a variable based on previously defined

structure */

/***** Step 2: functions prototypes *****/

level get_level (SID) ; /* this function returns

the level associated to an SID */

SID[] get_SID_by_level (level) ; /* this

function returns an array of SIDs of a given level

*/

string get_net_from_ip(SID) ; /* this function

returns the IP address of a given sensor / SID */

string[] get_filtering_device_by_net (string) ; /*

this function returns an array of IP addresses

associated to a filtering device in a given IP subnet

*/

Boolean apply_filter (IP=b, A_BLOQUER) /* this

function applies a filtering rule. Rules are in a

variable of type A_BLOQUER and are applied to

filtering device with the IP address given as

parameter */

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 20th July 2013. Vol. 53 No.2

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

310

/***** Step 2: Algorithm *****/

If (IS_ATTACK == TRUE) then

/* we get the level of the sensor who captured the

suspected traffic */

 l ← get_level (SID) ;

/* we get SIDs of all sensors having a level lower

than or equal to the one who captured the

suspected traffic */

 for (int i=0 ; i<sizeof(Tab_Levels) ; i++) {

 if ((li←Tab_Levels[i]) > l) then

exit for loop

 end if

 Tab_SID[] ← get_sid_by_level(li) ; // push

 }

/* getting IP networks’ addresses of sensors with

SIDs determined in the previous for loop */

 i ← 0;

 while (i < sizeof(Tab_SID)) do

 Tab_Nets[] ← get_net_from_ip(i) ; // push

 End while

/* finally, we get IP addresses of filtering devices in

the networks determined in the previous while loop

*/

 i ← 0;

 while (i < taille(Tab_Nets)) do

 IP_Devs[] ← get_filtering_device_in_net(i) ;

// push

 End while

/* we apply filtering rules on each filtering device*/

 i ← 0;

 while (i < taille(Tab_Devs)) do

 if (Apply_filter(Tab_Devs[i], a_bloquer))

then

 Actions to do after the filtering rule has been

successfully applied to a device.

 else

 Actions to do in case of failure while

applying filtering rules to a device.

 End if

 End while

End if

4.2 Execution of the algorithm

The algorithm starts by determining the
level of the sensor that captured the suspected data
and led to a decision of blocking the source IP
address. The idea behind this step is to:

• Have a clear idea of how many sensors
were in the path of this attack and network
data was not suspected, which may
indicate a problem in decision scheme

• Have all IP networks that belongs to the
same level (or a lower one) than the
current sensor as we may have different IP
addresses for the same level (think about
userLan with multiple VLANs)

Once this is done, we can have all IP

addresses of filtering devices in the networks we
determined in the first step of the execution. This
will allow us to filter network traffic in all these
devices without missing any one either in the
network with the sensor or in remote networks.

The community was not introduced in the

present algorithm as it is just for demonstration.

4.3 Tests and results
As in our previous article [1], filtering

devices were based on Linux boxes with iptables.
RSH (Remote SHell) was used to remotely apply
new chains to the filtering device. To simulate a
large network of filtering devices virtual machines
were used on multiple hosts and with multiple
virtual networks.

We also presented (in [1]) the algorithm

used to fire the filtering action by using the function
“ConfigureDevice(Rule)”. We can alter this
function to integrate the algorithm presented in this
article.

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 20th July 2013. Vol. 53 No.2

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

311

The algorithm executed as expected and
filtering rules were dispatched as expected. The
execution showed also that some rules do not need
to be implemented on some filtering devices
systematically. For example, if an IP is blocked in
the very most peripheral filtering device what will
be the need to reapply the same rule on all internal
ones? And finally, for userLan level, maybe
filtering by IP will not be efficient as in the case of
using DHCP for example, the user could change its
IP address and retry with his attack. Of course, we
can go with DHCP reservations but integrating a
lower level filtering (MAC address) for userLan
may be necessary. We can update the algorithm
with a check of the filtering to apply depending on
the level of the sensor. For our case, our primary
target is Internet attacks and IP filtering, so we
don’t go further in this path for the moment.

5. CONCLUSION.

In this article we tried to improve the

IPMS platform [1] by automating the selection of
filtering device on which a filtering rule has to be
applied. Nevertheless, and as discussed in the
results, we can improve this algorithm to adapt
further to real word cases.

The notion of community adds a level of

complexity to the platform as it adds the need of
securing communication with external networks.
When sharing a filtering rule over internet this
communication should be secured.

From another hand, an organization would
not share all private network configuration with its
partners, so a way to distribute the algorithm using
agent based calculation, meaning having an agent
in every network instead of a centralized method.

Having all information about network

configuration, even encrypted, in one place make it
a good target for attacks above all when
information for remote access is also stored in the
same location. So special care should be taken for
securing this platform’s servers

REFERENCES

[1] E.Bendriss, B. Regragui, “Honeypot based

intrusion management system: from a passive
architecture to an IPS system”, JATIT, pp
792-797, Vol. 47.No. 2, 2013

[2] Wikipedia, Iptables,
online, http://goo.gl/AFhni, last visited: April,
4th, 2013.

[3] SquidGuard, online, http://squidguard.org/,
last visited: April, 4th, 2013.

[4] N. Provos, T. Holz. « Virtual Honeypots »,
Addison Wesley, 2008, ISBN: 0-321-33632-1

[5] US-CERT, Incident Definition, on
line, http://goo.gl/dTQFU, last visited: April,
4th, 2013.

[6] Wikipedia, VLAN,
online, http://goo.gl/ueKhc, last visited: April,
4th, 2013.

[7] Wikipedia, iSCSI,
online, http://goo.gl/6MVuo, last visited:
April, 4th, 2013.

[8] Wikipedia, NAS, online, http://goo.gl/MnJ1v,
last visited: April, 4th, 2013.

[9] IDMEF, RFC, online, http://goo.gl/G8rfx, last
visited: April, 4th, 2013.

[10] IDXP, RFC, online, http://goo.gl/Dzrhe, last
visited: April, 4th, 2013.

http://www.jatit.org/
http://goo.gl/AFhni
http://squidguard.org/
http://goo.gl/dTQFU
http://goo.gl/ueKhc
http://goo.gl/6MVuo
http://goo.gl/MnJ1v
http://goo.gl/G8rfx
http://goo.gl/Dzrhe

	P1PELMEHDI BENDRISS,P 2PBOUBKER REGRAGUI
	3.1 Levels
	3.2 Criticality
	3.3 Community
	3.4 SID, Sensor Identifier
	4.1 The algorithm
	4.2 Execution of the algorithm
	4.3 Tests and results

