
Journal of Theoretical and Applied Information Technology
 10th July 2013. Vol. 53 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

13

PREDICTIVE LOAD BALANCING FOR DATA MINING IN
DISTRIBUTED SYSTEMS

 1M.EUGIN LILLY MARY, 2PROF.DR.V.SARAVANAN

1 Research Scholar, Bharathiar University, Coimbatore – 641 046, India
2 Professor & Director, Department Of Computer Applications,

 Sri Venkateswara College Of Computer Applications And Management,
 Ettimadai, Coimbatore - 641 105, India

E-mail: 1 eugine_jeyaraj@yahoo.co.in, 2 tvsaran@hotmail.com

ABSTRACT

Load Balancing is the key attribute in distributed systems to ensure fast processing and optimal utilization
of hardware components. The processing elements of varying hardware architecture and computing
capabilities in a shared network system constitute the distributed system. In such a heterogeneous
environment, load balancing and scheduling become complex and complicated. Dynamic feedback based
techniques, predicting the processing time of a task in a node, will be a promising solution to resolve
variations of this ubiquitous system. A collaborative agent system comprising mobile and stationary agents
captures the feedback from the contributing nodes and the prediction for the proceeding time epoch is made
by minimizing the gap between the predicted processing power and the actual processing power of the node
in the preceding epoch. As a result, the actual processing time of a task recorded is very close to the
predicted time, thereby reflecting the variations of the distributed system. This predictor enables the
construction of load balancing algorithms suitable for a heterogeneous distributed environment.

Keywords: Predictive Processing Power, Actual processing power, Next_Predicted_Time_Ratio,
Actual_Time_Ratio, Rate of mining.

1. INTRODUCTION

Today information technology has spread its
wings to areas like molecular biology, weather
forecast, cosmology, space research, nano
technology, insurance, sensor networks, risk
analysis, text mining, knowledge recovery etc. With
the advent of massive storage devices the business
industry stores and manipulates the data for their
business activities and needs to process large
volumes of data in the order of terabytes. At times
the data sets to be processed may arrive at high
speed in the form of streams, requiring fast and
secure processing. Such activities include pattern
recognition, identification of the underlying
association, fraud identification, fault detection,
etc., requiring very high computing power that can
be achieved by utilizing a set of interconnected
nodes forming clusters. These clusters constitute
varying hardware resources, software
sophistication, and quality of connectivity, etc. A

large cluster is capable of contributing on par with a
supercomputer at a fraction of the cost. [10]

The challenge is to distribute the tasks to
the available computing nodes so that none of the
nodes is overloaded or underutilized, and this art is
termed as load balancing. Therefore, load balancing
is the key attribute in a distributed system, to ensure
fast processing and good utilization of the hardware
components. Simple load balancing methods
include the round robin, randomization approach,
minimum connections, weight age methods,
minimum misses, hashing etc., that are easy to
implement, but are suitable only for homogeneous
systems. The strategies can be divided into static or
dynamic. Static load balancing distributes the tasks
across the computing elements before execution,
and the load distribution remains unchanged. In a
distributed environment the state of the individual
nodes varies and the knowledge of this variation
during runtime forms the basis of dynamic load
balancing. Therefore, dynamic load balancing is
termed as an active technology, which provides the

http://www.jatit.org/
mailto:eugine_jeyaraj@yahoo.co.in
mailto:tvsaran@hotmail.com

Journal of Theoretical and Applied Information Technology
 10th July 2013. Vol. 53 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

14

art of transforming the network traffic and
scheduling. In addition, the quality of services viz.,
scalability, quick response time, failure handling
and fault tolerance can be embedded in the dynamic
load balancing strategies. A detailed analysis of the
general load balancing algorithms has been made in
[16]. A brief over view of the techniques extracted
from the literature is given in Section 2. Although a
plethora of load balancing policies are in use,
simple methods [11] are adopted since they are
easy to implement. However, these methods work
well for homogeneous systems, and do not perform
efficiently for heterogeneous elements or tasks
requiring varying processing times. The present
scenario is to manage the clusters of varying
computing capabilities. To scale up such systems
to perform at high level availability, and flexibility,
the need arises for more sophisticated software
architectures and adaptive methods. The adaptive
load balancing strategies suitable for heterogeneous
environments are complex and complicated, and
need the prediction of processing time for any task
to be processed in a computing node. Also the
prediction policies are application specific. The
existing scenario uses a generalized system for all
types of applications [20]. As a result, the
distributed network experiences excess traffic due
to communication over load, but has very limited
abilities to handle overloads, load imbalances, and
compute-intensive transactions like cryptographic
applications, data mining applications and
multimedia processing which involve huge data.

The agent based systems emerging
recently are able to resolve the above mentioned
issues. An agent is an autonomous system capable
of performing action on behalf of its users. Agents
are capable of providing optimized services
according to the changing environment. The
characteristics of an agent include pro activity,
autonomy, goal oriented local views and
decentralization [2]. An agent system itself
possesses intelligence. In addition, it is capable of
making decisions on its own. This social ability
enables the multi agent system to handle operations
which are impossible for a single agent [4]. The
feedback from the resources in the distributed
environment can thus be effectively obtained in a
dynamic environment adopting MAS, and this
feedback forms the basis for predicting the
computing time required for the next task to be
processed. The computation intensive mining
operation can be processed at the nodes by means
of the stationary agents residing there. A dynamic
prediction based collaborative agent system has
been proposed in this paper, to achieve load

balancing in a ubiquitous system employing mobile
and stationary agents. The rest of the paper is
organized as follows. Section-2 narrates the related
work, Section-3 the proposed approach, Section-4
proposed system over-view, Section-5 the
experiments and results, and Section-6 gives the
conclusion.

2. RELATED WORKS

 Load balancing strategies should be
devised to get a quick response from the clusters,
and effective utilization of the hardware
components. A plethora of load balancing
methodologies are discussed in the research papers.
In this section, brief outlines of the research
techniques are discussed.

Load balancing may be static or dynamic.
Static load balancing methods adopt a predefined
strategy for the distribution of loads. [5]. Iterative
load balancing methods are discussed in [19]. A
comparative study of the static and dynamic load
balancing methodologies has been carried out by
Willebeek –Lemair and Reeves [18]. Load
balancing becomes complex and complicated in a
heterogeneous environment. CFS is a framework
which allocates the number of virtual servers, in
proportion to the capacity of the computing nodes
[8]. Though this system provides a simple solution
to shed the overloaded nodes, thrash occurs when
some of the virtual servers are removed. Adler et al
[1] proposed a framework which organizes the
nodes as the leaves of trees that in turn, effect load
balancing based on the joining or departure of the
leaf nodes. However, aspects, such as the
heterogeneity of the nodes and varying load
distribution have not been discussed. Karger and
Ruhl[6] illustrated methods for balancing loads in a
heterogeneous environment, by reassigning the
loads of the heavily loaded nodes to the lightly
loaded ones. There is a possibility of bounds at the
heavily loaded nodes [7] upon load movement, and
it is unclear whether the techniques are efficient in
practice.

The methods discussed so far, adopt the
message exchange paradigm to collect the
information regarding the loads. The process of the
message passing paradigm cause network traffic,
[14] and this can be resolved by employing agents.
Recently, dynamic load balancing approaches using
agent systems have been evolved. Agents are
capable of their performing various kinds of
operations on behalf of its users. They are
employed to move data, intermediate results and
models between clusters so that the network load

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 10th July 2013. Vol. 53 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

15

gets reduced. [10] The system proposed by Frank
Lingen uses mobile agents for the execution of jobs
submitted by hand held devices. A combination of
two agents LGA and RLBA has been engaged in a
framework [7], in which the LGA collects the load
status, while the RLBA enables load balancing
when a node is overloaded. Ezhumalai et al [7]
proposed a framework which consists of a monitor
agent to collect information from the nodes, a
supervisor agent to analyse the overloaded nodes,
and a locate agent to locate the node with a light
load. However, the experimental setup for this
framework has not been discussed. A framework
named EALMA utilizes mobile agents for updating
the load information of the cluster [9]. In an agent
based load balancing architecture, TRAVELLER,
[15] the resource brokers are responsible for
collecting the load status of the computing nodes of
the distributed environment. The framework,
MESSENGERS [19] supports load balancing and
dynamic resource utilization with the aid of agents.
In the agent based framework, PMADE [14], the
agents residing at the computing nodes initiate the
load balancing, as and when a node is overloaded.
MAS [4] is a framework which organizes the
migration of mobile agents to cope with the current
load status. Flash [12] is designed to apply load
balancing in a cluster system. In the above
mentioned agent based frameworks the changing
load conditions of the nodes in the distributed
environment form the basis for load balancing.

The data mining operations to be
performed are both process intensive and data
intensive, involving a huge volume of data and
varying operations on those data. The agents are
capable of performing mining operations on behalf
of their users.

The cluster based approach; CLARA
(Cluster Based Active Router Architecture) [17]
performs multimedia transcoding tasks on a cluster
of nodes instead of on the router. It is shown
experimentally that prediction based 1oad
balancing performs efficiently. A prediction based
1oad balancing, based on the confirmation
mechanism discussed in [20] performs the
adjustment of loads, when the predicted measure
and observed value differs significantly. It is
shown experimentally that only 4% of the processes
need adjustment while the remaining 96% of the
processes are in the steady state. But this method
holds good for the uniform distribution of loads. A
Grey Dynamic model based load balancing
mechanism [GMLBM] has been proposed in [12],
which predicted the load data according to the grey
theory.

The overview of the dynamic prediction
based load balancing system for processing
datasets in a cluster based distributed environment,
employing a collaborative agent system is reported
in section 3 and the architecture over view is given
in section 4.

3. THE PROPOSED WORK

The main focus of this research is to
propose a centralized prediction-based dynamic
load balancing algorithm that is suitable for the
distributed heterogeneous environment.
‘Heterogeneous environment’ refers to the cluster
of computing nodes of varying computer hardware
architecture, computing capabilities, operating
system and resource availability etc. The load
balancers in existence, such as the round robin, tree
based algorithms, or data parallel applications are
suitable only for homogeneous tasks.
The data mining techniques to be implemented in
the nodes are not only data intensive but
computation intensive too. For the same size of
input stream the processing time differs with
respect to the methodology. Hence, the
heterogeneity of the tasks plays an important role in
forecasting the time units required to process a
particular data stream in a node. In such a scenario,
the prediction based load balancing strategies can
enable effective load balancing and scheduling.

 3.1 Constructing a Predictor Table
The objective is to process the stream of

data on a cluster of computing nodes. Predicting
the execution time of this parallel processing on a
heterogeneous system becomes complex and
complicated. There involves resolving two major
issues. First, to construct a predictor table with
initialized ‘prediction values’ when each of the
computing nodes possesses varying capabilities.
Second to forecast and update the ‘rate of mining
operation’ on the individual nodes. ‘Rate of
mining’ refers to the size of streams processed in a
unit of time.

3.2 Initializing the Predictor Table
The open issue is how to initialize the

prediction value. In [1], a prediction based load
balancing strategy has been analyzed, where the
performance of the load balancing strategies
adopted for transcoding multimedia units in a
cluster based computing environment has been
compared, and it is recommended that prediction
based load balancing strategies viz., prediction

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 10th July 2013. Vol. 53 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

16

based least load first, and prediction based adoptive
portioning algorithms yield more throughput and
reduced jitter than the corresponding non predictive
algorithms.

Experiments have been conducted to
obtain an estimated value of the initial prediction
time on a cluster of computing nodes in which a set
of

N = {N1,N2,N3,…Nn}
‘n’ nodes are connected via network,

At any epoch, Tk a subset Nn are ready for
handling the instructions.

Nn ={Ni\Fault index(i) < >0}
At each node the analytical techniques are specially
deployed for processing a subset of data streams.
Let ‘m’ streams, each of various sizes are routed to
all the ‘n’ computing nodes individually. The time
taken for processing a data stream, stream (i,j) at
node Ni against the stream size has been observed.
Let size (i,j) be the quantum of stream processed at
time(i,j); the initial prediction value for node Ni has
been arrived at using the equation (1).

3.3 Forecasting and Updating the Rate of
Mining

Based on the experimental values
discussed in the previous section, the estimated
time for processing a stream in Node Ni, has been
initialized. A predictor which is being
incrementally built narrows the gap between the
‘predicted time of processing a stream’ and the
‘actual execution time discussed in this section. In a
framework GMLBM, (Grey Dynamic Model Based
Load Balancing), the predictors are constructed
linearly by the method of least squares, using the
recently available four sets of data. [13]. Bravier et
al illustrated that building a predictor model using
the canonical least squares would be
computationally too expensive. [3] They designed
the predictor that approximates the linear model.
Experimental proofs were given by them, and it
was illustrated that the predictor offered better
performance than the linear model. In our study, the
estimation and forecast of the prediction value is
dynamically carried out as per the following
algorithm, depicted in table 2, and the definition of
the parameters involved is depicted in table 1.

 The forecast table T_Predictor constructed
is being updated at the end of every epoch. The
Actual_Time obtained as feedback from the
feedback module of the computing nodes forms the
basis for forecasting the processing time of the
proceeding datasets. The prevailing gap between
the predicted time and the actual processing time
gets narrowed. As a result, the rate of processing,
the Predicted_Time_Ratio approaches the actual
rate of processing the Actual_Time_Ratio. A graph
illustrating this phenomenon is given in figure 1. It
is aimed to slim out the deviation of the measures
as time progresses.

Let this deviation of
Predicted_Time_Ratio from Actual_Time_Ratio be
diff (T),
Tk, Tk+1, Tk+2 be the consecutive epochs and it is
clear that
diff (Tk+2) , < diff(Tk+1) < diff(Tk)

 In the grey dynamic model based
mechanism [3] the prediction has been arrived at by
maintaining the recent four sets of data. In our
study, the cumulative measure of the previous
records and the current records is considered as the
two attributes in deciding the forecast.

Figure 1: Chart illustrating the forecast

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 10th July 2013. Vol. 53 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

17

 Table 1: Definition of Parameters

Tot_Filesize

T k+1
T k+1
Ni
j
Pre_Load_Stat(i)
Predicted_Val(i,j, T k)

Predicted_Val(i,j, T k+1)

Actual_Time(i,j, T k)

Predicted_Time_Ratio(i,j,Tk)

Predicted_Time_Ratio(i,j,T k+1)

 Actual Time_Ratio(i,j,T k)

:

:
:
:
:
:
:

:

:

:

:

:

Total size of the datasets to be processed at that
time epoch
Present time epoch
Proceeding time epoch
Node under consideration
The serial number of the task
The load forecasted at a node Ni
Forecasted time of processing a task j at node
Ni in the time epoch k
Forecasted time of processing a task j at node
Ni in the time epoch k
Actual time observed for processing a task j
at node Ni in the time epoch k
Predicted rate of mining for processing the
task j at node Ni in the time epoch k
Predicted rate of mining for processing the task
j at node Ni in the time epoch k+1
Actual rate of mining observed for processing
task j at node Ni in the time epoch T k

4. PROPOSED SYSTEM OVERVIEW

The feedback being updated contributes a lot to the
decision making process in dynamic load
balancing. Thus, the forecast table being updated
forms the basis for load balancing and scheduling.
This can be achieved by employing a collaborative
agent system, comprising of mobile and stationary
agents. The proactive and reactive features of
agents facilitate knowledge discovery, by
effectively distributing it to the set of computing
nodes.

The framework, Predictive Load
Balancing (PLB), proposed in this paper, comprises
a plethora of stationary agents and a mobile agent
as depicted in figure 2.

The available computing power in the
distributed environment is being categorized as
monitoring and computing nodes. The monitoring
node is responsible for the implementation of load
balancing and scheduling policies, while the
computing nodes perform the data mining
operations. The monitoring node keeps track of the
performance of the computing nodes, and suitably
updates the predictor table, at the end of every
epoch, as described in Section (3.3), and the history
table as and when it is warranted.

Figure 2: General Architecture

Let there be ‘m’ streams to be processed in
‘n’ computing nodes (m>n).

The various modules of the monitoring
node performing load balancing and scheduling are
described below.

Receiver module – collects and, sizes the
tasks to be processed, grouped or sliced as the case
may be, such that at any point of time, the size of
the tasks should satisfy the condition in equation
(2)
minsize < size (task i) < maxsize. ……. (2)

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 10th July 2013. Vol. 53 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

18

Table 2 : Algorithm for constructing the forecast table

1. Collect the initial predicted value for node Ni, to initialize.
2. Compute the Predicted_Time_ Ratio for node Ni.
3. Fetch the actual time for executing a task j at node Ni.
4. Compute the Actual-Time_Ratio for executing the task j at node Ni.
5. Compute the difference between (2) and (4).
6. Arrive the Next-Predicted_Time_Ratio for processing the task(j+1) at node Ni
 in the proceeding epoch, by minimizing (5)
7. Assign the value obtained in (6) for the Predicted_Time_Ratio of processing
 the task (j+1) at node Ni for the proceeding epoch.
8. Repeat steps (2) to (7)

Input : Initial_Predicted_Val(i)
 File_size(i,j, T k)
 Predicted_Val(i,j,T k)

Output :
 Predicted_Val(i,j,T k+1)
Initialise :
 When T k = 1
Predicted_Val(i,j,T k)
Predicted_Time_Ratio(i,j,T k)
While (m > n)
Get Actual_Time(i,j,T k)
Actual_Time_Ratio(i,j,T k)
diff
If (diff >0)

 Next_Predicted_Time_Ratio
else

 Next_Predicted_Time_Ratio
j = j +1

 T k = T k +1 // next epoch
Predicted_Time_Ratio(i,j,T k)
Predicted_val(i,j,T k)

=
=

=
=

=

=

=
=

Initial_Predicted_Time(i)
File_size(i,j,T k) /Predicted_Val(i,j,T k)

File_size(i,j,T k) /Actual_Time(i,j,T k)
Actual_Time_Ratio(i,j,T k) -
Predicted_Time_Ratio(i,j,T k)
Predicted_Time_Ratio(i,j,T k) + diff/2

Predicted_Time_Ratio(i,j,T k) - diff/2

Next_Predicted_Time_Ratio
File_size(i,j,T k)/ Predicted_Time_Ratio(i,j,T k)

The minsize, refers to the size that the

DataStream should be able to impart some pattern
or knowledge. The maxsize, refers to the
maximum computing power of the nodes in the
distributed environment. The unit buffer stores and
organizes these sized streams, in the FIFO order.

Scheduler module - refers to the predictor
table, and allocates the data streams to the
respective nodes as per the load balancing policy
and the weights imparted from the performance
table. The Weights associated with every node are
maintained in the performance table.

Monitoring module – keeps track of the
performance of the nodes under consideration,
collects the feedback from the nodes and updates
the predictor table. Also, watches the status of the

nodes and updates the history table as and when the
Fault_index(Ni) of a node equals zero.
 Knowledge module – Collects the
knowledge unearthed from the datasets mined at the
computing nodes and consolidates the results.

Stationary agents named mining agents are
deployed at the computing nodes. These agents
receive the data stream, perform the mining
operation and evaluate the parameters prevailing in
the data Streams. The modules in the mining node
comprise of the:

Receiver module – receives the data
streams allocated to the particular node

Knowledge module – performs the mining
operation and submits the knowledge unearthed
from the local datasets.

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 10th July 2013. Vol. 53 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

19

Table 3 : Simulated Values in a Cluster with 8 nodes

ID Server_

Code
File_
Names

File_
Size

Predicted_Time_
Ratio

Predicted_
Time

Next_Predicted_Ti
me_Ratio

Next_
Predicted_
Time

Actual_Ti
me_
Ratio

Actual
_
Time

58 8 Split8_Inpu
t
File.txt

50100 2686.25 19 2386.88 20.99 2087.5 24

59 7 Split1_Inpu
t
File.txt

50100 2203.27 23 2065.1 24.26 1926.92 26

60 4 Split3_Inpu
t
File.txt

55000 2366.22 23 2240.8 24.54 2115.38 26

61 5 Split4_Inpu
t
File.txt

75000 2573.19 29 2458.47 30.51 2343.75 32

62 6 Split5_Inpu
t
File.txt

101000 2241.35 45 2172.76 46.48 2104.17 48

63 1 Split2_Inpu
t
File.txt

80000 2191.67 37 2071.45 38.62 1951.22 41

64 2 Split8_Inpu
t
File.txt

50100 2090.91 24 1578.44 31.74 1065.96 47

65 3 Split6_Inpu
t
File.txt

80000 1815.91 44 1759.02 45.48 1702.13 47

66 8 Split1_Inpu
t
File.txt

50100 2386.88 21 2282.57 21.95 2178.26 23

67 7 Split2_Inpu
t
File.txt

80000 2065.1 39 1984.93 40.3 1904.76 42

68 1 Split1_Inpu
t
File.txt

50100 2071.45 24 2174.36 23.04 2277.27 22

69 3 Split2_Inpu
tFile.txt

55000 1759.02 31 1796.18 30.62 1833.33 30

70 2 Split1_Inpu
t
File.txt

75000 1578.44 48 1587.09 47.26 1595.74 47

71 4 Split2_Inpu
t
File.txt

55000 2240.8 25 2178.09 25.25 2115.38 26

72 5 Split3_Inpu
t
File.txt

55000 2458.47 22 2538.76 21.66 2619.05 21

73 6 Split4_Inpu
t
File.txt

75000 2172.76 35 2128.05 35.24 2083.33 36

74 8 Split6_Inpu
t
File.txt

80000 2282.57 35 2317.76 34.52 2352.94 34

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 10th July 2013. Vol. 53 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

20

Feedback module – keeps track of the
parameters and the performance metrics such as the
actual time taken for completing the assigned task
and setting the flag, Fault-index (Ni) to zero,
whenever the time of execution exceeds the
max_threshold_value.

The mobile agent “Resource Characteristic
Analyst” (RCA) – while roaming across the
network collects and consolidates the knowledge
unearthed.

5. EXPERIMENTS AND RESULTS

 In order to evaluate the above discussed
forecast technique, experiments were conducted on
a cluster with eight servers.

5.1 Experimental Evaluation

A Java program to sort and count the
number of occurrences of keywords in a text of
size ranging from 50KB to 185 KB, in order to
construct a word vector, was executed in a cluster
constituting eight nodes, and a portion of the
forecast table constructed during the process is
depicted in table 3.

The tabulated values are a part of the fore
cast table constructed at run time, and the values
correspond to the time epochs 9, 10 and 11. During
these epochs all the 8 nodes, viz., N1, N2, N3, N4, N5,
N6, N7 and N8 were active in the distributed
environment. The measures corresponding to a
particular node N8 are illustrated here. ID 58, 66
and 74 displays the values pertaining to this node.
The expected processing power
(Next_Predicted_Time_Ratio) of this node N8
forecasted for the time epoch 9 is 2386.88
bits/millisecond. The size of the dataset to be
processed in the epoch 9 is 50100 bits. Therefore
the time predicted is 19 milliseconds. The actual
time taken for processing this dataset at node N8,
recorded as the feedback is 24 millisecond. Hence,
the actual processing power worked out
(Actual_Time_Ratio) is 2087.5 bits/millisecond.
These two values, Next_Predicted_Time_Ratio
(2386.88) and Actual_Time_Ratio (2087.5) of the
present epoch 9 form the basis for predicting the
processing power of node N8 in the forthcoming
epoch 10. Accordingly the processing power
(Next_Predicted_Time_Ratio) forecasted for time
epoch 10 is 2386.88 bits/millisecond (ID 66). Here
again, the size of the dataset to be processed is
50100 bits. The predicted time is 21 milliseconds.
The actual time taken for processing this dataset at
node N8 has been recorded as 23 milliseconds and
the actual processing power, Actual_Time_Ratio,

of this epoch 10 is 2178.26 bits/millisecond. Now
the forecast for epoch 11 is made with the measures
available measures at ID 66 and the forecasted
processing power of node N8 at the time epoch is
2282.57 bits/millisecond. At this epoch, the size of
the dataset to be processed is 80000 bits.
Therefore, the predicted time for processing the
same at node N8 is 35 milliseconds. It is inferred
from the table that the prediction table is able to
forecast the processing time of the proceeding task
when executed in a node, more accurately. In the
same way, the predictions are made for all the
contributing nodes.

In order to evaluate the precision achieved
by the algorithm, a comparison of the Predicted
Time and Actual Time has been made, on
observing the T_Predictor values when identical
datasets of size 150100 bits are processed in node
N8. A bar chart depicting the Predicted Time and
Actual Time is given in Figure 3. In the time
epoch 8, the difference between the Predicted Time
and Actual Time is noted as 32.65%. The same has
been slashed down to 27.77% in the epoch 12 ,
and steps down to 8.79% in the epoch 16 and
3.44% in epoch 20; it is evident that the difference
between the Predicted time and the actual time is
slimming out as time progresses. That is the
predictor is able to reflect the ubiquitous nature of
the environment, since the same is constructed
based on the feedback obtained from the
contributing nodes.

The core objective of this research is to
capture the variations in the distributed
environment, and it is clear that the predictions
made converge towards the actual measures. Load
balancing and scheduling algorithms can be
designed based on the predictor, ensuring fast
processing and effective utilization of hardware
components in the distributed environment.

Figure 3: Comparison of the actual time and predicted

time

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 10th July 2013. Vol. 53 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

21

 Table 4: Improved Performance of the Prediction Based Algorithm

Cluster
Size

Bytes processed per Millisecond

LLF PRE_LLF Improved
Performance (%)

5 20047.16 29645.85 147.88
10 29342.79 43731.12 149.04
15 32325.83 48900.00 151.27
20 41103.87 63106.48 153.53
25 47299.06 74567.00 157.65

Experiments are conducted to evaluate the
performance of the prediction based strategy when
incorporated in load balancing and scheduling
algorithms, and frame a comparison with non
predictive algorithms. The study has been carried
out in a distributed environment of various cluster
sizes 5, 10, 15, 20 and 25. The application for
classifying the datasets has been specially deployed
in the nodes.

The observations as recorded are analyzed
in two steps.

First, the system throughput is achieved,
in terms of the bytes processed per second when a
particular dataset is split up and scheduled to the
nodes as per the Predictive Least Load First
(Pre_LLF) algorithm. Second, the processing time
of various data sets are observed, keeping the
cluster size constant. About 400000 records are
split and scheduled to the nodes duly incorporating
the prediction based policies. Observations are
recorded when scheduled to the least loaded node,
reinforcing the predictive processing power of a
node.

5.2 Results and Discussion

Throughput and scalability are the two
major objectives in a distributed environment.
Improved throughput in a distributed system is
the main focus of prediction based load
balancing strategies.

The throughput in terms of bytes
processed per millisecond of the distributed
environment is observed for varying sizes of
clusters. The study has been extended to observe
the behavioral pattern of the distributed system
on processing datasets of varying sizes in a least

loaded node, with prediction and without
prediction.

Table 4 depicts the throughput observed
when a file size of about 400000 records are
scheduled to the nodes and the classification
operation is performed

The measures in the column LLF are
the processing powers of the contributing nodes
when a dataset is scheduled to a lightly loaded
node without prediction and the values in the
column PRE_LLF are the processing powers
when dataset is scheduled to a least loaded node,
duly incorporating the predicted processing
power of the particular node. It is evident, that
the PRE-LLF shows an improved performance
of 147.88% when scheduled to 5 nodes and this
improvement shows an increasing trend, by
recording 149.04 % for a cluster size of 10 and
keeps on incresing with the cluster sizes. For a
cluster size of 25 the maximun improvement of
157.65% is observed.
The feed back collected from the nodes reflects
the heterogeneity of the ubiquitous distributed
environment , and this forms the basis for
forecasting the processing power of a particular
node in the proceeding epoch. The PRE_LLF
being formulated on this, could impart better
performance since the variations in the
distributed system are taken care of. This
prediction would be more valuable for quite
large numbers of nodes. Figure 4 depicts the
comparison of the performance, and it is
inferred that prediction based strategies prove to
be more efficient in clusters of higher sizes.

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 10th July 2013. Vol. 53 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

22

Figure 4: Comparative Performance of Prediction
Based and Non Predictive Algorithms

The study has been extended to analyze

the performance of prediction based strategies on
processing varying file sizes on a cluster size of
20. The actual time taken for processing datasets
of sizes varying from 14 MB, to 125 MB has
been recorded for the LLF and PRE_LLF. Figure
5 depicts the comparison of the speed, in
processing a task adopting Prediction based
strategies. It is clear from the graph that
prediction based strategies impart fast
processing, as the size of the datasets increases,
and it is inferred that the prediction based
strategies prove to be more efficient in
processing data sets of higher size of datasets
also.

6. CONCLUSION

The construction of a predictor upon
which load balancing techniques are constructed
in a distributed system comprising
heterogeneous computing elements is discussed
in this paper. The feedback based strategies
discussed, predict the processing power of a
node in a distributed system, with reference to
the actual execution time. A collaborative agent
system, comprising stationary and mobile agents,
captures the feedback from the contributing
nodes, and updates the predictor table
dynamically. And this dynamic updating enables
the system in predicting the processing power of
the computing nodes, closely adhering to the
fluctuations of the ubiquitous distributed system.

Figure 5: Comparative Processing Time

The predictor constructed during run
time approaches the actual processing time, and
this aspect forms the basis for designing load
balancing algorithms reflecting the heterogeneity
of the distributed environment.

REFERENCES

[1] Adler.M, Eran Halperin, R. Karp.M, and

Vazirani.V, A, Stochastic process on the
hypercube with applications to peerto-peer
networks, in Proc. STOC, 2003.

[2] Bakri Yahaya, Rohaya Latip, Mohamed
Othman, and Azizol Abdullah, Dynamic
Load Balancing Policy with Communication
and Computation Elements in Grid
Computing with Multi-Agent System
Integration, International Journal on New
Computer Architectures and Their
Applications (IJNCAA) 1(3): 780-788 The
Society of Digital Information and Wireless
Communications, 2011 (ISSN: 2220-9085).

[3] Bravier.A.D, Montz.A.B, Peterson.L.L,
Predicting Mpeg Execution Times,
Proceedings of international conference –
Measurment and modeling of computer
systems, SIGMETRICS, 1998.

[4] Byung Ha Son, Seong Woo Lee, Hee Yong
Youn, Prediction-Based Dynamic Load
Balancing Using Agent Migrationfor Multi-
Agent System,2010 12th IEEE International
Conference on High Performance
Computing and Communications.

[5] G.Cybengo, Dynamic Load Balancing for
Distributed Memory Multiprocessors,
Journal of Parallel and Distributed
Computing,Vol 7/1989

[6] David Karger and Matthias Ruhl, New
Algorithms for LoadBalancing in Peer-to-

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 10th July 2013. Vol. 53 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

23

Peer Systems,,Tech. Rep. MIT-LCS-TR-
911, MIT LCS, July 2003.

[7] R. Ezumalai, G. Aghila and R. Rajalakshmi,
Design and Architecture for Efficient Load
Balancing with Security Using Mobile
Agents, IACSIT International Journal of
Engineering and Technology Vol. 2, No.1,
February, 2010 ISSN: 1793-8236.

[8] Frank Dabek, Frans Kaashoek, David Karger,
Robert Morris, Simple Load Balancing for
Distributed Hash Tables, in Proc.IPTPS,
Feb. 2003.

[9] IBM WebSphere Edge Server Redbook.
http://www.redbooks.ibm.com /pubs/
pdfs/redbooks /sg246511.pdf.

[10] Josenildo Costa da Silvaa, Matthias
Kluscha, Stefano Lodi, and Gianluca Moro,
Privacy-preserving agent-based distributed
data clustering, Web Intelligence and Agent
Systems: An international journal 3 (2006)
1–18.

[11] Katz E, Butler M, and McGrath R, “A
Scalable Http Server: TheNcsa Prototype,”
Computer Networks and ISDN Systems,
vol. 27,pp. 155-164, 1994.

 [12] Kim Y H , "An Efficient Dynamic Load
Balancing Scheme for Multi-agent System
Reflecting Agent work load,cse, vol. 1,
pp.216- 223, 2009 International Conference
on Computational Science and Engineering,
2009.

[13] Liang-Teh Lee, Hung-Yuan Chang , Gei-
Ming Chang and Hsing-Lu Chen, A Grey
Prediction Based Load Balancing
Mechanism for Distributed Computing
Systems, ISCIT 2006, IEEE, 0-7803-9740-
X/06.

[14] Neeraj Nehra, 2,R.B. Patel, 3V.K. Bhat, A
Framework for Distributed Dynamic Load
Balancing in Heterogeneous Cluster, Journal
of Computer Science 3 (1): 14-24, 2007
ISSN 1549-3636.

[15] Server Iron Chassis L4-7 Software
Configuration Guide.
<http://www.foundrynet.com/services/docu
mentati on -/sichassis/management.html>

 [16] Shirazi B A , Hurson A R , and Kavi K M,
Scheduling and LoadBalancing in Parallel
and Distributed Systems. CS Press, 1995.

 [17] Welling G, Ott M, and Mathur M, “A
Cluster-Based Active Router Architecture,”
IEEE Micro, vol. 21, no. 1, Jan./Feb. 2001.

[18] Willeebeek M H -LeMair and Receves A P
,Strategies for load balancing on highly
parallel computers, IEEE Transactions,
Parallel and distributed systems, Vol
IV.No9, 1993.

[19] Xu, C.-Z. and Wims B, 2000. Mobile agent
based push methodology for global parallel
computing. Concurrency and Computation:
Practice and Experience, 14: 705-726.

[20] Yongjian Yang, Xiaodong Cao, Jiubin Ju,
Yajiun Chen, Research on Prediction
Methods for Load Balancing Based on Self-
adaptive and Confirmation Mechanism,
2005 International Conference on Control
and Automation (ICCA2005),June 27-29,
2005, Budapest, Hungary.

http://www.jatit.org/

	3. THE PROPOSED WORK
	3.1 Constructing a Predictor Table
	3.2 Initializing the Predictor Table
	3.3 Forecasting and Updating the Rate of Mining

