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ABSTRACT 
 

Load Balancing is the key attribute in distributed systems to ensure fast processing and optimal utilization 
of hardware components. The processing elements of varying hardware architecture and computing 
capabilities in a shared network system constitute the distributed system. In such a heterogeneous 
environment, load balancing and scheduling become complex and complicated.  Dynamic feedback based 
techniques, predicting the processing time of a task in a node, will be a promising solution to resolve 
variations of this ubiquitous system.  A collaborative agent system comprising mobile and stationary agents 
captures the feedback from the contributing nodes and the prediction for the proceeding time epoch is made 
by minimizing the gap between the predicted processing power and the actual processing power of the node 
in the preceding epoch.  As a result, the actual processing time of a task recorded is very close to the 
predicted time, thereby reflecting the variations of the distributed system. This predictor enables the 
construction of load balancing algorithms suitable for a heterogeneous distributed environment.  
 

Keywords:  Predictive Processing Power, Actual processing power, Next_Predicted_Time_Ratio, 
Actual_Time_Ratio, Rate  of mining. 

 
1. INTRODUCTION  
 

Today information technology has spread its 
wings to areas like molecular biology, weather 
forecast, cosmology, space research, nano 
technology, insurance, sensor networks, risk 
analysis, text mining, knowledge recovery etc. With 
the advent of massive storage devices the business 
industry stores and manipulates the data for their 
business activities and needs to process large 
volumes of data in the order of terabytes.   At times 
the data sets to be processed may arrive at high 
speed in the form of streams, requiring fast and 
secure processing. Such activities include   pattern 
recognition, identification of the underlying 
association, fraud identification, fault detection, 
etc., requiring very high computing power that can 
be achieved by utilizing a set of interconnected 
nodes forming clusters. These clusters constitute 
varying hardware resources, software 
sophistication, and quality of connectivity, etc. A 

large cluster is capable of contributing on par with a 
supercomputer at a fraction of the cost. [10]     

The challenge is to distribute the tasks to 
the available computing nodes so that none of the 
nodes is overloaded or underutilized, and this art is 
termed as load balancing. Therefore, load balancing 
is the key attribute in a distributed system, to ensure 
fast processing and good utilization of the hardware 
components. Simple load balancing methods 
include the round robin, randomization approach, 
minimum connections, weight age methods, 
minimum misses, hashing etc., that are easy to 
implement, but are suitable only for homogeneous 
systems. The strategies can be divided into static or 
dynamic. Static load balancing distributes the tasks 
across the computing elements before execution, 
and the load distribution remains unchanged. In a 
distributed environment the state of the individual 
nodes varies and the knowledge of this variation 
during runtime forms the basis of dynamic load 
balancing. Therefore, dynamic load balancing is 
termed as an active technology, which provides the 
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art of transforming the network traffic and 
scheduling. In addition, the quality of services viz., 
scalability, quick response time, failure handling 
and fault tolerance can be embedded in the dynamic 
load balancing strategies. A detailed analysis of the 
general load balancing algorithms has been made in 
[16]. A brief over view of the techniques extracted 
from the literature is given in Section 2. Although a 
plethora of load balancing policies are in use, 
simple methods [11] are adopted since they are 
easy to implement. However, these methods work 
well for homogeneous systems, and do not perform 
efficiently for heterogeneous elements or tasks 
requiring varying processing times. The present 
scenario is to manage the clusters of varying 
computing capabilities.  To scale up such systems 
to perform at high level availability, and flexibility, 
the need arises for more sophisticated software 
architectures and adaptive methods. The adaptive 
load balancing strategies suitable for heterogeneous 
environments are complex and complicated, and 
need the prediction of processing time for any task 
to be processed in a computing node. Also the 
prediction policies are application specific. The 
existing scenario uses a generalized system for all 
types of applications [20]. As a result, the 
distributed network experiences excess traffic due 
to communication over load, but has very  limited 
abilities to handle overloads, load imbalances, and 
compute-intensive transactions like cryptographic 
applications, data mining applications  and 
multimedia processing which involve huge data.  

The agent based systems emerging 
recently are able to resolve the above mentioned 
issues. An agent is an autonomous system capable 
of performing action on behalf of its users. Agents 
are capable of providing optimized services 
according to the changing environment. The 
characteristics of an agent include pro activity, 
autonomy, goal oriented local views and 
decentralization [2]. An agent system itself 
possesses intelligence. In addition, it is capable of 
making decisions on its own. This social ability 
enables the multi agent system to handle operations 
which are impossible for a single agent [4].  The 
feedback from the resources in the distributed 
environment can thus be effectively obtained in a 
dynamic environment adopting MAS, and this 
feedback forms the basis for predicting the 
computing time required for the next task to be 
processed. The computation intensive mining 
operation can be processed at the nodes by means 
of the stationary agents residing there. A dynamic 
prediction based collaborative agent system has 
been proposed in this paper, to achieve load 

balancing in a ubiquitous system employing mobile 
and stationary agents. The rest of the paper is 
organized as follows. Section-2 narrates the related 
work, Section-3 the proposed approach, Section-4 
proposed system over-view, Section-5 the 
experiments and results,    and   Section-6 gives the 
conclusion.     

 
2.   RELATED WORKS 

 

 Load balancing strategies should be 
devised to get a quick response from the clusters, 
and effective utilization of the hardware 
components. A plethora of load balancing 
methodologies are discussed in the research papers. 
In this section, brief outlines of the research 
techniques are discussed.  

Load balancing may be static or dynamic. 
Static load balancing methods adopt a predefined 
strategy for the distribution of loads. [5]. Iterative 
load balancing methods are discussed in [19]. A 
comparative study of the static and dynamic load 
balancing methodologies has been carried out by 
Willebeek –Lemair and Reeves [18]. Load 
balancing becomes complex and complicated in a 
heterogeneous environment. CFS is a framework 
which allocates the number of virtual servers, in 
proportion to the capacity of the computing nodes 
[8]. Though this system provides a simple solution 
to shed the overloaded nodes, thrash occurs when 
some of the virtual servers are removed. Adler et al 
[1] proposed a framework which organizes the 
nodes as the leaves of trees that in turn, effect load 
balancing based on the joining or departure of the 
leaf nodes. However, aspects, such as the 
heterogeneity of the nodes and varying load 
distribution have not been discussed. Karger  and 
Ruhl[6] illustrated methods for balancing loads in a 
heterogeneous   environment, by reassigning the 
loads of the heavily loaded nodes to the lightly 
loaded ones. There is a possibility of bounds at the 
heavily loaded nodes [7] upon load movement, and 
it is unclear whether the techniques are efficient in 
practice. 

The methods discussed so far, adopt the 
message exchange paradigm to collect the 
information regarding the loads. The process of the 
message passing paradigm cause network traffic, 
[14] and this can be resolved by employing agents. 
Recently, dynamic load balancing approaches using 
agent systems have been evolved. Agents are 
capable of their performing various kinds of 
operations on behalf of its users. They are 
employed to move data, intermediate results and 
models between clusters so that the network load 
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gets reduced. [10]     The system proposed by Frank 
Lingen uses mobile agents for the execution of jobs 
submitted by hand held devices.  A combination of 
two agents LGA and RLBA has been engaged in a 
framework [7], in which the LGA collects the load 
status, while the RLBA enables load balancing 
when a node is overloaded. Ezhumalai et al [7] 
proposed a framework which consists of a monitor 
agent to collect information from the nodes, a 
supervisor agent to analyse the overloaded nodes, 
and a locate agent to locate the node with a light 
load. However, the experimental setup for this 
framework has not been discussed. A framework 
named EALMA utilizes mobile agents for updating 
the load information of the cluster [9]. In an agent 
based load balancing architecture, TRAVELLER, 
[15] the resource brokers are responsible for 
collecting the load status of the computing nodes of 
the distributed environment. The framework, 
MESSENGERS [19] supports load balancing and 
dynamic resource utilization with the aid of agents.   
In the agent based framework, PMADE [14], the 
agents residing at the computing nodes initiate the 
load balancing, as and when a node is overloaded.  
MAS [4]  is a framework which organizes the 
migration of mobile agents to cope with the current 
load status.    Flash [12] is designed to apply load 
balancing in a cluster system.  In the above 
mentioned agent based frameworks the changing 
load conditions of the nodes in the distributed 
environment form the basis for load balancing. 

The data mining operations to be 
performed are both process intensive and data 
intensive, involving a huge volume of data and 
varying operations on those data. The agents are 
capable of performing mining operations on behalf 
of their users. 

The cluster based approach; CLARA 
(Cluster Based Active Router Architecture) [17] 
performs multimedia transcoding tasks on a cluster 
of nodes instead of on the router.  It is shown 
experimentally that prediction based 1oad 
balancing performs efficiently.  A prediction based 
1oad balancing, based on the confirmation 
mechanism discussed in [20] performs the 
adjustment of loads, when the predicted measure  
and observed value differs significantly.  It is 
shown experimentally that only 4% of the processes 
need adjustment while the remaining   96% of the 
processes are in the steady state.  But this method 
holds good for the uniform distribution of loads.  A 
Grey Dynamic model based load balancing 
mechanism [GMLBM] has been proposed in [12], 
which predicted the load data according to the grey 
theory. 

The  overview of the dynamic prediction 
based load balancing system  for processing 
datasets  in a cluster based distributed environment, 
employing a collaborative agent system is reported 
in section  3 and the architecture over view is given 
in section 4. 
 
3. THE PROPOSED WORK 
 

The main focus of this research is to 
propose a centralized prediction-based dynamic 
load balancing algorithm that is suitable for the 
distributed heterogeneous environment.  
‘Heterogeneous environment’ refers to the cluster 
of computing nodes of varying computer hardware 
architecture, computing capabilities, operating 
system and resource availability etc. The load 
balancers in existence, such as the round robin, tree 
based algorithms, or data parallel applications are 
suitable only for homogeneous tasks.  
The data mining techniques to be implemented in 
the nodes are not only data intensive but 
computation intensive too. For the same size of 
input stream the processing time differs with 
respect to the methodology. Hence, the 
heterogeneity of the tasks plays an important role in 
forecasting the time units required to process a 
particular data stream in a node.  In such a scenario, 
the prediction based load balancing strategies can 
enable effective load balancing and scheduling.  

 3.1    Constructing a Predictor Table 
The objective is to process the stream of 

data on a cluster of computing nodes.  Predicting 
the execution time of this parallel processing on a 
heterogeneous system becomes complex and 
complicated. There involves resolving two major 
issues. First, to construct a predictor table with 
initialized ‘prediction values’ when each of the 
computing nodes possesses varying capabilities. 
Second to forecast and update the ‘rate of mining 
operation’ on the individual nodes. ‘Rate of 
mining’ refers to the size of streams processed in a 
unit of time. 

3.2      Initializing the Predictor Table 
The open issue is how to initialize the 

prediction value. In [1], a prediction based load 
balancing strategy has been analyzed, where the 
performance of the load balancing strategies 
adopted for transcoding multimedia units in a 
cluster based computing environment has been 
compared, and it is recommended that prediction 
based load balancing strategies viz., prediction 
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based least load first, and prediction based adoptive 
portioning algorithms yield more throughput and 
reduced jitter than the corresponding non predictive 
algorithms.  

Experiments have been conducted to 
obtain an estimated value of the initial prediction 
time on a cluster of computing nodes in which a set 
of  

N = {N1,N2,N3,…Nn} 
‘n’ nodes are connected via  network, 

At any epoch, Tk a subset Nn are ready for 
handling the instructions. 

Nn ={Ni\Fault index(i)  < >0} 
At each node the analytical techniques are specially 
deployed for processing a subset of data streams. 
Let ‘m’ streams, each of various sizes are routed to 
all the ‘n’ computing nodes individually. The time 
taken for processing a data stream, stream (i,j) at 
node Ni against the stream size has been observed. 
Let size (i,j) be the quantum of stream processed at 
time(i,j); the initial prediction value for node Ni has 
been arrived at using the equation  (1). 

                                            

 

3.3   Forecasting and Updating the Rate of 
Mining 

Based on the experimental values 
discussed in the previous section, the estimated 
time for processing a stream in Node Ni, has been 
initialized. A predictor which is being 
incrementally built narrows the gap between the 
‘predicted time of processing a stream’ and the 
‘actual execution time discussed in this section. In a 
framework GMLBM, (Grey Dynamic Model Based 
Load Balancing), the predictors are constructed 
linearly by the method of least squares, using the 
recently available four sets of data. [13]. Bravier et 
al illustrated that building a predictor model using 
the canonical least squares would be 
computationally too expensive. [3] They designed 
the predictor that approximates the linear model. 
Experimental proofs were given by them, and it 
was illustrated that the predictor offered better 
performance than the linear model. In our study, the 
estimation and forecast of the prediction value is 
dynamically carried out as per the following 
algorithm, depicted in table 2, and the definition of 
the parameters involved is depicted in table 1. 

 The forecast table T_Predictor constructed 
is being updated at the end of every epoch. The 
Actual_Time obtained as feedback from the 
feedback module of the computing nodes forms the 
basis for forecasting the processing time of the 
proceeding datasets. The prevailing gap between 
the predicted time and the actual processing time 
gets narrowed. As a result, the rate of processing, 
the Predicted_Time_Ratio approaches the actual 
rate of processing the Actual_Time_Ratio. A graph 
illustrating this phenomenon is given in figure 1. It 
is aimed to slim out the deviation of the measures 
as time progresses.  

Let this deviation of 
Predicted_Time_Ratio from Actual_Time_Ratio be 
diff (T),   
Tk, Tk+1, Tk+2     be the  consecutive epochs and it is 
clear that  
diff (Tk+2) , < diff(Tk+1)  <  diff(Tk)      
 

 In the grey dynamic model based 
mechanism [3] the prediction has been arrived at by 
maintaining the recent four sets of data.   In our 
study, the cumulative measure of the previous 
records and the current records is considered as the 
two attributes in deciding the forecast. 
 

 
 

 
Figure 1:  Chart illustrating the forecast 
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                Table 1: Definition of Parameters 
 

 
Tot_Filesize                         
 
T  k+1                                    
T k+1                                                       
Ni                                         
j                                             
Pre_Load_Stat( i  )               
Predicted_Val( i,j, T k )         
 
Predicted_Val( i,j, T k+1)       
 
Actual_Time( i,j, T k )            
 
Predicted_Time_Ratio( i,j,Tk  )  
 
Predicted_Time_Ratio( i,j,T k+1)  
 

     Actual Time_Ratio( i,j,T k)           
 

: 
 
: 
: 
: 
: 
: 
: 
 
: 
 
: 
 
: 
 
: 
 
: 

Total size of the datasets to be processed at that 
time epoch 
Present time epoch 
Proceeding  time epoch 
Node under consideration  
The serial number of the  task 
The load forecasted at a node Ni  
Forecasted time of processing a task j at node 
Ni in the time epoch k 
Forecasted time of processing a task j at node 
Ni in   the time epoch k  
Actual time observed for processing a task j                  
at node Ni in the time epoch k   
Predicted rate of mining for processing the                               
task  j at node Ni in the time epoch k   
Predicted rate of mining for processing the task 
j at node Ni in the time epoch k+1   
Actual rate of mining observed for processing 
task j at node Ni in the time epoch T k 

 
 
4. PROPOSED SYSTEM OVERVIEW 

 
The feedback being updated contributes a lot to the 
decision making process in dynamic load 
balancing.  Thus, the forecast table being updated 
forms the basis for load balancing and scheduling.  
This can be achieved by employing a collaborative 
agent system, comprising of mobile and stationary 
agents.  The proactive and reactive features of 
agents facilitate knowledge discovery, by 
effectively distributing it to the set of computing 
nodes. 

The framework, Predictive Load 
Balancing (PLB), proposed in this paper, comprises 
a plethora of stationary agents and a mobile agent 
as depicted in figure 2.  

The available computing power in the 
distributed environment is being categorized as 
monitoring and computing nodes.  The monitoring 
node is responsible for the implementation of load 
balancing and scheduling policies, while the 
computing nodes perform the data mining 
operations.  The monitoring node keeps track of the 
performance of the computing nodes, and suitably 
updates the predictor table, at the end of every 
epoch, as described in Section (3.3), and the history 
table as and when it is warranted. 
 

 
 

Figure 2: General Architecture 
 

Let there be ‘m’ streams to be processed in 
‘n’ computing nodes (m>n). 

The various modules of the monitoring 
node performing load balancing and scheduling are 
described below. 

Receiver module – collects and, sizes the 
tasks to be processed, grouped or sliced as the case 
may be, such that at any point of time, the size of 
the tasks should satisfy the condition in equation 
(2) 
minsize  < size (task i) < maxsize.        …….       (2) 
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Table 2 :  Algorithm for constructing the forecast table 
 

1. Collect the initial predicted value for node Ni, to     initialize. 
2. Compute the Predicted_Time_ Ratio for node Ni. 
3. Fetch the actual time for executing a task j at node Ni. 
4. Compute the Actual-Time_Ratio for executing the task    j at node Ni. 
5. Compute the difference between (2) and (4). 
6. Arrive the Next-Predicted_Time_Ratio for processing   the task(j+1) at node Ni 
    in the proceeding   epoch, by   minimizing (5) 
7. Assign the value obtained in (6) for the   Predicted_Time_Ratio of processing  
    the task (j+1) at   node Ni for the proceeding epoch. 
8. Repeat steps (2) to (7)   
 
Input : Initial_Predicted_Val(i) 
           File_size( i,j, T k ) 
           Predicted_Val( i,j,T k  ) 
 
Output : 
           Predicted_Val( i,j,T k+1 ) 
Initialise : 
           When  T k  =  1 
Predicted_Val( i,j,T k  )               
Predicted_Time_Ratio( i,j,T k ) 
While (m > n) 
Get Actual_Time( i,j,T k  ) 
Actual_Time_Ratio( i,j,T k  )       
diff   
If (diff >0) 

    Next_Predicted_Time_Ratio    
else 

    Next_Predicted_Time_Ratio       
j = j +1 

    T k  =  T k  +1  // next epoch 
Predicted_Time_Ratio( i,j,T k )      
Predicted_val( i,j,T k )     

 

= 
= 
 
 
= 
= 
 
= 
 
= 
 
 
= 
= 

Initial_Predicted_Time( i) 
File_size( i,j,T k  ) /Predicted_Val( i,j,T k ) 
 
 
File_size( i,j,T k ) /Actual_Time( i,j,T k )  
Actual_Time_Ratio( i,j,T k  )  - 
Predicted_Time_Ratio( i,j,T k  )    
Predicted_Time_Ratio( i,j,T k  )   + diff/2 
   
Predicted_Time_Ratio( i,j,T k  )   -  diff/2 
 
 
Next_Predicted_Time_Ratio  
File_size( i,j,T k  )/ Predicted_Time_Ratio( i,j,T k)     

 
The minsize, refers to the size that the 

DataStream should be able to impart some pattern 
or knowledge.  The maxsize, refers to the 
maximum computing power of the nodes in the 
distributed environment.  The unit buffer stores and 
organizes these sized streams, in the FIFO order. 

Scheduler module - refers to the predictor 
table, and allocates the data streams to the 
respective nodes as per the load balancing policy 
and the weights imparted from the performance 
table. The Weights associated with every node are 
maintained in the performance table. 

Monitoring module – keeps track of the 
performance of the nodes under consideration, 
collects the feedback from the nodes and updates 
the predictor table. Also, watches the status of the  

 
nodes and updates the history table as and when the 
Fault_index(Ni) of a node equals zero. 
       Knowledge module – Collects the 
knowledge unearthed from the datasets mined at the 
computing nodes and consolidates the results.  

Stationary agents named mining agents are 
deployed at the computing nodes.  These agents 
receive the data stream, perform the mining 
operation and evaluate the parameters prevailing in 
the data Streams. The modules in the mining node 
comprise of the: 

Receiver module – receives the data 
streams allocated to the particular node 

Knowledge module – performs the mining 
operation and submits the knowledge unearthed 
from the local datasets.  
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Table 3 : Simulated Values in a Cluster with 8 nodes 

 
ID Server_

Code 
File_ 
Names 

File_ 
Size 

Predicted_Time_ 
Ratio 

Predicted_
Time 

Next_Predicted_Ti
me_Ratio 

Next_ 
Predicted_ 
Time 

Actual_Ti
me_ 
Ratio 

Actual
_ 
Time 

58 8 Split8_Inpu
t 
File.txt 

50100 2686.25 19 2386.88 20.99 2087.5 24 

59 7 Split1_Inpu
t 
File.txt 

50100 2203.27 23 2065.1 24.26 1926.92 26 

60 4 Split3_Inpu
t 
File.txt 

55000 2366.22 23 2240.8 24.54 2115.38 26 

61 5 Split4_Inpu
t 
File.txt 

75000 2573.19 29 2458.47 30.51 2343.75 32 

62 6 Split5_Inpu
t 
File.txt 

101000 2241.35 45 2172.76 46.48 2104.17 48 

63 1 Split2_Inpu
t 
File.txt 

80000 2191.67 37 2071.45 38.62 1951.22 41 

64 2 Split8_Inpu
t 
File.txt 

50100 2090.91 24 1578.44 31.74 1065.96 47 

65 3 Split6_Inpu
t 
File.txt 

80000 1815.91 44 1759.02 45.48 1702.13 47 

66 8 Split1_Inpu
t 
File.txt 

50100 2386.88 21 2282.57 21.95 2178.26 23 

67 7 Split2_Inpu
t 
File.txt 

80000 2065.1 39 1984.93 40.3 1904.76 42 

68 1 Split1_Inpu
t 
File.txt 

50100 2071.45 24 2174.36 23.04 2277.27 22 

69 3 Split2_Inpu
tFile.txt 

55000 1759.02 31 1796.18 30.62 1833.33 30 

70 2 Split1_Inpu
t 
File.txt 

75000 1578.44 48 1587.09 47.26 1595.74 47 

71 4 Split2_Inpu
t 
File.txt 
 

55000 2240.8 25 2178.09 25.25 2115.38 26 

72 5 Split3_Inpu
t 
File.txt 

55000 2458.47 22 2538.76 21.66 2619.05 21 

73 6 Split4_Inpu
t 
File.txt 

75000 2172.76 35 2128.05 35.24 2083.33 36 

74 8 Split6_Inpu
t 
File.txt 

80000 2282.57 35 2317.76 34.52 2352.94 34 
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Feedback module – keeps track of the 
parameters and the performance metrics such as the 
actual time taken for completing the assigned task 
and setting the flag, Fault-index (Ni) to zero, 
whenever the time of execution exceeds the 
max_threshold_value. 

The mobile agent “Resource Characteristic 
Analyst” (RCA) – while roaming across the 
network collects and consolidates the knowledge 
unearthed.  
 
5. EXPERIMENTS AND RESULTS 
 
 In order to evaluate the above discussed 
forecast technique, experiments were conducted on 
a cluster with eight servers. 
   
5.1    Experimental Evaluation 

A Java program to sort and count the 
number of occurrences  of keywords in a text of 
size ranging from 50KB to 185 KB, in order  to 
construct a word vector, was  executed in a  cluster   
constituting eight nodes, and a portion of the  
forecast table constructed during the process is 
depicted in table 3. 

The tabulated values are a part of the fore 
cast table constructed at run time, and the values 
correspond to the time epochs 9, 10 and 11.  During 
these epochs all the 8 nodes, viz., N1, N2, N3, N4, N5, 
N6, N7 and N8 were active in the distributed 
environment. The measures corresponding to a 
particular node N8 are illustrated here.  ID 58, 66 
and 74 displays the values pertaining to this node. 
The expected processing power 
(Next_Predicted_Time_Ratio)  of this node N8 
forecasted for  the time epoch 9 is 2386.88 
bits/millisecond. The size of the dataset to be 
processed in the epoch 9 is 50100 bits. Therefore 
the time predicted is 19 milliseconds. The actual 
time taken for processing this dataset at node N8, 
recorded as the feedback is 24 millisecond. Hence, 
the actual processing power worked out 
(Actual_Time_Ratio) is 2087.5 bits/millisecond. 
These two values, Next_Predicted_Time_Ratio 
(2386.88) and Actual_Time_Ratio (2087.5) of the 
present epoch 9 form the basis for predicting the 
processing power of node N8 in the forthcoming 
epoch 10. Accordingly the processing power 
(Next_Predicted_Time_Ratio)  forecasted for time 
epoch 10 is  2386.88 bits/millisecond (ID 66).  Here 
again, the size of the dataset to be processed is 
50100 bits.  The predicted time is 21 milliseconds. 
The actual time taken for processing this dataset at 
node N8 has been recorded as    23 milliseconds and 
the actual processing power, Actual_Time_Ratio, 

of this epoch 10 is 2178.26 bits/millisecond.  Now 
the forecast for epoch 11 is made with the measures 
available measures at ID 66 and the forecasted 
processing power of node N8 at the time epoch is 
2282.57 bits/millisecond.  At this epoch, the size of 
the dataset to be processed is 80000 bits.  
Therefore, the predicted time for processing the 
same at node N8 is 35 milliseconds. It is inferred 
from the table that the prediction table is able to 
forecast the processing time of the proceeding task 
when executed in a node, more accurately. In the 
same way, the predictions are made for all the 
contributing nodes.  

In order to evaluate the precision achieved 
by the algorithm, a comparison of the Predicted 
Time and Actual Time has been made, on 
observing the T_Predictor values when identical 
datasets of size 150100 bits are processed in node 
N8.   A bar chart depicting the Predicted Time and 
Actual Time is given in Figure 3.  In the time 
epoch 8, the difference between the Predicted Time 
and Actual Time is noted as 32.65%. The same has 
been slashed down to  27.77% in the  epoch 12 , 
and steps  down to  8.79% in the  epoch 16 and 
3.44% in epoch 20; it is evident that the difference 
between the Predicted time and the  actual time is 
slimming out as time progresses.  That is the 
predictor is able to reflect the ubiquitous nature of 
the environment, since the same is constructed 
based on the feedback obtained from the 
contributing nodes.   

The core objective of this research is to 
capture the variations in the distributed 
environment, and it is clear that the predictions 
made converge towards the actual measures. Load 
balancing and scheduling algorithms can be 
designed based on the predictor, ensuring fast 
processing and effective utilization of hardware 
components in the distributed environment.  
 

 
Figure 3: Comparison of the actual time and predicted 

time 
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             Table 4: Improved Performance of the Prediction Based Algorithm 
 

Cluster 
Size 

Bytes processed per Millisecond 

LLF PRE_LLF Improved 
Performance (%) 

5 20047.16 29645.85 147.88 
10 29342.79 43731.12 149.04 
15 32325.83 48900.00 151.27 
20 41103.87 63106.48 153.53 
25 47299.06 74567.00 157.65 

 

Experiments are conducted to evaluate the 
performance of the prediction based strategy when 
incorporated in load balancing and scheduling 
algorithms, and frame a comparison with non 
predictive algorithms. The study has been carried 
out in a distributed environment of various cluster 
sizes 5, 10, 15, 20 and 25. The application for 
classifying the datasets has been specially deployed 
in the nodes.   

The observations as recorded are analyzed 
in two steps. 

First, the system throughput is achieved, 
in terms of the  bytes processed per second  when a 
particular  dataset is split up and  scheduled to the 
nodes as per the Predictive Least Load First 
(Pre_LLF) algorithm.  Second, the processing time 
of various data sets are observed, keeping the 
cluster size constant. About 400000 records are 
split and scheduled to the nodes duly incorporating 
the prediction based policies. Observations are 
recorded when scheduled to the least loaded node, 
reinforcing the predictive processing power of a 
node. 

 
5.2   Results and Discussion 
 

Throughput and scalability are the two 
major objectives in a distributed environment. 
Improved throughput in a distributed system is 
the main focus of prediction based load 
balancing strategies.   

The throughput in terms of bytes 
processed per millisecond of the distributed 
environment is observed for varying sizes of 
clusters. The study has been extended to observe 
the behavioral pattern of the distributed system 
on processing datasets of varying sizes in a least 

loaded node,   with prediction and without 
prediction.  

Table 4 depicts the throughput observed 
when a file size of about 400000 records are 
scheduled to the nodes and the classification 
operation is performed 

The measures in the column LLF are 
the processing powers of the contributing  nodes 
when a dataset is scheduled to a lightly loaded 
node without prediction  and the values in the 
column PRE_LLF are the processing powers 
when dataset is scheduled to a least loaded node, 
duly incorporating the predicted processing 
power of the particular node. It is evident, that 
the PRE-LLF shows  an improved performance 
of  147.88%  when scheduled to 5 nodes and this 
improvement shows an increasing trend,  by 
recording 149.04 % for a cluster size of 10 and 
keeps on incresing with the cluster sizes. For a 
cluster size of 25 the maximun improvement of 
157.65% is observed.   
The feed back collected from the nodes reflects 
the heterogeneity of the ubiquitous distributed 
environment , and this forms the basis for 
forecasting the processing power of a particular 
node in the proceeding epoch. The PRE_LLF 
being formulated on this, could impart better 
performance since the variations in the 
distributed system are taken care of. This 
prediction would be more valuable for quite 
large numbers of nodes.  Figure  4  depicts the 
comparison of the performance, and   it is 
inferred that prediction based strategies prove to 
be more efficient in clusters of higher sizes. 
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Figure 4: Comparative Performance of Prediction 
Based and Non     Predictive Algorithms 

 
The study has been extended to analyze 

the performance of prediction based strategies on 
processing varying file sizes on a cluster size of 
20. The actual time taken for processing datasets 
of sizes varying from 14 MB, to 125 MB has 
been recorded for the LLF and PRE_LLF. Figure 
5 depicts the comparison of the speed, in 
processing a task adopting Prediction based 
strategies. It is clear from the graph that 
prediction based strategies impart fast 
processing, as the size of the datasets increases, 
and it is inferred that the prediction based 
strategies prove to be more efficient in 
processing data sets of higher size of datasets 
also. 

 
6.  CONCLUSION  
 

The construction of a predictor upon 
which load balancing techniques are constructed 
in a distributed system comprising 
heterogeneous computing elements is discussed 
in this paper. The feedback based strategies 
discussed, predict the processing power of a 
node in a distributed system, with reference to 
the actual execution time.  A collaborative agent 
system, comprising stationary and mobile agents, 
captures the feedback from the contributing 
nodes, and updates the predictor table 
dynamically. And this dynamic updating enables 
the system in predicting the processing power of 
the computing nodes, closely adhering to the 
fluctuations of the ubiquitous distributed system. 

 
 

Figure 5:  Comparative Processing Time 
 

The predictor constructed during run 
time approaches the actual processing time, and 
this aspect forms the basis for designing load 
balancing algorithms reflecting the heterogeneity 
of the distributed environment. 
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