
Journal of Theoretical and Applied Information Technology
 10th July 2013. Vol. 53 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

115

DELTA REFERENCE DATA DEDUPLICATION IN LOW
UPLOAD BANDWIDTH NETWORK

1,2XIANZHUO LIU, 1,2JINLIN WANG, 1MING ZHU

1Laboratory of Network Communication System and Control, Department of Automation, University
of Science and Technology of China, Hefei 230027, China

2National Network New Media Engineering Research Center, Institute of Acoustics, Chinese
Academy of Sciences, Beijing 100190, China

E-mail: 1xianzhuo@mail.ustc.edu.cn , 2wangjl@dsp.ac.cn, 1mzhu@ustc.edu.cn

ABSTRACT

When users put their files on remote storage, it is important to update local changes in short time. Due to
the redundancy between successive versions of files, compare-by-hash and delta compression have been
studied to reduce total volume locally transmit. Better performance are desirable since plain compare-by-
hash does not fully exploit redundancy and delta compression lay additional space demands and application
oriented limits on local storage system. In this paper, a delta reference approach is proposed to further
reduce the volume sent to remote server by dynamically searching for similar file and reference chunks for
the chunk sent from the local host. Experiments on practical datasets reveal that the proposed approach can
reduce the volume sent to remote server up to 28.3% thereby decreasing transfer time as much as 26.2% in
typical low upload bandwidth networks.

Keywords: Delta Compression, Data Deduplication, Content Defined Chunking, Bandwidth Asymmetric
Network, Data Synchronization

1. INTRODUCTION

With the fast development of information
technology, there have been a large amount of new
smart terminals in use, such as smart phones, tablet
PCs, etc. People can view their documents and
handle relative works on their mobile smart
terminals anytime, anywhere. With the increasing
broadband speed and successful wireless network
implementation in large-scale applications in recent
years, remote data storage and backup–since its
convenience, availability and affordable price–
becomes a competitive choice for users to
synchronize data among separate devices and to
share data with friends.

Despite of the rising speed of broadband, both
wired and mobile, upload bandwidth remains far
less than download bandwidth. To fit the behaviour
of average broadband consumer, the download
bandwidth often accounts for a large proportion of
the total spectrum [1], whereas upload only a small

fraction, from one fourth to less than one percent
[2]. When data are transferred from the user to
storage server via such a broadband, the low upload
bandwidth turns into a bottleneck which
significantly increases the total transfer time and
results in poor user experience, especially in mobile
accesses.

Fortunately, it has been shown that data
exchanged between hosts often exhibits high level
of redundancy [3, 4]. Approaches, such as chunking
and compare-by-hash (CBH) [4, 5], are proposed to
eliminate transfer of redundant part of file such that
the total transfer time through the low upload
bandwidth network is reduced.

The comparison in 2009 [6] implies that delta
encoding can achieve higher compression ratio than
hash-based deduplication in backup scenarios.
While delta compression is widely adopted in
version control systems [7, 8], backup servers [9-11]
and even file systems [12], transfer deduplication is
something different. Terminal users usually do not

http://www.jatit.org/
mailto:1xianzhuo@mail.ustc.edu.cn
mailto:2wangjl@dsp.ac.cn
mailto:1mzhu@ustc.edu.cn

Journal of Theoretical and Applied Information Technology
 10th July 2013. Vol. 53 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

116

hold multi-version of a single file, moreover, it is
not economical for mobile terminals to build a delta
specific storage system. Modified version of files
which users copied from anywhere else would also
be a fully new file to the local delta compression
system.

Several recent studies had been carried out to
combine hash-based deduplication and delta-based
deduplication in backup storage systems. Shilane et
al. proposed a stream-informed delta compression
method to avoid replication of duplicate part when
backuping datasets to repository over wide area
network [13]. While we will discuss in detail in
section 2, this approach requires both source and
destination hosts to preserve common chunks with
the same base fingerprints. Paper [14] applied
similar approach to improve compression ratio in
backup system by delta compressing similar chunks.

This paper is primarily motivated by the
observation that two consecutive versions of a file
often differ slightly from each other. Users edit
their documents, and the synchronizer sends them
to remote server every time interval. While
chunking and CBH are applied to explore most of
the redundancy which in the form of chunks share
exactly the same hash, there is still innegligible
duplicate proportion in the left chunks, especially
those adjacent to duplicate ones with logical offset
in file. If the receiver could find similar chunks for
non-duplicate one and then send them back to the
sender as delta reference, the data volume the
sender transmitted and the total transfer time will
be decreased, because the bandwidth from the
receiver to the sender is larger than the reverse
direction.

The rest of the paper is organized as follows.
Firstly, the related works about data deduplication
and improvements in distributed scenarios are
introduced in section 2. A new delta reference
algorithm based on CBH and similar file matching
is proposed in section 3. After that, experiments
and performance evaluation are presented in section
4. Section 5 discusses relative issues in data
synchronization. The paper is concluded in section
6.

2. RELATED WORKS

Tridgell proposed a rsync algorithm in 1996 to
avoid exchanging redundant part of files between
source and destination hosts [5]. Rsync splits file on
the recipient into a series of non-overlapping,

contiguous, fixed-sized chunks, then computes a
weak checksum and a strong checksum for each
chunk and send them to the sender. The sender
searches all chunks with the same size of ′F to
find that have the same weak and strong checksums.
Though weak checksums of chunks at any offset
can be easily got in a “rolling” manner, fixed-size
chunking is very vulnerable to insert/delete
modification because of the shifting offset problem.
The sender must maintain checksums of chunks at
all offsets. It also takes more time to search though
file F if checksum of a chunk in ′F is absent in
it. Despite the extra overhead put on sender, the
strategy to find possible similar file simply depends
upon file name matching.

Deduplication strategy proposed in low-
bandwidth network file system (LBFS) [4]
employed Rabin fingerprint to set chunk boundaries
based on file contents, which is called content
defined chunking (CDC) and it is insensible to
modification pattern. Only a cryptographic hash
function, SHA-1 for example, is used to calculate a
near-unique identity for each chunk with negligible
collision probability. Though all RPC traffic is
compressed using conventional gzip compression,
resemblance between files are not totally reflected
by those duplicate chunks.

These studies applied compare-by-hash method to
avoid transmitting duplicate chunks with
appropriate metadata overhead (a small amount of
checksums and chunk offset description fields). The
generalized protocol of such a compare-by-hash
distributed deduplication scheme can be interpreted
as Figure 1.

Figure 1: Protocol Of Compare-By-Hash Distributed

Deduplication

 Phase 1, the sender divides the file to be send
F into a sequence of non-overlapping,
consecutive chunks, 1 2, , , nC C C , and

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 10th July 2013. Vol. 53 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

117

calculates a corresponding hash iH for each
chunk, then sends these hashes to the recipient.

 Phase 2, once the recipient received iH , finds
it in the chunk hash database.

 Phase 3, the recipient replies the sender with the
searching result of iH : HASH_FOUND if
found, HASH_NOT_FOUND otherwise.

Phase 4, prepare the literal data of chunk iC if

the reply for iH is HASH_NOT_FOUND.

Phase 5, depending on reply of the recipient,
the sender sends an index instruction for chunk iC

in file F if HASH_FOUND is replied, otherwise,
sends chunk iC verbatim.

Phase 6, the recipient follows instruction to
construct file F in place.

Barreto et al. proposed a technique called hash
challenges (HC) to reduce metadata overhead when
sending data across network using compare-by-
hash protocol [15]. This technique leverages the
fact that the number of chunks on the recipient is
relatively smaller than the range the full hash
expand, thus a hash prefix with less bits are sent to
the recipient and the recipient would still efficiently
inform the sender whether the corresponding chunk
should be upload verbatim. Though benefit is got
from the shifting of a small part of meta-data to the
direction with higher bandwidth, the larger part of
non-duplicate chunks follows the regular routine
yet.

In 2012, Shilane et al. presented a combined
approach to decrease replication of similar chunks
when hash cannot found in remote repository [13].
For those non-duplicate chunks, the backup server
(sender as refer previously) sends sketches to
remote repository. The sketches of chunks act as
resemblance hashes which have the property that
similar chunks will have identical sketches. If
sketch matches a stream-informed cache, the
repository responds with the fingerprint
corresponding to the similar chunk, called base
fingerprint. The backup server will delta compress
the non-duplicate chunk relative to the base chunk
before transmitting if the base fingerprint found in
local database. While it is ordinary for the backup
server to preserve a large collection of old versions
of files, this scheme will impose additional storage
requirements on smart terminals.

3. THE PROPOSED SCHEME

We proposed a scheme, called delta reference,
to reduce the data transferred by the uploading
stream with low bandwidth. As depicted in Figure 2,
protocol of delta reference differs from the
compare-by-hash distributed deduplication in the
follow phases.

 Phase 1, instead of single Hi, the sender sends
pair ,< >i iH L to the recipient, in which iL

stands for the length of chunk iC .

 Phase 2, the recipient searches iH in its hash
database. If HASH_NOT_FOUND, try its best
to find reference chunk(s).

 Phase 3, the recipient replies with
HASH_FOUND if iH found in database,
FOUND_REF plus reference data if several
reference chunks found, or
HASH_NOT_FOUND otherwise.

 Phase 4, if HASH_NOT_FOUND replied from
the recipient, the sender prepares the literal data
of chunk iC . Otherwise, in case of

FOUND_REF, it delta encodes iC with the

reference data, the output called iD .

 Phase 5, the sender transmits either iC or iD
literally to the recipient with construct
instruction.

 Phase 6, once instruction received, the recipient
follows it to construct part of file F locally.

Figure 2: Protocol Of Delta Reference Deduplication

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 10th July 2013. Vol. 53 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

118

3.1 Analysis

The new delta reference protocol acts like the
generic compare-by-hash distributed deduplication,
except for several alternations. We mark the time
needed by each phase in Figure 1 as 1 2 6, , ,t t t ,

times in Figure 2 as 1 2 6, , ,t t t′ ′ ′ , respectively.
Total time to “transfer” a chunk follows:

1 2 3 4 5 6= + + ++ +T t t t t t t or

1 2 3 4 5 6′ ′ ′ ′ ′ ′ ′= + + + ++T t t t t t t .

In the new delta reference protocol, time
required by separate phase changes as follows.
Phase 1 performs exactly the same action as plain
compare-by-hash, thus 1 1 0′ − =t t .

Phase 2 in delta protocol performs an
additional search for reference chunks. Though it
may depend on information of successive chunks to
make a better decision, we just rely on what the
application can get from the operating system API
immediately. That is, the search algorithm never
blocks itself to try to make a better decision. So
additional time needed is at which the search
procedure executes, we mark it as 2 2′= −st t t .

In Phase 3, the recipient needs more time to
transmit reference chunks, since we never reply the
sender with data more than the size of chunk
(marked as cs) the sender sent, thus

3 3 /− =′ dt cst B , given the download

bandwidth as dB .

In Phase 4, the sender requires more time to
carry out delta encoding, so 4 4− =′ enctt t .

Given the upload bandwidth as uB and size of

delta output in Phase 4 as ds ,
5 /= ut cs B ,

5 /′ = uds Bt .

The recipient requires more time to decode the
delta encoding in Phase 6, so

6 6− =′ dectt t .

Assuming the search procedure finds reference
chunks in probability sP for those chunks absent in
database, the difference of time consumed can be
got by:

+

′ − = + + +

−s s enc dec
d u u

cs ds csP t t
B B B

T T t

It takes less than 1ms to finish a round of
reference chunks search procedure on CPU whose
frequency no less than 2GHz. Depending on the
similarity between the two input data of delta
encoding, the output varies from 0% to about 65%
[16]. As tested on a 2GHz CPU machine, delta
encoding of two 4KB chunks would be finished in
2ms and decoding finished in 100μs on average.
Figure 3 gives the time retrenchment credits to the
new protocol when cs =4KB, st =1ms, sP =0.5,

enct =2ms, dect =0.1ms, ds =30%cs , the upload

bandwidth uB =1Mbps. Time saved in each round
reaches from 5ms to 9ms.

Figure 3: Time Retrenchment Of The New Protocol

3.2 Finding Similar Chunks

The primary conception of the proposed
scheme to reduce the total transfer time lies in the
decreased uploading volume in a low upload
bandwidth. It is important for the recipient to find
really similar chunks and reply to the sender. The
output of delta encoding should not be larger than
the chunk to be send, or all we done will be arduous
but fruitless.

As demonstrated by Douglis’ study [16], the
more the similarity, the less the delta output.
However, when file is split into chunks, a large
proportion of similarity is reflected by matching
chunks. Since duplicate chunks appear in roughly
the same stream-ordered patterns [17] and chunks
in neighbourhood exhibit similarity [13], this
characteristic can be leveraged for dynamic similar
chunk finding. Unlike stream-informed sketches,
however, similar chunks finding strategy here just
searches around matching chunks for low time
complexity. The strategy is described in Algorithm
1 and depicted in Figure 4. The sender transmits
information of chunks in the order which they are
arranged in the logic space of file. The recipient

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 10th July 2013. Vol. 53 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

119

does not get a global landscape until the last chunk
reached, it makes a decision based on matching
chunks and offset of the received chunk refer to
them. λ controls the ratio of the size of received
chunk to that of those reference chunks, 0.7~0.9
will be appropriate to prevent the size of reference
chunks from growing too large.

Algorithm 1 Reference chunks searching
Require: iH – hash of chunk iC in file F , iH
cannot be found in hash database
Ensure: Reference chunks of iC : ()iR C
1. ()iR C =Ø

2. if reference file of F found, marked as ′F
then

3. j current reference index of ′F
4. od offset difference since the last

matching chunk
5. for each >=k j do
6. if

() ()0, () [] , ′ ∩ + ilen C F k od od len C >

()* () []λ ′len C F k then

7. () () { () [] }′= ∪i iR C R C C F k
8. ()() []′= +od od len C F k

9. current reference index of ′F k
10. 1= +k k
11. else
12. break
13. end if
14. end for
15. ()= − iod od len C

16. end if
17. return ()iR C

Figure 4: Schema of Algorithm 1

There have been many studies on similar file
finding, ether computed hashes of overlapping
sequences of bytes [18], or extracted super-
fingerprint from calculated fingerprints [19]. Since
the recipient would get hashes of chunks in stream
order, the hashes of duplicate chunks at hand are
regarded as “shingles” to find similar files share

several common chunks regardless their
arrangement. Algorithm 2 illustrates the details.

Algorithm 2 Reference file searching
Require: iH – hash of chunk iC in file F ,

 stream ()S F containing successive hashes of
chunks in F .
Ensure: A file ′F on recipient which most similar
to F
1. if NULL != ′F then
2. return ′F
3. end if
4. if iH found in database then
5. Search forward in ()S F to find more hash

that can be found in database: ,, j kH H

6. Get the file set FS , the files in it referenced
by chunks in F , whose hash can be found in
database, at least once

7. ′F element in FS with the largest
reference number

8. 0=od
9. current reference index of ′F chunk index

in ′F with hash iH
10. else
11. return NULL
12. end if

3.3 Delta Encoding

Studied by [16], the output size seems not
sensitive to the delta algorithm. Therefore an open
source implementation of the widely used vcdiff
algorithm–xdelta is chosen for its portability. On
the other hand, we found that it is not worth to
reach higher compression ratio at the cost of much
more encoding time, the lowest 0 level is selected.

4. PERFORMANCE EVALUATION

To evaluate the performance of the delta
reference algorithm, we implemented a prototype of
file synchronizer using the proposed scheme.
Experiments are designed to explore: (1) how much
upload volume can delta reference save? (2) how
much speed can delta reference improve in a really
network?.

First, the recipient parses an old version of file
set, divides each file into chunks based on content
defined boundaries. Rabin fingerprint [20] with
window size 48 is used, the same as LBFS.
Expected chunk size (ecs) varies from 256B to

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 10th July 2013. Vol. 53 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

120

32KB geometrically. The recipient maintains a
chunk list for each file in the set, and maintains a
reference file list for each chunk. Files and chunks
are both indexed by their MD5 signatures.

Second, once connected to the recipient, the
sender divides files in the new dataset it hold into
chunks based on the same parameters got from the
recipient. There are three threads execute
concurrently at the sender side: one is in charge of
chunking, another is responsible for sending hash
signatures (or 3 bytes hash prefix in hash
challenges) of chunks, and the last replies the
recipient with construct instructions and literal
chunks (or delta output). At the recipient side, two
threads work together: one receives hashes, looks
up in the hash database, then replies to the sender,
the other collects instructions and data from the
sender, and construct files in place.

The recipient runs in a machine with 2 Intel®
Xeon® processor E5504 (2.00Ghz, 4MB L3 Cache)
and 4GB RAM. The sender runs in a machine with
Intel® Pentium® dual-core processor E5300
(2.60GHz, 2MB L3 Cache) and 2GB RAM. These
two Linux hosts are connected by a 100Mbps
Ethernet network, with RTT=0.277ms. When

necessary, traffic control tool tc on Linux are used
to limit the transfer speed.

As for datasets, we test two real datasets: gcc-
src and linux-kernel-src. These datasets have been
used by other state-of-the-art deduplication
protocols [21, 22]. In gcc-src, the snapshots
correspond to the compile’s source code trees of
versions of 4.6.0 (old) and the latest 4.7.2 (new).
The two versions of linux-kernel-src corresponding
to 3.5 (old) and the latest 3.7 (new) Linux kernel
source code trees. The recipient holds old version
already, and the sender sends the new version.
Table 1 summarizes characteristics of these datasets.

It is worth noting that, vcdiff does not only
compress one object relative to another, it also
compresses a single object based on the information
extracted internal. So a control group is examined
additional to inspect how delta reference performs
precluding the internal compression. The control
test, we called Delta Zero, follows exactly the same
process to find similar file, reference chunks,
except that the recipient call memset() to zero all
the data just before replying to the sender. The
proposed algorithm in this paper is represented by
Delta Ref.

Table 1: Characteristics Of Test Datasets

CBH HC

Delta
 Ref

Delta
 Ze

ro
CBH HC

Delta
 Ref

Delta
 Ze

ro
CBH HC

Delta
 Ref

Delta
 Ze

ro
CBH HC

Delta
 Ref

Delta
 Ze

ro
CBH HC

Delta
 Ref

Delta
 Ze

ro
CBH HC

Delta
 Ref

Delta
 Ze

ro
CBH HC

Delta
 Ref

Delta
 Ze

ro
CBH HC

Delta
 Ref

Delta
 Ze

ro
0

25

50

75

100

125

150

175

200

225

250

Tr
an

sfe
rre

d V
olu

me
 (M

by
tes

)

Expected chunk size (bytes)

 phase5_metadata phase3_metadata
 phase1 phase3_data phase5_data

256 512 1K 2K 4K 8K 16K 32K

Figure 5: Volume Transferred At Each Phase For Different Expected Chunk Size On The Linux-Kernel-Src Dataset

 old version new version duplication ratio
total average median total average median 256 1K 4K 16K

linux-kernel-src 427MB 11465B 4276B 444MB 11394B 4180B 86% 78% 66% 53%
gcc-src 409MB 6035B 1101B 466MB 6120B 1057B 77% 71% 63% 56%

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 10th July 2013. Vol. 53 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

121

Figure 5 illustrates transferred volume at each
phase for different expected chunk size on the
linux-kernel-src dataset: phase1 denotes hash
signatures (or hash prefix in hash challenges),
chunk length and file names transmitted by the
sender in Phase 1, phase3_metadata marks the
search result of hashes sent by the recipient in
Phase 3, phase3_data represents volume of all
reference chunks, phase5_data shows chunk data
volume sent by the sender in Phase 5, and at last,
phase5_metadata summates the meta-data of
construct instructions. Totally up to 3 408 800 bytes
of file names are included in phase3_metadata and
phase5_metadata. Moreover, phase3_data,
phase3_data and phase5_metadata may vary among
each run depending upon how many bytes the
recipient can get from the receive buffer
immediately, they are average numbers of five runs.
However, the variation does not exceed 0.3%.

As illustrated earlier in Figure 5, hash
challenges does reduce volume of phase1
dramatically, from 17.6% (ecs=32K) to 62.8%
(ecs=256), however, this retrenchment accounts for
only 0.3% to 17.4% of those volume the sender
totally transmitted to the recipient. The small the
duplication ratio, the small the retrenchment
percent. Comparing to CBH and hash challenges,
delta reference introduces more transfer volume
both the peers transmitted, for ecs=1KB (the choice
of ecs that minimizes the volume transfers), 8.3%
more than CBH and 13% more than hash
challenges. Because of delta compression based on
internal information, Delta Zero reduces volume of
phase5_data by 28.3% compared to CBH and hash
challenges. Furthermore, delta reference
compresses relatively to reference chunks provided
by the recipient, reducing volume of phase5_data
up to 36.4% compared to Delta Zero. This
retrenchment accounts for 28.3% of the total
volume the sender transfers.

Figure 6: Synchronize Time Of Linux-Kernel-Src In

Symmetric100mbps Network

Figure 7: Synchronize Time Of Linux-Kernel-Src In

4Mbps Upload, 100Mbps Download Network

We now pay attention to the performance of
each algorithm in real workloads. Figure 6 presents
the average speed of five runs each in symmetric
100Mbps network. Transfer time of Delta Ref and
Delta Zero do not increase significantly under 0.90
confidence level in spite of slightly more total
volume. Figure 7 demonstrates the substantial
performance gains of Delta Ref in scenario where
the uplink as limited bandwidth. We applied a
4Mbps filter to the sender-to-recipient link to
simulate a common home broadband internet
connection. The bandwidth of recipient-to-sender
remains 100Mbps. In order to complete the
synchronization of linux-kernel-src, Delta Ref and
Delta Zero take significantly less time, despite the
raised total transfer volume. Considering the best
ecs choice 1KB that minimizes the total transfer
volume, hash challenges is 5.6% faster than CBH,
whereas Delta Ref is 26.2% faster than Delta Zero
precluding those 20.3% gained from internal
compression.

Figure 8 shows improvement pattern of gcc-
src similar to Figure 7. Hash challenges improves
by 3% than CBH, Delta Ref speeds up by 16.2%
than Delta Zero precluding those 20.3% contribute
to internal compression.

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 10th July 2013. Vol. 53 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

122

Figure 8: Synchronize Time Of Gcc-Src In 4Mbps

Upload, 100Mbps Download Network

Figure 5~Figure 8 all together demonstrate
how the expected chunk size (ecs) affects the
behaviours of these distributed deduplication
solutions. Smaller ecs leads to larger number of
chunks, more meta-data and fewer literal chunks to
transfer, whereas may produce larger total volume
(eg. ecs=256) thereby long transfer time. Larger ecs
leads to larger number of chunks, less meta-data
and more literal chunks to transfer. With ecs=1KB,
total volume reaches its trough and results in least
time (except hash challenges with ecs=512).

As for improvement of Delta Ref, smaller ecs
explores almost all duplication in the form of
matching chunks, leaving less room to further
improve. On the other hand, larger ecs puts off the
first appearance of matching chunk, leaving those
chunks in front of it have no choice but transmitting
verbatim. Furthermore, fewer duplicate chunks may
increase the likelihood of false candidates in similar
file finding procedure.

5. DISCUSSION

Section 4 demonstrates the substantial
improvements introduced by the proposed delta
reference scheme. However, it seems superfluous
given that tar balls of linux-kernel-src and gcc-src
are only about 80MB, it takes less than 10 seconds
to send such a tar ball over a 100Mbps connection.
Whereas, more than 60 seconds are taken to
synchronize such a decompressed source tree in the
same network as Figure 6 presented. Actually, it
takes about 46 seconds to fingerprint and chunk all
files in linux-kernel-source. In this scenario, CPU
resources but not connection speed becomes the
bottleneck. Besides, three phases over network,
instead of single phase when sending directly, need
more time to accomplish the mission.

As many studies about deduplication protocol
did [21, 22], different versions of decompressed
linux kernel source code and gcc source code are
chosen to inspect performance of deduplication
protocol when applied to similar workloads, in
which files differ slightly between successive
versions. As refer to compress/decompress methods
which are widely used to reduce transfer time over
low bandwidth network, it takes substantial time to
compress and decompress files. In fact,
compression and decompression of gcc-4.7.2
source code tree using the fastest zip/unzip take 93
seconds and 8.4 seconds, respectively. On the other
hand, not all file types can get such a low
compression ratio as source codes [23]. When
uplink bandwidth was limited to 4Mbps, delta
reference takes much less time to transfer gcc-src
than compress/decompress routine (220 seconds at
ecs=1KB versus 93+8.4+247 seconds).

6. CONCLUSIONS

The compare-by-hash (CBH) scheme for
distributed data deduplication transmits literal data
for those chunks whose hash can not be found on
remote host. While traditional delta deduplication
approaches concentrate on redundancy eliminating
locally, they introduce more space demand and
application specific limits on storage system. We
propose delta reference, a novel algorithm that
leverages plain compare-by-hash solutions to find
reference chunks to the sender thus substantially
reduce the total volume it transmits. Formula
analysis and experiments on real datasets
demonstrate that delta reference can significantly
decrease total transfer time: as much as 26.2% in a
typical asymmetric broadband connection, despite
considering the internal delta compression.

We would like to study in greater depth about
how delta reference performs comparing against
related deduplication protocols, if all traffic is
compressed using conventional lossless data
compression algorithms, which is an obvious
approach in deployed systems.

7. ACKNOWLEDGEMENT

This work was supported in part by grants
from the Key Program of the Chinese Academy of
Sciences (No. KGZD-EW-103-1 and No. KGZD-
EW-103-2), the National High Technology
Research and Development Program of China (863
Program) (No. 2011AA01A102), and the National
Key Technology Research and Development
Program of China (No. 2011BAH16B03).

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 10th July 2013. Vol. 53 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

123

REFERENCES:

[1] I. T. Union, "G.992.1: Asymmetric digital
subscriber line (ADSL) transceivers",
Transmission Systems and Media, Digital
Systems and Networks, G.992.1(06/99) 1, 1999,
pp. 1-256.

[2] H. Hussain, D. Kehl, B. Lennett et al., "The
Cost of Connectivity", New America
Foundation's Open Technology Institute, 2012.

[3] N. Mandagere, P. Zhou, M. A. Smith et al.,
"Demystifying data deduplication", Proceedings
of the ACM/IFIP/USENIX Middleware'08
Conference Companion, 2008. pp. 12-17.

[4] A. Muthitacharoen, B. Chen, and D. Mazieres,
"A low-bandwidth network file system",
Proceedings of ACM SIGOPS Operating
Systems Review, 2001. pp. 174-187.

[5] A. Tridgell, and P. Mackerras, "The rsync
algorithm", 1996.

[6] D. Meister, and A. Brinkmann, "Multi-level
comparison of data deduplication in a backup
scenario", Proceedings of SYSTOR 2009: The
Israeli Experimental Systems Conference, 2009.
pp. 1-12.

[7] P. Mukherjee, “A fully Decentralized, Peer-to-
Peer Based Version Control System”,
Technischen Universität Darmstadt, 2011.

[8] A. Seering, P. Cudre-Mauroux, S. Madden et
al., "Efficient versioning for scientific array
databases", Proceedings of 2012 IEEE 28th
International Conference on Data Engineering
(ICDE), 2012. pp. 1013-1024.

[9] R. C. Burns, and D. D. Long, "Efficient
distributed backup with delta compression",
Proceedings of the fifth workshop on I/O in
parallel and distributed systems. pp. 27-36.

[10] Y. Chen, Z. Qu, Z. Zhang et al., “Data
redundancy and compression methods for a
disk-based network backup system”, in
International Conference on Information
Technology: Coding and Computing, 2004,
2004, pp. 778-785.

[11] L. L. You, K. T. Pollack, D. D. Long et
al., “PRESIDIO: a framework for efficient
archival data storage”, ACM Transactions on
Storage (TOS), vol. 7, no. 2, 2011, pp. 1-60.

[12] J. MacDonald, “File system support for
delta compression”, Department of Electrical
Engineering and Computer Science, University
of California at Berkeley, 2000.

[13] P. Shilane, M. Huang, G. Wallace et al.,
“WAN-optimized replication of backup datasets
using stream-informed delta compression”,

ACM Transactions on Storage (TOS), vol. 8, no.
4, 2012, pp. 13.

[14] P. Shilane, G. Wallace, M. Huang et al.,
"Delta compressed and deduplicated storage
using stream-informed locality", Proceedings of
4th USENIX conference on Hot Topics in
Storage and File Systems, 2012. pp. 1-5.

[15] J. Barreto, L. Veiga, and P. Ferreira,
“Hash challenges: Stretching the limits of
compare-by-hash in distributed data
deduplication”, Information Processing Letters,
vol. 112, no. 10, 2012, pp. 380-385.

[16] F. Douglis, and A. Iyengar, "Application-
specific delta-encoding via resemblance
detection", Proceedings of 2003 USENIX
Annual Technical Conference. pp. 113-126.

[17] B. Zhu, K. Li, and H. Patterson, "Avoiding
the disk bottleneck in the data domain
deduplication file system", Proceedings of
FAST '08: 6th USENIX Conference on File and
Storage Technologies. pp. 269-282.

[18] U. Manber, "Finding similar files in a
large file system", Proceedings of the USENIX
winter 1994 technical conference, 1994. pp. 1-
10.

[19] A. Z. Broder, "On the resemblance and
containment of documents", Proceedings of
Compression and Complexity of Sequences,
1997. pp. 21-29.

[20] M. O. Rabin, Fingerprinting by random
polynomials: Center for Research in Computing
Technology, Aiken Computation Laboratory,
The Hebrew University of Jerusalem, 1981.

[21] N. Jain, M. Dahlin, and R. Tewari, "Taper:
Tiered approach for eliminating redundancy in
replica synchronization", Proceedings of FAST
'05: 4th conference on USENIX Conference on
File and Storage Technologies, 2005. pp. 281-
294.

[22] D. R. Bobbarjung, S. Jagannathan, and C.
Dubnicki, “Improving duplicate elimination in
storage systems”, ACM Transactions on Storage
(TOS), vol. 2, no. 4, 2006, pp. 424-448.

[23] W. Bergmans. "Summary of all single file-
type lossless data compression tests", 10-08,
2012;
http://www.maximumcompression.com/data/su
mmary_sf.php.

http://www.jatit.org/
http://www.maximumcompression.com/data/summary_sf.php
http://www.maximumcompression.com/data/summary_sf.php

	1. Introduction
	2. related works
	3. The Proposed scheme
	3.1 Analysis
	3.2 Finding Similar Chunks
	3.3 Delta Encoding

	4. PERFORMANCE EVALUATION
	5. DISCUSSION
	6. CONCLUSIONS
	7. Acknowledgement
	REFERENCES:

