
Journal of Theoretical and Applied Information Technology
 30th June 2013. Vol. 52 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

372

 TOWARD THE MATURITY OF SOFTWARE ENGINEERING:
UNIVERSAL, FORMAL, AND MATHEMATICAL

DEFINITION FOR TYPE AND OBJECT AS TWO DISJOINT
BASIC CONCEPTS

1BERNARIDHO I HUTABARAT, 2KETUT E PURNAMA, 3MOCHAMAD HARIADI

1 Student, Department of Electrical Engineering, ITS, Surabaya
2 Lecturer, Department of Electrical Engineering, ITS, Surabaya

3Assoc Prof, Department of Electrical Engineering, ITS, Surabaya

E-mail: 1bernaridho@gmail.com, 2ketut@ee.its.ac.id , 3mochar@ee.its.ac.id

ABSTRACT
Software engineering has not reached maturity level as classic engineering. Theoretical foundation for
software engineering lacks the precision and universal agreement of terms. By contrast, classic engineering
are founded on the seven base dimensions that are precise and universally agreed.

This paper aims to bring software engineering into maturity, in terms of the precision of terms by
establishing and mathematically defining two basic concepts: type and object. Just like the seven base
dimensions in physics be part of theoretical foundation for classic engineering, the two basic concepts type
and object are the theoretical foundation for software engineering.

This paper lists twelve problems with current definitions of type and object. The proposed definition and
concepts are linguistically tested and mathematically formulated using thirty five formulas. Each concept –
type, object – is unique and has single interpretation. This paper shows that class is a derived concept – not
a basic concept – and that class can be defined on the proposed disjoint basic concepts: type and object.

Keywords: Type, Object, Conceptual Integrity, Basic Concept, Engineering

1. INTRODUCTION

 Engineering books such as [1] excluded
Software Engineering as engineering branch.
Reference [1] does not write any reasons for
rejection, but software engineering lack of well-
definedness of something similar to the seven base
dimensions is perhaps the primary factor.

Many software engineering books and research
papers have been written. Few – if any – attempt to
solve the above very important problem. This paper
is an attempt to solve the problem.

The authors of this paper examine the problems
with the prevalent theory: Object-Orientation. The
authors examine the definitions in standards,
textbooks, research papers, and webpages about
Object-Orientations (or Object-Oriented [2]).

In examining the problems and proposing the
solutions, two approaches are used: linguistic and
mathematic. It is the linguistic approach that has
not been taken extensively by any previous paper.
Despite the proliferation of mentions about formal
approach in software engineering research paper,
informal explanations dominate the research paper,

textbooks, and international standards. It is the
informal text explaining the formal things (e.g.,
programming-language, equations) that has not
been exposed to scrutiny.

Fig 1 shows the total seven base dimensions and
several derived dimensions in physics that underlie
classic engineering. There are two characteristics
worth mentioning. Firstly, the number of base
dimensions is fixed; while the number of derived
dimensions can vary over time. Secondly, all
derived concepts are based on base dimensions.

Having those two properties is the consequence
of this paper’s aim. Adjusting to the proposed
concepts at hand, the authors aim to establish four
basis concepts that are fixed forever. The second
similar property is that all derived concepts should
always be based on the basic concepts. These two
properties are absent in software engineering.

Fig 2 shows the idea in which there are only four
basic concepts, and all derived concepts are based
on the basic concepts. The scope of this paper is the
two of the four basic concepts: type and object.

Journal of Theoretical and Applied Information Technology
 30th June 2013. Vol. 52 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

373

Fig 1 Base-dimensions and Derived-dimensions in Physics, foundation for Classic Engineering

Fig 2 Proposed Basic-concepts and Derived-concepts for Software Engineering.

Journal of Theoretical and Applied Information Technology
 30th June 2013. Vol. 52 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

374

This paper is organized as follows. The first

section introduces the subject, the problem, and
scope of the solution. The second section lists
twelve (12) problems in Object-Orientation from
research papers, international standards, textbooks,
and webpages. The third section describes the
solutions: type, object, and their disjointness are
mathematically formulated using propositional
calculus (set theory). The solution is guided by the
paraphrased definition of conceptual integrity. The
fourth section applies the proposed theory to solve
the problems in the second section. The fifth section
presents NUSA programming-language that shows
how a non-OOPL can have expressive power of
OOPLs (encapsulation, inheritance, polymorphism)
without resorting to class. The sixth section
compares the old versus new theory. The seventh
section concludes the study. Appendix 1 explains
the universal definition of class based on Basic
Concepts. Appendix 2 explains non-universal
definition of class, based on the basic concepts.
Appendix 3 proves that class is derived concept,
similar to the way of physics.

2. THEORY OF OBJECT-ORIENTATION

2.1 The Informality of Theories
One of weaknesses of OO theory is presented in

ref [3]. Bertino and Martino wrote.
Object-Oriented systems can be classified into two
main categories: systems supporting the notion of
class and those supporting the notion of type ...
Although there are no clear lines of demarcation
between them''

The second example is from Grady Booch, the
key author of UML who in ref [4] defines class as

The terms class and type are usually (but not
always) interchangeable, a class is slightly different
concept than a type, in that it emphasizes the
importance of hierarchies of classes.

There are two deficiencies to find in the
definition of class:

• It is informal (and consequently imprecise):
note the word usually

• It is incorrect. The notion of type hierarchy
also exists. The term class hierarchy does
not give more emphasis than type hierarchy.

The vagueness, the ambiguity, and the lack of
well-founded boundaries have given way to the
obscurity of definitions. It is up to the individual
authors to come up with their opinion regarding the
difference between class and type. UML standards
[5, 6] do not define what object-orientation is.

2.2 Lack of universality
Definitions of object are ad hoc. We provide four
examples among literally thousands of webpages
containing the definition of object. Following each
sample definition is one or two thought-provoking
questions. A webpage from Monash University
(www.csse.monash.edu.au/damian/papers/PDF/
cyberdigest.pdf, accessed 2011-07-19) defines

an object is anything that provides a way to
locate, access, modify, and secure data.

Fig 3 First Sample Definition of Object

One valid question for the first sample definition
is "If a procedure provides a way to locate data, is
the procedure an object?''.

The second sample comes from webpage www.
wordiq.com/definition/Object-oriented (accessed
2011-07-01). It defines object as

Packaging data and functionality together into
units within a running computer program; objects
are the basis of modularity and structure in an
object-oriented computer program.

Fig 4 Second Sample Definition of Object

One valid question for the second definition is:
"has there been no modular program before Object-
Oriented Programming Languages were made?''
The webpage does not answer the question.

The third sample comes from SAP - a giant
software corporation. Authorized personnels in
http://help.sap.com/saphelp/nw2004s/helpdata/en/
c3/225b5654f411d19... (accessed 2011-07-19)
define object as

These objects are first defined by their character
and their properties which are represented by their
internal structure and their attributes (data).

Fig 5 Third Sample Definition of Object

Two valid questions for the second definition are
"What is the character of an object?'' and "Why do
other authors not define that 'character of an object
defines the object'?''

The fourth example of webpage defining the
object is www.slideshare.net/rickogden/beginners-
guide-to-object-orientation (accessed 2011-07-19).

An object is created by creating a new instance
of a class. Objects of the same class have exactly
the same functionality, but the properties within
the object are what makes them different.

Fig 6 Fourth Sample Definition of Object

Journal of Theoretical and Applied Information Technology
 30th June 2013. Vol. 52 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

375

That definition is keyword dependent, being
dependent on the usage of keyword class. One valid
question is "Oracle Corp claims that Oracle
PL/SQL is object-oriented, and Borland claims that
Turbo Pascal 5.5 up to Turbo Pascal 7.0 is object-
oriented; but those programming-languages do not
have class. Does the author mean that Oracle
PL/SQL and Turbo Pascal are not object-oriented
language just because they do not have any
classes?'' Referring to three previous examples, the
webpage does not answer those questions.

In several previous paragraphs the authors above
mentioned webpages written by both academics
and giant corporations. The ad hoc definitions they
have given do not match the expectation of high
degree of precision and trustworthiness of writings.

2.3 Redundancy of the term object and instance
Object and instance are redundant in OO literature.
The fourth sample definition in sec II.B “Lack-of-
universality” serves as an example, yet this problem
is not limited to including the webpages not trusted
by academic community. International standards
suffer the same problem. C++ standard [7] sec 1.9
contains these two statements:

An instance of each object with automatic
storage duration (3.7.2) is associated with each
entry into its block. Such an object exists and
retains its last-stored value during the execution of
the block and while the block is suspended (by a
call of a function or receipt of a signal)

Fig 7 Fifth Sample Definition of Object

Here is another example from research paper [8].
The term instance is redundant.

An object is an instance of a class.

Fig 8 Sixth Sample Definition of Object

2.4 Redundancy of the term object and instance

This is the consequence of the absence of formal
differences among class and type. Here is an
example copied from http://www.delphibasics.co.
uk/Article.asp? Name=OO.

We have defined a class called TSimple as a new
data type.

Fig 9 Sample Sentence Containing Redundant Terms:
Class and Data Type

The redundancy is also present in the C++
Standard [7]. The initial sentence of chap 9 (titled

"Class'') in the standard equates class to type. Class
is redundant.

A class is a type.

Fig 10 Sample sentence containing redundant terms:
class and type

The redundancy is present in subsec 4.2.16 of Java
standard [9] that is boxed in Fig 11. It shows the
redundancy and vagueness.

We often use the term type to refer to either a
class or an interface.

Fig 11 Sample Sentence Containing Redundant Terms:
Type, Class, and Interface; with No Clear Boundaries

Redundancy also happens in relation to the way
both terms are used. Here is an example taken from
a research paper [10].

"Generics for the Masses" (GM) and "Scrap your
Boilerplate" (SYB) are generic programming
approaches based on some ingenious applications
of Haskell type classes.

Fig 12 Sample Sentence Containing Term that is
Unnecessarily Long: Type Class

Reference [11] is a paper about Java type
qualifier. One statement contains redundancy
regarding class and type (see Fig 13).

For any class C, a reference of type readonly C
may not be used to modify the object it refers to,
which is a particularly useful annotation for
method arguments and results.

Fig 13 Another Sample Sentence Containing Redundant
Terms: Class and Type

Reference [12] is a research paper titled
"Typeless programming'' which contains this boxed
sentence below with the word "type".

The term Vector< super Vector< extends
List<Integer>> is for example a correct type in Java
5.0.

Fig 14 A Sample Sentence Containing the Term Type

Yet the source-code that follows contains the
word "class'' instead of type. The code explaining
that statement starts with this line (note the word
class instead of type).

class Matrix extends Vector<Vector
<Integer> >

Fig 15 A Source-code Containing the Word Class,
Inconsistent with the Sentence Preceding It.

Fig 16 shows the latest example in this subsec,

Journal of Theoretical and Applied Information Technology
 30th June 2013. Vol. 52 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

376

taken from [13] sec 3. The author speaks about
type; however, the third entry contains class.

Fig 16 Redundancy of Terms: the Heading and Human
Language Sentences are Inconsistent with the
Mathematical Formula

2.5 Conceptual disintegrity: type equals object

Type should not be equal to object, and vice
versa. Oracle PL/SQL equates type with object as
pictured in Fig 17. PL/SQL programming-language
creators confused object with type.

Fig 17 Creating the Type in Oracle PL/SQL

We test our hypothesis by creating an object. If
object = type, then the contents of metadata-view
user_objects and user_types will be the same.
But fig 18 shows the contents are different. Hence:
� The concept of type looks to be equal to the

concept of object, but
� The concept of type is different from that of

object (hence a contradiction, a conceptual
disintegrity).

� The differences are not precisely formulated.

Similar disintegrity takes place in subsection
8.2.1 of C# Standard [14] which contains this entry
for object. The header says Type but the entry says
object. C# standard committee equates type with
object (see Table II).

Reference [15] also mistook object with type. In
one of the definition the author wrote "objects are
implementations of abstract data types."

Fig 18 Incorrectness of Type = Object; Type ≠ Object.

2.6 Conceptual disintegrity: class equals object
Similar mistake and problem appear in Java
standard [9] sec 4.3.2; asserting that "The class
Object is a superclass (8.1.4) of all other classes''.
Object is said to be equal to class. Table II tabulates
partial content of C# standard [14] subsection 8.2.1
that shows the essentially same mistake.

Table II. Class equals Object

Type Description Example
object The ultimate base type

of all other types
object o = null;

2.7 Conceptual disintegrity: object equals
intermediate-code

The disintegrity of concepts becomes evident.
We start with the notion of object code. The object
code means intermediate code in the code
translation textbooks such as [16]. The intermediate
code is the result of the compilation of source code.

According to [17] there are two possible
definitions for object:

• object = intermediate code
• object code = intermediate code

Both equations are proved to be false, shown

below through modus Tollens. The modus is
formalized as follows:

if p then q
 ~q
then ~p

Fig 19 Modus Tollens

Journal of Theoretical and Applied Information Technology
 30th June 2013. Vol. 52 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

377

Let us assign that object is the outcome of
compilation process to p and object is
intermediate code to q. To show the imprecision in
IEEE definition, we must show that ~q holds.
Consequently, ~p holds too. While the ~q is read as
object it is NOT intermediate code. It is the fact
that object is not intermediate code. We can then
conclude that object is NOT the outcome of
compilation process.

2.8 Incorrect semantics

Theories within Object-Orientation literature can
be semantically incorrect. The repetition of words
is evident from the IEEE definition and some other
example texts in the standard. We explore the
second possibility of equality in the previous
section: object = intermediate code. If that equality
holds, the second equality cannot hold.
Linguistically, the two equalities must be presented
like the ones below.

• object = intermediate code
• object code = intermediate code code

Notice the repetition of the word code. Fig 21
shows another example exhibiting similar problem.

A possible improvement is done by writing two
equalities for IEEE Standard Glossary of Software
Engineering Terminology which are shown below:

• object = intermediate
• object code = intermediate code

The last proposed equation is free from the
repeated words problem. But the equality of object
= intermediate is in conflict with any English
dictionary [18]. No English dictionary equates
object with intermediate or intermediate code.

Incorrect semantics is also shown through
substitutions test [19]. Let us take one example
from Java standard [9].

4.3.1 An object is a class instance or an array.
4.3.2 A Class object exists for each reference type.

Fig 20 Two sentences that will be tested for semantics
correctness

If the semantics is correct, the semantics of this
statement below should be correct. We substitute
object with 'class instance'.

A Class class instance exists for each reference
type.

Fig 21 Example of Incorrect Semantics Found through
Words Substitution

However, the sentence is semantically incorrect
due to the double word 'Class class'. Applying the
substitution test for the entire text of the standard
will result in more occurences of semantic error.

2.9 Confusing word order

The following boxed text is contained in
subsection 17.1.2.1 of C# Standard [14]. Note there
are two phrases in which the difference is only on
the word order: class object versus object class.

Except for class object, every class has exactly
one direct base class. The object class has no direct
base class and is the ultimate base class of all other
classes.

Fig 22 Confusing Word Order

2.10 Difficult to understand concepts

We argue that the concept like instance is hard to
understand. Consequently, the concepts such as
'instance variables' are even harder to understand.
Reference [20] mentioned the difficulty in
explaining the concept of instance.

Järvi, Marcus, and Smith have offered strikingly
different programming concepts that are limited to
C++ (one of Object-Oriented programming-
languages). They created a class named concept,
like this one from ref [21].

concept LessThanComparable<typename T>
{
 bool operator < (const T& a, const T& b);
 bool operator > (const T& a, const T& b)
 {return b < a;}
 bool operator <= (const T& a, const T& b)
 {return !(b < a); }
 bool operator >= (const T& a, const T& b)
 {return !(a < b); }
}

Fig 23 The Class Implemented as Concept

2.11 Difficult to understand concepts

The claim that everything is an object was made
by Adele Goldberg and David Robson in their book
about Smalltalk [22]. It has been rejected by TTM
community [23] but favored by [24]. Interestingly
[24] listed one step "Acquire the Class Concept by
Abstraction of Many Common Objects''. It is a
contradiction to "Everything is an object''. If
everything is an object, we do not need class. In a
previous book, Adele Goldberg (with Alan Kay)
equated value with object (ref [25] page 12).

Journal of Theoretical and Applied Information Technology
 30th June 2013. Vol. 52 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

378

2.12 No concept is defined
Some research papers (e.g. [26]) do not define

any concept). The authors in [26] attempted to
explain Object-Orientation using logic. There is no
definition of object, type, class, methods, and the
usual terms in Object-Orientation. The author of
[27] refers properties in C# as syntactic sugar. If
property is a syntactic sugar, it deserves neither a
notion of Basic Concept nor definition.

3. PROPOSED SOLUTIONS

3.1 Integrity: irreducibility and unity
Brooks in [28, 29] has written about conceptual

integrity but he does not define it. References [28,
29] only wrote "Conceptual integrity is the most
important consideration in system design''.

We define conceptual integrity as the integrity of
concepts, and consequently include the unity of
concepts. The unity of concepts precludes the
redundancy of concepts. The system that lacks
conceptual integrity has conceptual disintegrity. As
the systems lack the unity of concepts, it embodies
redundant and incoherent concepts.

References [28, 29] wrote "It is better to have a
system that omit certain anomalous features and
improvements, but it still reflects one set of better
ideas, than to have one that contains many good,
yet providing uncoordinated ideas''. If we remove
"good but'' from the original sentence; and replace
features, improvements, and ideas with concepts
we get this slightly paraphrased sentence:

It is better to have a system omit certain
anomalous concepts, but to reflect one set of good
concepts, than to have one that contains many
uncoordinated concepts.

Fig 24 Proposed Theory About the System Having
Conceptual Integrity

That statement will be the basis of this paper. We
hypothesize that class and instance are anomalous
and redundant concepts. We hypothesize that object
is also an anomalous concept in Object-Oriented
literature, but not anomalous if defined precisely.
We propose a precise definition for the object
concept in this paper.

3.2 Unique Basic Concepts and Their Informal

definitions
We introduce four basic concepts along with

their informal definitions: VOTO, abbreviation for

Value Operation Type Object in [30]. Our proposed
basic concepts are similar to the four core concepts
proposed in [23]. We use 'object' (instead of
variable AS in [23]) because

(1) Not all objects are variables; some objects are

constants [30].
(2) Even further, not all objects are value-

assignable [30].

Some objects cannot be assigned to values; hence

some objects are neither constants nor variables. A
good informal definition of object can be found in
C standard [31] that in sec 3.14 defines object as:

region of data storage in the execution
environment, the contents of which can represent
values.

The following subsections contain informal
definitions for basic concepts that were partially
written in ref [30].

3.2.1 Type
Type is defined as follows:

• Types are first categorized into metatypes
(MT) and nonmetatypes (NMTs)

• A type may or may not have identity.
• TypeCategories := {General-types,

Special-types}
• General-types contain values.
• Special-types contain no values.
• General-types := {Basic-types, Record-

types, Collection-types}
• SpecialTypes := {void, Module, Program}

3.2.2 Object
Object is defined as follows:

• An object has identity.
• An object is of some type.
• Objects of Special-types cannot have value
• Objects of General-types are General-

objects
• Objects of Special-types are Special-

objects
• General-objects have value
• Special-objects do not have value

3.2.3 Disjointness of types and objects

The disjointness of types and objects are
formulated formally as follows:

Journal of Theoretical and Applied Information Technology
 30th June 2013. Vol. 52 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

379

• Object is not type.
• Type is not object.

Therefore
� The concepts of object and type are

disjoint (see Fig 25).
� Individual objects are disjoint from

individual types.

Fig. 25 Type and Object are Disjoint Concepts

3.3 Categorization of Basic Concepts into Basic,

Collection, and Record
The author of [30] proposed orthogonal

categorization toward basic concepts that implied
the presence of twelve derived concepts (Fig. 26):

• Basic-type
• Basic-object
• Basic-value
• Basic-operation
• Record-type
• Record-object
• Record-value
• Record-operation
• Collection-type
• Collection-object
• Collection-value
• Collection-operation

Those derived concepts will prove to be

sufficient and useful for the rewritten theories and
sentences in section 4.

Fig 26 Formal Definition for Basic Concepts; Fulfill the
Principle of Irreducibility and Conceptual Integrity.

3.4 Unique Basic Concepts and Their Formal
definitions

The concepts are formal if they only have one
interpretation.

Basic_Concepts := {Value, Operation, Type,

Object} (1)
∀ Ci ∈ Basic_Concepts (unique(Ci)) (1)

The basic concepts of programming introduced

here have two important properties:
• Formal (Hence there is no usually, like the

one in Booch).
• Nonredundant (type only, no redundancy

with other concept like class). (2)

3.4.1 Type
These are the itemized definitions for type.
• ∀ t ∈Types HasId(t) ^ HasNoId(t) (3)
• Types = MetaType ∪ NonMetaTypes (4)
• Metatype ∩ NonMetaTypes = ∅ (5)
• NonMetaTypes = GeneralTypes ∪

SpecialTypes (6)
• ∀ t ∈ General-types SetOfValues(t) ≠ ∅ (7)
• ∀ t ∈ Special-types SetOfValues(t) = ∅ (8)
• General-types = Basic-types ∪ Record-types

∪ Collection-types (9)
• Basic-types ∩ Record-types = ∅ (10)
• Basic-types ∩ Collection-types = ∅ (11)
• Record-types ∩ Collection-types = ∅ (12)

3.4.2 Object
These are the itemized definitions for object.
• ∀ o ∈ Objects (has_id (o)) (13)
• ∀ o ∈ Objects ∃ t ∈ Types (IsOfType (o, t))

 (14)
• Objects = SpecialObjects ∪ GeneralObjects

 (15)
• SpecialObjects ∩ GeneralObjects = ∅ (16)
• GeneralObjects = Basic-objects ∪ Record-

objects ∪ Collection-objects (17)
• Basic-objects ∩ Record-objects = ∅ (18)
• Basic-objects ∩ Collection-objects = ∅ (19)
• Record-objects ∩ Collection-objects = ∅ (20)

3.4.3 Disjointness of types and objects
The disjointness is formulated as follows:
• ∀ t ∈ Types ∀ o ∈ Objects (o ≠ t) (21)
• Types ∩ Objects = ∅ (22)
• ∀ t ∈ Types unqouted (lowercase(id(t))) ≠

object (23)

U: Universe of (basic) concepts
[simplified by excluding

two others: value, operation]

type object

Basic-type Basic-object

Record-type Record-object

Collection-type Collection-object

Collection-value

Basic-value

Record-value

Basic-
operation

Collection-
operation

Record-operation

Journal of Theoretical and Applied Information Technology
 30th June 2013. Vol. 52 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

380

• ∀ o ∈ Objects unqouted (lowercase(id(o))) ≠
type (24)

3.4.4 Category Relation
The category is defined as a relation that is

transitive. The relation is denoted by symbol ≼. The
words denoting the operands to the operation ≼ is
singular. The application of the category relation to
types is listed below:

• Metatype ≼ Type (25)
• NonMetaType ≼ Type (26)
• General-type ≼ NonMetaType (27)
• Special-type ≼ NonMetaType (28)
• Basic-type ≼ General-type (29)
• Record-type ≼ General-type (30)
• Collection-type ≼ General-type (31)

The transitivity makes for these relations for
types

• General-type ≼ Type (through
NonMetatype) (27a)

• Special-type ≼ Type (through NonMetatype)
 (28a)

• Basic-type ≼ Type (through General-type
and NonMetaType) (29a)

• Record-type ≼ Type (through General-type
and NonMetaType) (30a)

• Collection-type ≼ Type (through General-
type and NonMetaType) (31a)

Formulas #4 through #12 are partially captured

in the six formulations below
• A general-type is a type
• A special-type is a type
• A basic-type is a type
• A record-type is a type
• A collection-type is a type

Concerning object and value we can write
• General-object ≼ Object (32)
• ∀ GO ∈ General-objects, has_value (GO)

 (33)

Proof:
∀ o ∈ Objects ∃ t ∈ Types (IsOfType (o, t)) (14)
∀ t ∈ General-types SetOfValues(t) ≠ ∅ (7)

3.5 Hypothesis: equivalent synonyms
In this section we list synonyms of one word in

original text. The presence of multiple equivalent
terms is due to the careless wording in textbooks
and international standards.

Table III Equivalent Synonyms

No Original Equivalent
1 Class Type
2 Class record-type
3 Class Record
4 Instance Object
5 Subclass derived-type
6 Property Value
7 Property Operation
8 Member Column
9 Variable Object

3.6 Hypothesis: essetially equivalent phrases

It is impossible to list all equivalent phrases.
Sample equivalent phrases are listed in Table IV.

Table IV Equivalent Phrases

No Original Equivalent
1 data type Type
2 data type record-type
3 class type record-type
4 base class base-type
5 sub object Column
6 Subobject Column
7 member subobject Column
8 data member Column
9 function member Operation

Object-Orientation Proposed theory

Fig 27 Object-Orientation is Theory with Highly
Redundant Terms. Proposed Theory Contains No
Redundancy

Fig 27 and fig 28 summarize the comparison of
theories in graphical way (sec 6 details the
comparison of theories). While there are derived
terms (like record-type) in the proposed theory, the
most important concepts are type and object.

type
class

interface
class type

class object
object class

object
instance

type
object

Journal of Theoretical and Applied Information Technology
 30th June 2013. Vol. 52 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

381

Range Domain

Fig 28 Partial Mapping of Terms; Graphical Version of
Table II and Table III

3.7 Scope of the solutions

Literatures about Object-Orientation often relate
class and object with method. Method is operation.
The first author of this paper explained methods in
[32], contrasted Module-based Encapsulation
versus Type-based Encapsulation in [33], and
related module to namespace in [34]. Methods have
also been explained in the light of orthogonality in
[35]. NUSA is a programming-language that adopts
specific approach of Module-based Encapsulation.
In that approach, type cannot contain operation or
operator [33]. This approach is also adopted by
TTM in Other Orthogonal Very Strong Suggestion
number 2 “Types and operators unbundled'' [36].

Solving the problems listed in the previous
section is a prerequisite requirement before solving
the problems of defining methods in the precise
way. All of these mount to the decision of
excluding the treatment of methods (in Object-
Orientation folklore) in this paper.

3.8 Column and Arity

In this paper, the term column is used instead of
field, attribute , and data member. A column is an
object, but an object is not necessarily a column.

A C++ source-code below shows that object1 is a
column, and necessarily an object. On the other
and, object2 is an object; but not a column.

typedef struct Type1
{
 public: char object1;}}
};

void main()
{
 struct Type1 Object2;}}
 Object2.object1 = 'y';
 // there are two objects
}

We denote the number of columns in record-type
as well as record-object using the function Arity.

• ∀ RT ∈ Record-types Arity(RT) ≥ 0 (34)
• ∀ RO ∈ Record-objects Arity(RO) ≥ 0 (35)

3.9 Hypothesis on some common conventions

Programmers and authors have some conventions
on writing the source-code. Some of the
conventions are prefixing the type name with T (for
Type) or C for (Class). Programming library Turbo
Vision from Borland use prefix T. Microsoft in its
.NET programming library use prefix C
(msdn.microsoft.com/en-us/library/20t753se.aspx ,
accessed 2012-05-03, is an example).

4. RESULTS (PROVING THE SOLUTIONS)

4. 1 Replacing instance by object
We take an example repeated from sec II.B and
name it as Sentences 1a to serve as an example
how we can make better explanation.

An object is created by creating a new instance
of a class. Objects of the same class have exactly
the same functionality, but the properties within
the objects are what make them different.

The following Sentences 1b are the result of
replacing instance by object, with the mapping #4
in Table II.

An object is created by creating a new object of a

class. Objects of the same class have exactly the
same functionality, but the properties within the
objects are what make them different.

The mapping shows there is no new information in
the first sentence "An object is created by creating a
new object''. It is redundant.

4. 2 Replacing class by type

We start this section by improving the rewritten
sentences in the previous section. We apply
mapping #2 in Table II: replace class by type for all
rewritten sentences within this subsection.
Sentences 1c are the result of the first rewrite.

An object is created by creating a new object of a
type. Objects of the same type have exactly the
same functionality, but the properties within the
objects are what make them different.

The rewritten text is clearer. The concepts are
becoming integrated without redundancy. Here is

• class

• class type
• data type

• object class
• object

• instance

• type
• record

• record-type

• object

Journal of Theoretical and Applied Information Technology
 30th June 2013. Vol. 52 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

382

another example, Sentence 2a, that is copied from
www.delphibasics.co.uk/Article.asp? Name=OO.

We have defined a class called TSimple as a new
data type.

We use mapping #2 in Table II to replace class
by type. Sentence 2b is the result having the
conceptual integrity.

We have defined a type called TSimple as a new
data type.

We refer to the sentence below as Sentence 3a. It
is written in Sec 9.2 of C++ standard.

A class definition introduces a new type.

This is Sentence 3b obtained by replacing class
with type, and introduces with defines.

A type definition defines a new type.

4. 3 Using equivalent synonyms
We start this section by improving the rewritten

Sentences 1c in the previous section. We replace
properties with values using the mapping #6 in
Table II. The result is Sentences 1d below.

An object is created by creating a new object of a
type. Objects of the same type have exactly the
same functionality, but the values within the objects
are what make them different.

Sometimes replacing the words by means of
equivalent phrases is better. Using the mapping #3
in Table III we replace data type in Sentence 2b
with record-type. The result is Sentence 2c below.

We have defined a type called TSimple as a new
record-type.

The resulting text will be compared against the
improvement of source-code in sec 4.6. In the
subsequent sentences, we cover the more complex
sentences.

The next sentence is taken from point 1 within
Chap 9 (chapter about Classes) in C++ Standard
[7]. We call it Sentence 4a.

An object of a class consists of a (possibly
empty) sequence of members and base class
objects.

We use the mapping #2 in Table II to replace
class by record-type, mapping #6 in the same table
to replace member with column, and replace one of
the word object with column. We add - after the

word base and remove the space before the word
type (the word type that substitutes the word class).
The result is Sentence 4b.

An object of a record-type consists of a (possibly
empty) sequence of columns and base-type
columns.

In the conversion of two subsequent original
sentences, we replace class with record-type
(mapping #2 in Table II). The original sentences are
taken from chapter 3 point 3 in C++ standard [7].
We call the first one as Sentence 5a (see below).

Note: class objects can be assigned, passed as
arguments to functions, and returned by functions.

We rewrite the previous sentence by replacing
class with record-type. The result is Sentence 5b.

Note: record-type objects can be assigned,
passed as arguments to functions, and returned by
functions.

This is another sentence from the C++ standard
[7] chapter 9 and the same point (3). We call it
Sentence 6a.

(except objects of classes for which copying has
been restricted; see 12.8).

We apply the same mapping to replace class with
record-type. The result is Sentence 6b below.

(except objects of record-types for which
copying has been restricted; see 12.8).

4. 4 Using equivalent phrases

The rewriting of sentences can be complex. In
this section we convert the phrases of sentences.
Point 3 in chap 9 of the C++ standard [7] is written
as what we call Sentence 7a below.

Complete objects and member subobjects of a
class type shall have nonzero size.

We apply the mapping #3 (class type with
record-type) and mapping #7 (replace member
subobject with column) for rewriting; both are
from Table III. The result is Sentence 7b below.

Complete objects and columns of a record-type
shall have nonzero size.

In which they can be rewritten as two sentences
Sentence 7c and Sentence 7d to make explanation
more explicit about C++.

Complete objects of a record-type shall have

Journal of Theoretical and Applied Information Technology
 30th June 2013. Vol. 52 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

383

nonzero size. Columns of a record-type shall have
nonzero size.

Similar rewriting (replacing class type with
record-type, mapping #3 in Table III) can be
applied to another sentence within C++ standard.
This is the Point 4 in chap 9 of the C++ Standard.
We call it Sentence 8a.

Note: aggregates of class type are described in
8.5.1.

Using the mapping #3 in Table III (replace class
type with record–type) we obtain Sentence 8b.

Note: aggregates of record–type are described in
8.5.1.

The next example for this subsection comes from
point 4 of chap 9 of C++ standard which we refer to
as Sentence 9a. POD is short for Plain Old Data.
That term is unnecessary.

A POD-struct is an aggregate class that has no
non-static data members of type non-POD-
struct, non-POD-union (or array of such types) or
reference, and has no user-declared copy
assignment operator and no user-declared
destructor.

We rewrite Sentence 9a by replacing POD-struct
with struct, class with record-type, non-static with
dynamic, data member with column, reference with
address, and operator with operation. The result is
Sentence 9b below.

A struct is an aggregate record-type that has no
dynamic columns of type non-struct, non-union
(or array of such types) or address, and has no user-
defined copy assignment operation and no user-
defined destructor.

4. 5 Paraphrasing

Rethinking further, Sentence 9b can be improved
by paraphrasing to be Sentence 9c below. C++ has
two record-type-qualifiers: struct and class . The
word aggregate is not needed.

A record-type with qualifier struct has no
dynamic columns of type non-struct, non-struct-
union (or array of such types) or address; and has
no user-defined copy assignment operation and no
user-defined destructor.

Other paraphrasing techniques that results in
better explanation are discussed in the following

two subsections.

4.5.1 Changing the word order

The words constituting phrases 'record-type
objects' are paraphrased into 'objects of record-
type'. We apply the rule to rewrite the end of
Sentence 4b ('record-type objects') to be 'objects of
record-type' in Sentence 4c below.

An object of a record-type consists of a (possibly
empty) sequence of columns and base-type
columns.

We can apply a similar rule to rewrite Sentence
5b to be Sentence 5c below.

Note: objects of record-type can be assigned,
passed as operands to functions, and returned by
functions.

4.5.2 Changing "objects of <x-type>" into “x-

objects”
Objects of record-type can be paraphrased into

record-objects. This paraphrasing technique allows
us to rewrite Sentence 5c into Sentence 5d below.

Note: record-objects can be assigned, passed as
operands to functions, and returned by functions.

Finally, we can also paraphrase Sentence 6b into
Sentence 6c below.

(except record-objects for which copying has
been restricted; see 12.8).

4. 6 Removing unnecessary phrases or sentences

The further result from the proposed theory is
that we can remove unnecessary phrases or
sentences. Sentence 3b can be removed altogether
from the (C++) standard.

4. 7 Reversing the conventions, applying the

theory to source-code
We apply the refinement of the theory to the

refinement of source-code. We start with the theory
reformulated as Sentence 2c in sec 4.3.

We have defined a type called TSimple as a new
record-type.

Secondly, we check the correctness of theory
(rewritten sentences) to the accompanying source-
code. Here is the code obtained from www.
delphibasics.co.uk/Article.asp? Name=OO.

type (* Define a simple class *)

TSimple = class

Journal of Theoretical and Applied Information Technology
 30th June 2013. Vol. 52 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

384

simpleCount : Byte;
property count : Byte read simpleCount;
procedure SetCount (count : Byte);

end;

The proposed theory matches the source-code.
We apply the replacement of text according to the
proposed theory.

• replace the word class with record-type in
the comment

• replace the word class with record (because
record is record-type) in Line 2

• replace the word property with function
• replace type name TSimple with Simple

(reverse the conventions, drop the prefix T
from type-name)

In addition we replace = by := as assignment

operation. Delphi uses the symbol =
inconsistenly, it can mean comparison-operation
and assignment-operation. The result of
converted source-code is as follows:

type (* Define a simple record–type *)
 Simple := record
 simpleCount : Byte;
 function count : Byte read simpleCount;
 procedure SetCount (count : Byte);
 end;

The converted source-code is no longer a Delphi

source-code. But the source-code reflects the good
theory. The source-code can now be explained with
integrated concepts, not by disintegrated concepts.

This is the refined explanation for the source-
code called Sentence 2d, in which the type-name
TSimple has been replaced by Simple.

We have defined a type called Simple as a new
record-type.

5. APPLICATIONS IN NUSA
PROGRAMMING-LANGUAGE

5.1 NUSA: language that conforms to the
proposed theory

The theory that underlies NUSA programming-
language conforms to the proposed theory and
conceptual integrity. There is no concept of class,
data member, property, and instance in NUSA. The
original source-code inside sec 4.6 that is written in
Delphi can be rewritten in NUSA as follows:

type Simple := Thing +
 record { word count; };

word count (Simple self)
{ return (self.Count); }

void SetCount (Simple& self; word count)
{ self.Count := count; }

That source-code can be explained and theorized
without involving the concepts of class, data
member, property, and instance. Sentence 2e below
(rewritten from Sentence 2d) theorizes the source-
code concisely.

We have defined a new record-type called
Simple.

5.2 Type, object, name for metatype and types
NUSA uses type for the name of metatype.

There is only one metatype in NUSA. The name of
objects cannot intersect with the name of types.
NUSA adheres to the formulas #1 through #33.

By conforming to formula #23 and #24 NUSA
avoids two problems: confusing type with object,
confusing phrases class object versus object class.

In NUSA the system-defined root record-type is
named Thing , not object . It removes the
possibility of mistaking type with object. Table IV
explains Thing in NUSA. The explanation can be
compared to the theories contained in subsec 8.2.1
of C# standard and subsec 4.3.2 of Java standard.

Table IV Partial table of types in NUSA

Type Description Example
Thing Root system-defined base record-

type for other record-types
Thing
Object1;

The design also removes the confusing terms. In
sec 2.9 we show example of confusing word order
in C# standard. In this section we show how the
confusion can be removed.

Except for type Thing, every record-type has
exactly one direct base-type. The type Thing has no
direct base-type and is the ultimate base-type of all
other record-types.

5.3 Support for inheritance and polymorphism

NUSA is similar to Tutorial D [23] in terms of
unbundling the operations. The most significant
difference between the two is the explicit notion of
module and modular programming [32].
Unbundling the operations from record-types does
not prohibit the support of polymorphism, due to
the usage of namespace within NUSA [34].

Reference [34] shows that NUSA can handle
inheritance. Indeed, the boxed sentence in the
previous subsection implies the support of
inheritance in NUSA. In this subsection we present

Journal of Theoretical and Applied Information Technology
 30th June 2013. Vol. 52 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

385

an overview of how NUSA handles polymorphism
related to the inheritance.
Program Demo; // inheritance, polymorphism
type Type1 := Thing +
 Record { boolean column1; };
type Type2 := Type1 +
 Record { char column2; };

void operation1 (Type1 this)
// polymorphic operation, accepts operand
{ // whose type is derived from Type1
 writeline (this.column1);
}

void main ()
{
 Type2 Object2;
 // call the polymorphic operation
 operation1 (Object2);
}

6. COMPARISON OF THEORIES

In this section we compare the existing
theories versus the proposed theory for type
and object. Table V summarizes the
comparison of theories. The proposed theory
eliminates 12 problems associated with the
existing theories.

Table V Comparison of theories

No Existing
concept/theory

Proposed
concept/theory

1 Informal Formal
2 Not universal Universal; independent

of the programming-
language

3 Contains the
redundancy due the
term object and
instance.

The term instance (and
the redundancy) is
removed.

4 Contains the
redundancy due the
term class and type.

The term class (and the
redundancy) is
removed.

5 Conceptual disintegrity:
type equals object

Conceptual integrity:
type ≠ object

6 Conceptual disintegrity:
class equals object

Conceptual integrity.
The term class is
removed (corollary of
solution #4).

No Existing

concept/theory
Proposed
concept/theory

7 Conceptual disintegrity:
object equals
intermediate-code

Conceptual integrity.
Intermediate-code is
not a basic concept

8 Incorrect semantic Correct semantic when

when we apply the
substitution principle.

we apply the
substitution principle.

9 Confusing word order
(e.g., of class object
and object class)

No confusing word
order

10 Difficult to understand
concepts (e.g., the term
/concept instance)

No difficult to
understand concepts
(e.g., instance and
class are eliminated)

11 Everything is an object. Not everything is an
object (see the 4 basic
concepts).

12 No concept is defined
(due to informality, #1)

All concepts (type and
object) are defined.

The following table summarizes the sections

introducing the problems with existing theories and
the solutions. We use the abbreviation sec to refer
to subsection.

Table VI Solutions (and formulas) for the problems

No Sec Solution
1 II.A Formal theory for type, object, and

differences between type and object.
Formula #1-3, 13-14, 21-24

2 II.B Universal (language-independent)
theory using the concept type even if
the programming-languages use the
word class. The solution is within all
formulas and mappings in sec III.

3 II.C Basic Concepts and The Formal
Definitions remove the need for the
term instance.

4 II.D Basic Concepts and The Formal
Definitions remove the need for the
term instance.

5 II.E Formal theory for differentiating type
versus object. Subsection III.D.3.

6 II.F Basic Concepts and The Formal
Definitions remove the need for the
term instance.

7 II.G Principle solutions: (a) Basic Concepts
and (b) Code-translation theory [14]
that uses the term 'intermediate-code'
instead of 'object-code'.

No Sec Solution
8 II.H Principle solutions: (a) Basic Concepts

and (b) Code-translation theory [14]
that uses the term 'intermediate-code'
instead of 'object-code'.

9 II.I Basic Concepts and The Formal
Definitions remove the confusing word

Journal of Theoretical and Applied Information Technology
 30th June 2013. Vol. 52 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

386

order, especially subsection III.D.1.
Additional solution can be inferred
from section IV.B.

10 II.J Basic Concepts and The Formal
Definitions remove the need for the
term instance.

11 II.K Formal theory for type and the formal
differences between type and object
prove not everything is an object.

12 II.L Basic Concepts and The Formal
Definitions.

Solution for the problems #7 and #8 needs code-
translation theory as described in [30] (see
'intermediate-code' in fig 29 below).

Fig 29 Code-translation processes

Sentences in the textbooks, specifications, or
theories in the webpages can be perceived as
theories. Table VII shows that using the theory
proposed in this paper; explanations in textbooks
and specifications, and more detailed theories can
be written using consistent and very limited terms.

Table VII Tabulation of rewritten sentences with
conceptual integrity, consistent and limited terms

No Initial sentence(s) Final sentences, with
reference to formula

1 An object is created by
creating a new
instance of a class.
Objects of the same
class have exactly the
same functionality, but
the properties within
the objects are what
make them different.

Objects of the same
type have exactly the
same functionality, but
the identities and
values are what make
them different.
Formula (13, 14, 33)

No Initial sentence(s) Final sentences, with

reference to formula
2 We have defined a

class called TSimple as
a new data type.

We have defined a new
record-type called
Simple. Formula (9).

3 A class definition A record-type

introduces a new type. definition defines a
new type.
Formula (30a).

4 An object of a class
consists of a (possibly
empty) sequence of
members and base
class objects.

A record-object
consists of a (possibly
empty) sequence of
columns and base-type
columns.
Formula (35).

5 Note: class objects can
be assigned, passed as
arguments to functions,
and returned by
functions.

Note: record-objects
can be assigned, passed
as arguments to func
tions, and returned by
functions
Formula (17).

6 (except objects of
classes for which
copying has been
restricted; see 12.8).

(except record-objects
for which copying has
been restricted; see
12.8). Formula (17).

7 Complete objects and
member subobjects of a
class type shall have
nonzero size.

Objects and columns of
a record-type shall
have nonzero size.
Formula (17, 35).

8 Note: aggregates of
class type are described
in 8.5.1.

Note: aggregates of
record-type are
described in 8.5.1.
Formula (9).

9 A POD-struct is an
aggregate class that has
no non-static data
members of type non-
POD-struct, non-POD-
union (or array of such
types) or reference, and
has no user-declared
copy assignment
operator and no user-
declared destructor.

A record-type with
qualifier struct has no
dynamic columns of
type non-struct, non-
union (or array of such
types) or address, and
has no user-defined
copy assignment
operation and no user-
defined destructor.
Formula (9, 34).

Rewritten sentence #3 (using the word record-type)
can be removed because it is redundant. Our
proposed theory can be used to reduce the
explanations in the specifications.

7. CONCLUSIONS
In this paper we have described the problems

with existing theories underlying the Object-
Oriented Programming. Existing theories lack
conceptual integrity among the concepts of type,
object, instance, and class. Class and instance are

Compile Link

Interpret

Source

Code

Unmaterialized
Runnable -Code

Materialized
Runnable -Code

LinkRun

Link

Intermediate
Code

Compile

Journal of Theoretical and Applied Information Technology
 30th June 2013. Vol. 52 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

387

redundant and anomalous concepts (the two
appendices offer proper explanation of class).

This paper proves that the concept of object and
type can be mathematically formulated. Prior to this
paper, the concept of type and object are not
formulated formally and uniquely. To the best of
the authors' knowledge, the mathematical formula
for type and object are either informal, or formal
but redundant with the term class and instance.

We have proposed a theory that fulfills the
conceptual integrity principle. There is neither
redundant nor isolated concept. We focus on
informal and formal definition of the concepts of
type and object. Both concepts are disjoint, shown
through 35 mathematical formulas.

To aid understanding of the proposed theory,
NUSA programming-language is designed and its
code-translators are created. NUSA is not an
OOPL, but a general-purpose with conceptual
integrity; providing encapsulation, inheritance, and
polymorphism without resorting to class. Class is
not required for encapsulation, inheritance, and
polymorphism. Class is not a basic concept.

The independence of basic concepts
formulation can be used to increase the maturity
level of software engineering. One day all software
engineers understand “Concepts Every Software
Engineer should know”. The concepts will be few,
universally agreed, matematically and linguistically
precise, integrated, and comprehensible like the
concepts in physics.

APPENDIX 1: CLASS AS RECORD-TYPE FOR

DYNAMICALLY-ALLOCATED OBJECTS
While there are thousands of OOPLs, from the

memory-allocation perspective there are essentially
two allocation strategies: static and dynamic. C#
and Java require record-objects to be dynamically
allocated. The term reference type is added for
class, introducing more difficulty.

The term may seem to invalidate the concept of
record-value, as can be seen in [27]. But here we
prove that the dynamic allocation like in C# and
Java does not invalidate the concept of record-
value. The operational-semantic of

an_object := type_name (arguments_list) ;

is

for all columns in an_object
an_object.columns[i] := columns[i]
(type_name (actual_operands_list))

Mathematically we write:

∀ Columns[i] ∈ Columns
 An_object.Columns[i] := type_id (arg1 [, argk]) [i]

That the record-object (An_object) is a

dynamically-allocated object does not change the
fact that the value of argi is assigned to Columns[i].
Thus, the concept of class in C# and Java is
correctly referred to as record-type.

APPENDIX 2: CLASS AS MODULE
In C#, Java, and similar programming-languages,

class is mapped not only to record-type but also a
module. Thus, M is a name for record-type and
module-object.

NUSA helps understanding class as module. Fig
30 shows the translated source-code in NUSA.
Module M;

interface

type M := Record { };
M M ();
char object2 := 'a';
void operation2();

implementation

M M ()
{
 M this;
 return (this);
}

integer object1 := 2;

void operation2()
{
 Object2 := 3;
}

void operation1()
{
 Object1 := 'b';
}

Fig 30 Equivalent source-code in NUSA

Classes in C# and Java are both record-types and
modules. This still confirms the theory that the
common denominator for class is: record-type.
Classes in other OOPLs (notably C++) are not
modules.
APPENDIX 3: MODELING CLASS AS

DERIVED CONCEPTS
This appendix explains the similarity of physics’

base and derived dimensions with the proposed
basic and derived concepts. Table VIIII shows two
base dimensions and two derived dimensions in

Journal of Theoretical and Applied Information Technology
 30th June 2013. Vol. 52 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

388

physics. All derived dimensions must be based on
base dimension(s).

Table VIII. Partial list of base dimensions and derived
dimensions in physics; for various classic engineering

Base dimension Derived dimension
Length (L)
Time (T)

Area (L2)
Speed (L1T-1)

Table IX tabulates class as derived concept, not a
basic one; based on the explanation in Appendix 1
and Appendix 2. Class in C++, Delphi, and alike
belong to the class as T1 (merely as record type).
Class in C#, Java, and alike belong to the class as
T1 Ob1; a class is a type as well as an object (of
type module).

 Table IX. Partial list of basic concept and derived
concept for software engineering

Basic concept Derived concept
Type (T)
Object (Ob)

Class (T1)
Class (T1Ob1)

ACKNOWLEDGMENT

The first author thanks The Ministry of
Communication and Information of Indonesia for
financial support in the making of NUSA code-
translator.

REFERENCES:
[1] Saeed Moaveni. Engineering Fundamentals:

An Introduction to Engineering, 2nd ed,
Thomson Engineering. 2005.

[2] ISO. ISO/IEC 2382-15:1999 Information
technology -- Vocabulary -- Part 15:
Programming languages. ISO. 1999.

[3] Elisa Bertino, Lorenzo Martino. Object-
Oriented Database Systems: Concepts and
Architectures. Addison Wesley, 1993.

[4] Grady Booch et al. Object-Oriented Analysis
and Design. 3rd edition. Addison Wesley,
2007.

[5] OMG. OMG Unified Modeling Language
Infrastructure. Object Management Group.
2011.

[6] OMG. OMG Unified Modeling Language
Superstructure. Object Management Group.
2011.

[7] ISO. ISO/IEC 14882:2003 Programming
Languages -- C++. ISO. 2003.

[8] Twan Basten, Wil M. P. van der Aalst.
“ Inheritance of behavior”, in The Journal of
Logic and Algebraic Programming. Elsevier.
2001.

[9] James Gosling, Bill Joy, Guy Steele, Gilad
Bracha, Alex Buckley. The Java Language
Specification. Oracle Corp. 2012.

[10] Martin Sulzmann, Meng Wang. “Modular
Generic Programming with Extensible
Superclasses”, in ACM SIGPLAN, September
16. 2006.

[11] David Greenfieldboyce and Jeffrey S. Foster.
“Type Qualifier Inference for Java”, in
OOPSLA October 2007 pp 21-25. ACM 978-
1-59593-786-5/07/0010. 2007.

[12] Martin Plümicke. “Typeless programming in
Java 5.0 with wildcards”, in Proceedings of
the 5th international symposium on Principles
and practice of programming in Java. ACM
pp 73-82. 2007.

[13] Norbert Schirmer. “Analysing the Java
Package/Access Concepts in Isabelle/HOL”,
in Concurrency and Computation: Practice
and Experience. 2003; 0:1-10. John Wiley &
Sons. 2003.

[14] ECMA International. ECMA-334 Standard.
C# Language Specification. 2006.

[15] Antero Taivalsaari. “On the notion of Object”,
in Journal of Systems Software; Vol 21:3-13
pp 3-16; 1993.

[16] Alfred V. Aho et al. Compilers: Principles,
Techniques, and Tools, 2nd edition. Addison-
Wesley, 2006.

[17] IEEE. IEEE Standard Glossary of Software
Engineering Terminology. IEEE. 1990.

[18] Oxford. Oxford American English Dictionary.
Oxford. 2005.

[19] Geoffrey Leech, Margaret Deuchar, Robert
Hoogenraad. English Grammar for Today.
MacMillan. 1982.

[20] Josë de Oliveira Guimaräes. ”The Green
language type system”, in Computer
Languages, Systems & Structures. Elsevier.
2009.

[21] Jaakko Järvi, Mat Marcus, Jacob N. Smith.
“Programming with C++ concepts”, in
Science of Computer Programming. 2009.01.
Elsevier. 2009.

[22] Adele Goldberg, David Robson. Smalltalk-80:
The Language and Its Implementation.
Addison-Wesley. 1983.

[23] C. J. Date, Hugh Darwen. The Third
Manifesto: Foundation for Object/Relational
Databases, 1998.

[24] Haibin Zhu, MengChu Zhou. Methodology
First and Language Second: A Way to Teach
Object-Oriented Programming, in OOPSLA
2003, October 26-30. ACM 1-58113-751-
6/03/0010. 2003.

Journal of Theoretical and Applied Information Technology
 30th June 2013. Vol. 52 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

389

[25] Adele Goldberg, Alan Kay. Smalltalk-72
Instruction Manual. Xerox Palo Alto Research
Center. 1972.

[26] Derek Rayside, Gerard T. Campbell. “An
Aristotelian Understanding of Object-
Oriented Programming”, in OOPSLA 2000,
10/00. 2000 ACM ISBN 1-58113-200-
x/00/0010. 2000.

[27] Nicu G. Fruja. ”Towards proving type safety
of C#”, in Computer Languages, Systems &
Structures. Elsevier. 2009.

[28] Frederick P. Brooks. The Mythical Man
Month. Addison Wesley. 1975.

[29] Frederick P. Brooks. The Mythical Man
Month, 2nd edition, Addison Wesley. 1995.

[30] Bernaridho I. Hutabarat. Programming
Concepts: with NUSA Programming-
language. Ma Chung Press. 2010.

[31] ISO. ISO/IEC 9899:1999 Programming
Languages --C. ISO. 1999.

[32] Bernaridho I. Hutabarat. Modular
Programming: A Revolutionary Approach. Ma
Chung Press. 2010.

[33] Bernaridho I. Hutabarat, Mochamad Hariadi,
Ketut E. Purnama, and Mauridhi H. Purnomo.
“Module, Modular Programming, and
Module-based Encapsulation: Critiques and
Solutions”; in The 5th International
Conference on Information & Communication
Technology and Systems (ICTS). pp 233-240.
ISSN 2085-1944. 2009.

[34] Bernaridho I. Hutabarat, Lucky Irawan.
”Simple and Universal Theory of Namespace
and Its Relationship to Repetition using For():
How it affects the design of NUSA
programming-language”; in Journal of
Computer Science, pp 167-176. ISSN 1412-
9523. University of Pelita Harapan. 2011.

[35] Bernaridho I. Hutabarat, Mochamad Hariadi,
Ketut E. Purnama, and Mauridhi H. Purnomo.
“NUSA (Neat Uniform Simple Architecture):
A Highly Orthogonal Programming
Language”, in Proceedings of the World
Congress on Engineering and Computer
Science 2011 Vol I WCECS 2011, October
19-21, 2011, San Francisco, USA. 2011.

[36] Hugh Darwen. The Third Manifesto, ACM
SIGMOD Record, vol. 24, no. 1, pp. 39-49,
March 1995.

