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ABSTRACT 
Software engineering has not reached maturity level as classic engineering. Theoretical foundation for 
software engineering lacks the precision and universal agreement of terms. By contrast, classic engineering 
are founded on the seven base dimensions that are precise and universally agreed. 

This paper aims to bring software engineering into maturity, in terms of the precision of terms by 
establishing and mathematically defining two basic concepts: type and object. Just like the seven base 
dimensions in physics be part of theoretical foundation for classic engineering, the two basic concepts type 
and object are the theoretical foundation for software engineering. 

This paper lists twelve problems with current definitions of type and object. The proposed definition and 
concepts are linguistically tested and mathematically formulated using thirty five formulas. Each concept – 
type, object – is unique and has single interpretation. This paper shows that class is a derived concept – not 
a basic concept – and that class can be defined on the proposed disjoint basic concepts: type and object. 

Keywords: Type, Object, Conceptual Integrity, Basic Concept, Engineering 
 
1. INTRODUCTION  

 Engineering books such as [1] excluded 
Software Engineering as engineering branch. 
Reference [1] does not write any reasons for 
rejection, but software engineering lack of well-
definedness of something similar to the seven base 
dimensions is perhaps the primary factor. 

Many software engineering books and research 
papers have been written. Few – if any – attempt to 
solve the above very important problem. This paper 
is an attempt to solve the problem. 

The authors of this paper examine the problems 
with the prevalent theory: Object-Orientation. The 
authors examine the definitions in standards, 
textbooks, research papers, and webpages about 
Object-Orientations (or Object-Oriented [2]).  

In examining the problems and proposing the 
solutions, two approaches are used: linguistic and 
mathematic. It is the linguistic approach that has 
not been taken extensively by any previous paper. 
Despite the proliferation of mentions about formal 
approach in software engineering research paper, 
informal explanations dominate the research paper, 

textbooks, and international standards. It is the 
informal text explaining the formal things (e.g., 
programming-language, equations) that has not 
been exposed to scrutiny. 

Fig 1 shows the total seven base dimensions and 
several derived dimensions in physics that underlie 
classic engineering. There are two characteristics 
worth mentioning. Firstly, the number of base 
dimensions is fixed; while the number of derived 
dimensions can vary over time. Secondly, all 
derived concepts are based on base dimensions. 

Having those two properties is the consequence 
of this paper’s aim. Adjusting to the proposed 
concepts at hand, the authors aim to establish four 
basis concepts that are fixed forever. The second 
similar property is that all derived concepts should 
always be based on the basic concepts. These two 
properties are absent in software engineering. 

Fig 2 shows the idea in which there are only four 
basic concepts, and all derived concepts are based 
on the basic concepts. The scope of this paper is the 
two of the four basic concepts: type and object. 
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Fig 1 Base-dimensions and Derived-dimensions in Physics, foundation for Classic Engineering 

 

Fig 2 Proposed Basic-concepts and Derived-concepts for Software Engineering. 
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This paper is organized as follows. The first 

section introduces the subject, the problem, and 
scope of the solution. The second section lists 
twelve (12) problems in Object-Orientation from 
research papers, international standards, textbooks, 
and webpages. The third section describes the 
solutions: type, object, and their disjointness are 
mathematically formulated using propositional 
calculus (set theory). The solution is guided by the 
paraphrased definition of conceptual integrity. The 
fourth section applies the proposed theory to solve 
the problems in the second section. The fifth section 
presents NUSA programming-language that shows 
how a non-OOPL can have expressive power of 
OOPLs (encapsulation, inheritance, polymorphism) 
without resorting to class. The sixth section 
compares the old versus new theory. The seventh 
section concludes the study. Appendix 1 explains 
the universal definition of class based on Basic 
Concepts. Appendix 2 explains non-universal 
definition of class, based on the basic concepts. 
Appendix 3 proves that class is derived concept, 
similar to the way of physics. 

2. THEORY OF OBJECT-ORIENTATION 

2.1 The Informality of Theories 
One of weaknesses of OO theory is presented in 

ref [3]. Bertino and Martino wrote. 
Object-Oriented systems can be classified into two 
main categories: systems supporting the notion of 
class and those supporting the notion of type ...  
Although there are no clear lines of demarcation 
between them'' 

The second example is from Grady Booch, the 
key author of UML who in ref [4] defines class as 

The terms class and type are usually (but not 
always) interchangeable, a class is slightly different 
concept than a type, in that it emphasizes the 
importance of hierarchies of classes. 

There are two deficiencies to find in the 
definition of class: 

• It is informal (and consequently imprecise): 
note the word usually 

• It is incorrect. The notion of type hierarchy 
also exists. The term class hierarchy does 
not give more emphasis than type hierarchy. 

The vagueness, the ambiguity, and the lack of 
well-founded boundaries have given way to the 
obscurity of definitions. It is up to the individual 
authors to come up with their opinion regarding the 
difference between class and type. UML standards 
[5, 6] do not define what object-orientation is. 

 
2.2 Lack of universality 
Definitions of object are ad hoc. We provide four 
examples among literally thousands of webpages 
containing the definition of object. Following each 
sample definition is one or two thought-provoking 
questions. A webpage from Monash University 
(www.csse.monash.edu.au/damian/papers/PDF/ 
cyberdigest.pdf, accessed 2011-07-19) defines 
 

an object is anything that provides a way to 
locate, access, modify, and secure data. 

Fig 3 First Sample Definition of Object 

One valid question for the first sample definition 
is "If a procedure provides a way to locate data, is 
the procedure an object?''.  

The second sample comes from webpage www. 
wordiq.com/definition/Object-oriented (accessed 
2011-07-01). It defines object as 

Packaging data and functionality together into 
units within a running computer program; objects 
are the basis of modularity and structure in an 
object-oriented computer program. 

Fig 4 Second Sample Definition of Object 

One valid question for the second definition is: 
"has there been no modular program before Object-
Oriented Programming Languages were made?'' 
The webpage does not answer the question.  

The third sample comes from SAP - a giant 
software corporation. Authorized personnels in 
http://help.sap.com/saphelp/nw2004s/helpdata/en/ 
c3/225b5654f411d19... (accessed 2011-07-19) 
define object as 

These objects are first defined by their character 
and their properties which are represented by their 
internal structure and their attributes (data). 

Fig 5 Third Sample Definition of Object 

Two valid questions for the second definition are 
"What is the character of an object?'' and "Why do 
other authors not define that 'character of an object 
defines the object'?''  

The fourth example of webpage defining the 
object is www.slideshare.net/rickogden/beginners- 
guide-to-object-orientation (accessed 2011-07-19).  

An object is created by creating a new instance 
of a class. Objects of the same class have exactly 
the same functionality, but the properties within 
the object are what makes them different. 

Fig 6 Fourth Sample Definition of Object 
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That definition is keyword dependent, being 
dependent on the usage of keyword class. One valid 
question is "Oracle Corp claims that Oracle 
PL/SQL is object-oriented, and Borland claims that 
Turbo Pascal 5.5 up to Turbo Pascal 7.0 is object-
oriented; but those programming-languages do not 
have class. Does the author mean that Oracle 
PL/SQL and Turbo Pascal are not object-oriented 
language just because they do not have any 
classes?'' Referring to three previous examples, the 
webpage does not answer those questions. 

In several previous paragraphs the authors above 
mentioned webpages written by both academics 
and giant corporations. The ad hoc definitions they 
have given do not match the expectation of high 
degree of precision and trustworthiness of writings. 
 
2.3 Redundancy of the term object and instance 
Object and instance are redundant in OO literature. 
The fourth sample definition in sec II.B “Lack-of-
universality” serves as an example, yet this problem 
is not limited to including the webpages not trusted 
by academic community. International standards 
suffer the same problem. C++ standard [7] sec 1.9 
contains these two statements: 
 

An instance of each object with automatic 
storage duration (3.7.2) is associated with each 
entry into its block. Such an object exists and 
retains its last-stored value during the execution of 
the block and while the block is suspended (by a 
call of a function or receipt of a signal) 

Fig 7 Fifth Sample Definition of Object 

Here is another example from research paper [8]. 
The term instance is redundant. 
 

An object is an instance of a class. 

Fig 8 Sixth Sample Definition of Object 

 
2.4 Redundancy of the term object and instance 

This is the consequence of the absence of formal 
differences among class and type. Here is an 
example copied from http://www.delphibasics.co. 
uk/Article.asp? Name=OO. 
 

We have defined a class called TSimple as a new 
data type. 

Fig 9 Sample Sentence Containing Redundant Terms: 
Class and Data Type 

The redundancy is also present in the C++ 
Standard [7]. The initial sentence of chap 9 (titled 

"Class'') in the standard equates class to type. Class 
is redundant. 
 

A class is a type. 

Fig 10 Sample sentence containing redundant terms: 
class and type 

The redundancy is present in subsec 4.2.16 of Java 
standard [9] that is boxed in Fig 11. It shows the 
redundancy and vagueness. 
 

We often use the term type to refer to either a 
class or an interface. 

Fig 11 Sample Sentence Containing Redundant Terms: 
Type, Class, and Interface; with No Clear Boundaries 

Redundancy also happens in relation to the way 
both terms are used. Here is an example taken from 
a research paper [10]. 

"Generics for the Masses" (GM) and "Scrap your 
Boilerplate" (SYB) are generic programming 
approaches based on some ingenious applications 
of Haskell type classes. 

Fig 12 Sample Sentence Containing Term that is 
Unnecessarily Long: Type Class 

Reference [11] is a paper about Java type 
qualifier. One statement contains redundancy 
regarding class and type (see Fig 13). 

For any class C, a reference of type readonly C 
may not be used to modify the object it refers to, 
which is a particularly useful annotation for 
method arguments and results. 

Fig 13 Another Sample Sentence Containing Redundant 
Terms: Class and Type 

Reference [12] is a research paper titled 
"Typeless programming'' which contains this boxed 
sentence below with the word "type".  

The term Vector< super Vector< extends 
List<Integer>> is for example a correct type in Java 
5.0. 

Fig 14 A Sample Sentence Containing the Term Type 

Yet the source-code that follows contains the 
word "class'' instead of type. The code explaining 
that statement starts with this line (note the word 
class instead of type). 
 

class Matrix extends Vector<Vector 
<Integer> > 

Fig 15 A Source-code Containing the Word Class, 
Inconsistent with the Sentence Preceding It. 

Fig 16 shows the latest example in this subsec, 
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taken from [13] sec 3. The author speaks about 
type; however, the third entry contains class. 

 
Fig 16 Redundancy of Terms: the Heading and Human 
Language Sentences are Inconsistent with the 
Mathematical Formula 

 
2.5 Conceptual disintegrity: type equals object 

Type should not be equal to object, and vice 
versa. Oracle PL/SQL equates type with object as 
pictured in Fig 17. PL/SQL programming-language 
creators confused object with type. 

 
Fig 17 Creating the Type in Oracle PL/SQL 

We test our hypothesis by creating an object. If 
object = type, then the contents of metadata-view 
user_objects and user_types will be the same. 
But fig 18 shows the contents are different. Hence: 
� The concept of type looks to be equal to the 

concept of object, but 
� The concept of type is different from that of 

object (hence a contradiction, a conceptual 
disintegrity). 

� The differences are not precisely formulated. 
 

Similar disintegrity takes place in subsection 
8.2.1 of C# Standard [14] which contains this entry 
for object. The header says Type but the entry says 
object. C# standard committee equates type with 
object (see Table II). 

Reference [15] also mistook object with type. In 
one of the definition the author wrote "objects are 
implementations of abstract data types."  
 

 

Fig 18 Incorrectness of Type = Object; Type ≠ Object. 

 
2.6 Conceptual disintegrity: class equals object 
Similar mistake and problem appear in Java 
standard [9] sec 4.3.2; asserting that "The class 
Object is a superclass (8.1.4) of all other classes''. 
Object is said to be equal to class. Table II tabulates 
partial content of C# standard [14] subsection 8.2.1 
that shows the essentially same mistake. 
 

Table II. Class equals Object 

Type Description Example 
object The ultimate base type 

of all other types 
object o = null; 

 
2.7 Conceptual disintegrity: object equals 
intermediate-code 

The disintegrity of concepts becomes evident. 
We start with the notion of object code. The object 
code means intermediate code in the code 
translation textbooks such as [16]. The intermediate 
code is the result of the compilation of source code. 

According to [17] there are two possible 
definitions for object: 

• object = intermediate code 
• object code = intermediate code 

 
Both equations are proved to be false, shown 

below through modus Tollens. The modus is 
formalized as follows: 

if p then q 
   ~q 
then ~p 

Fig 19 Modus Tollens 
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Let us assign that object is the outcome of 
compilation process to p and object is 
intermediate code to q. To show the imprecision in 
IEEE definition, we must show that ~q holds. 
Consequently, ~p holds too. While the ~q is read as 
object it is NOT intermediate code. It is the fact 
that object is not intermediate code. We can then 
conclude that object is NOT the outcome of 
compilation process. 

 
2.8 Incorrect semantics 

Theories within Object-Orientation literature can 
be semantically incorrect. The repetition of words 
is evident from the IEEE definition and some other 
example texts in the standard. We explore the 
second possibility of equality in the previous 
section: object = intermediate code. If that equality 
holds, the second equality cannot hold. 
Linguistically, the two equalities must be presented 
like the ones below. 

• object = intermediate code 
• object code = intermediate code code 

 

Notice the repetition of the word code. Fig 21 
shows another example exhibiting similar problem.  

A possible improvement is done by writing two 
equalities for IEEE Standard Glossary of Software 
Engineering Terminology which are shown below: 

• object = intermediate 
• object code = intermediate code 

 

The last proposed equation is free from the 
repeated words problem. But the equality of object 
= intermediate is in conflict with any English 
dictionary [18]. No English dictionary equates 
object with intermediate or intermediate code.  

Incorrect semantics is also shown through 
substitutions test [19]. Let us take one example 
from Java standard [9]. 
 

4.3.1 An object is a class instance or an array. 
4.3.2 A Class object exists for each reference type. 

Fig 20 Two sentences that will be tested for semantics 
correctness 

If the semantics is correct, the semantics of this 
statement below should be correct. We substitute 
object with 'class instance'. 
 

A Class class instance exists for each reference 
type. 

Fig 21 Example of Incorrect Semantics Found through 
Words Substitution 

However, the sentence is semantically incorrect 
due to the double word 'Class class'. Applying the 
substitution test for the entire text of the standard 
will result in more occurences of semantic error.  

 
2.9 Confusing word order 

The following boxed text is contained in 
subsection 17.1.2.1 of C# Standard [14]. Note there 
are two phrases in which the difference is only on 
the word order: class object versus object class.  
 

Except for class object, every class has exactly 
one direct base class. The object class has no direct 
base class and is the ultimate base class of all other 
classes. 

Fig 22 Confusing Word Order 

 
2.10 Difficult to understand concepts 

We argue that the concept like instance is hard to 
understand. Consequently, the concepts such as 
'instance variables' are even harder to understand. 
Reference [20] mentioned the difficulty in 
explaining the concept of instance. 

Järvi, Marcus, and Smith have offered strikingly 
different programming concepts that are limited to 
C++ (one of Object-Oriented programming-
languages).  They created a class named concept, 
like this one from ref [21]. 
 

concept LessThanComparable<typename T> 
{ 
 bool operator < ( const T& a, const T& b); 
 bool operator > ( const T& a, const T& b)  
 {return b < a;} 
 bool operator <= ( const T& a, const T& b)  
 {return !(b < a); } 
 bool operator >= ( const T& a, const T& b)  
 {return !(a < b); } 
} 

Fig 23 The Class Implemented as Concept 

 
2.11 Difficult to understand concepts 

The claim that everything is an object was made 
by Adele Goldberg and David Robson in their book 
about Smalltalk [22]. It has been rejected by TTM 
community [23] but favored by [24]. Interestingly 
[24] listed one step "Acquire the Class Concept by 
Abstraction of Many Common Objects''. It is a 
contradiction to "Everything is an object''. If 
everything is an object, we do not need class. In a 
previous book, Adele Goldberg (with Alan Kay) 
equated value with object (ref [25] page 12). 
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2.12 No concept is defined 
Some research papers (e.g. [26]) do not define 

any concept). The authors in [26] attempted to 
explain Object-Orientation using logic. There is no 
definition of object, type, class, methods, and the 
usual terms in Object-Orientation. The author of 
[27] refers properties in C# as syntactic sugar. If 
property is a syntactic sugar, it deserves neither a 
notion of Basic Concept nor definition. 
 
 
3. PROPOSED SOLUTIONS 

3.1 Integrity: irreducibility and unity 
Brooks in [28, 29] has written about conceptual 

integrity  but he does not define it. References [28, 
29] only wrote "Conceptual integrity is the most 
important consideration in system design''.   

We define conceptual integrity as the integrity of 
concepts, and consequently include the unity  of 
concepts. The unity of concepts precludes the 
redundancy of concepts. The system that lacks 
conceptual integrity has conceptual disintegrity. As 
the systems lack the unity of concepts, it embodies 
redundant and incoherent concepts. 

References [28, 29] wrote "It is better to have a 
system that omit certain anomalous features and 
improvements, but it still reflects one set of better 
ideas, than to have one that contains many good, 
yet providing uncoordinated ideas''. If we remove 
"good but'' from the original sentence; and replace 
features, improvements, and ideas with concepts 
we get this slightly paraphrased sentence: 
 

It is better to have a system omit certain 
anomalous concepts, but to reflect one set of good 
concepts, than to have one that contains many 
uncoordinated concepts. 

Fig 24 Proposed Theory About the System Having 
Conceptual Integrity 

 

That statement will be the basis of this paper. We 
hypothesize that class and instance are anomalous 
and redundant concepts. We hypothesize that object 
is also an anomalous concept in Object-Oriented 
literature, but not anomalous if defined precisely. 
We propose a precise definition for the object 
concept in this paper. 

 
3.2 Unique Basic Concepts and Their Informal 

definitions 
We introduce four basic concepts along with 

their informal definitions: VOTO, abbreviation for 

Value Operation Type Object in [30]. Our proposed 
basic concepts are similar to the four core concepts 
proposed in [23]. We use 'object' (instead of 
variable AS in [23]) because  

 
(1) Not all objects are variables; some objects are 

constants [30]. 
(2) Even further, not all objects are value-

assignable [30]. 
 
Some objects cannot be assigned to values; hence 

some objects are neither constants nor variables. A 
good informal definition of object can be found in 
C standard [31] that in sec 3.14 defines object as: 
 

region of data storage in the execution 
environment, the contents of which can represent 
values. 
 

The following subsections contain informal 
definitions for basic concepts that were partially 
written in ref [30]. 

 

3.2.1 Type 
Type is defined as follows: 

• Types are first categorized into metatypes 
(MT) and nonmetatypes (NMTs)    

•  A type may or may not have identity. 
• TypeCategories := {General-types, 

Special-types} 
• General-types contain values. 
• Special-types contain no values. 
• General-types := {Basic-types, Record-

types, Collection-types} 
• SpecialTypes := {void, Module, Program} 

 

3.2.2 Object 
Object is defined as follows: 

• An object has identity. 
• An object is of some type. 
• Objects of Special-types cannot have value 
• Objects of General-types are General-

objects 
• Objects of Special-types are Special-

objects 
• General-objects have value 
• Special-objects do not have value 

 
3.2.3 Disjointness of types and objects 

The disjointness of types and objects are 
formulated formally as follows: 
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• Object is not type. 
• Type is not object. 

 
Therefore 
� The concepts of object and type are 

disjoint (see Fig 25).  
� Individual objects are disjoint from 

individual types. 
 

 

 

 

Fig. 25 Type and Object are Disjoint Concepts 

 
3.3 Categorization of Basic Concepts into Basic, 

Collection, and Record 
The author of [30] proposed orthogonal 

categorization toward basic concepts that implied 
the presence of twelve derived concepts (Fig. 26): 

• Basic-type 
• Basic-object 
• Basic-value 
• Basic-operation 
• Record-type 
• Record-object 
• Record-value 
• Record-operation 
• Collection-type 
• Collection-object 
• Collection-value 
• Collection-operation 

 
Those derived concepts will prove to be 

sufficient and useful for the rewritten theories and 
sentences in section 4. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 26 Formal Definition for Basic Concepts; Fulfill the 
Principle of Irreducibility and Conceptual Integrity. 

3.4 Unique Basic Concepts and Their Formal 
definitions 

The concepts are formal if they only have one 
interpretation. 

 
Basic_Concepts := {Value, Operation, Type, 

Object}   (1) 
∀ Ci ∈ Basic_Concepts  (unique(Ci))       (1)

      
The basic concepts of programming introduced 

here have two important properties: 
• Formal (Hence there is no usually, like the 

one in Booch).  
• Nonredundant (type only, no redundancy 

with other concept like class).       (2) 
 

3.4.1 Type 
These are the itemized definitions for type. 
• ∀ t ∈Types HasId(t)  ^ HasNoId(t)       (3) 
• Types = MetaType  ∪ NonMetaTypes        (4) 
• Metatype ∩ NonMetaTypes = ∅       (5) 
• NonMetaTypes = GeneralTypes  ∪ 

SpecialTypes          (6) 
• ∀ t ∈ General-types SetOfValues(t) ≠ ∅     (7) 
• ∀ t ∈ Special-types SetOfValues(t) = ∅      (8) 
• General-types = Basic-types ∪ Record-types 

∪ Collection-types            (9) 
• Basic-types ∩ Record-types = ∅     (10) 
• Basic-types ∩ Collection-types = ∅     (11) 
• Record-types ∩ Collection-types = ∅     (12) 
 

3.4.2 Object 
These are the itemized definitions for object. 
• ∀ o ∈ Objects (has_id (o))       (13) 
• ∀ o ∈ Objects ∃ t ∈ Types (IsOfType (o, t)) 

         (14) 
• Objects = SpecialObjects ∪ GeneralObjects 

         (15) 
• SpecialObjects ∩ GeneralObjects = ∅      (16) 
• GeneralObjects = Basic-objects ∪ Record-

objects ∪ Collection-objects      (17) 
• Basic-objects ∩ Record-objects = ∅     (18) 
• Basic-objects ∩ Collection-objects = ∅    (19) 
• Record-objects ∩ Collection-objects = ∅ (20) 
 

3.4.3 Disjointness of types and objects 
The disjointness is formulated as follows: 
• ∀ t ∈ Types ∀ o ∈ Objects (o ≠ t)     (21) 
• Types ∩ Objects = ∅      (22) 
• ∀ t ∈ Types unqouted (lowercase(id(t))) ≠  

object        (23)  

U: Universe of (basic) concepts 
[simplified by excluding 

two others: value, operation] 
 

type object 

Basic-type Basic-object 

Record-type Record-object 

Collection-type Collection-object 

Collection-value 

Basic-value 

Record-value 

Basic- 
operation 

Collection- 
operation 

Record-operation
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• ∀ o ∈ Objects unqouted (lowercase(id(o))) ≠ 
type        (24) 

 

3.4.4 Category Relation 
The category is defined as a relation that is 

transitive. The relation is denoted by symbol ≼. The 
words denoting the operands to the operation ≼ is 
singular. The application of the category relation to 
types is listed below: 

 
• Metatype ≼ Type     (25) 
• NonMetaType ≼ Type    (26) 
• General-type ≼ NonMetaType   (27) 
• Special-type ≼ NonMetaType   (28) 
• Basic-type ≼ General-type    (29) 
• Record-type ≼ General-type    (30) 
• Collection-type ≼ General-type   (31) 
 

The transitivity makes for these relations for 
types 

• General-type ≼ Type (through 
NonMetatype)                 (27a) 

• Special-type ≼ Type (through NonMetatype)
        (28a) 

• Basic-type ≼ Type (through General-type 
and NonMetaType)     (29a) 

• Record-type ≼ Type (through General-type 
and NonMetaType)     (30a) 

• Collection-type ≼ Type (through General-
type and NonMetaType)    (31a) 

 
Formulas #4 through #12 are partially captured 

in the six formulations below 
• A general-type is a type  
• A special-type is a type   
• A basic-type is a type   
• A record-type is a type   
• A collection-type is a type  
 

Concerning object and value we can write 
• General-object ≼ Object      (32) 
• ∀ GO ∈ General-objects, has_value (GO)

         (33) 
 

Proof: 
∀ o ∈ Objects ∃ t ∈ Types (IsOfType (o, t)) (14) 
∀ t ∈ General-types SetOfValues(t) ≠ ∅        (7) 
 

3.5 Hypothesis: equivalent synonyms 
In this section we list synonyms of one word in 

original text. The presence of multiple equivalent 
terms is due to the careless wording in textbooks 
and international standards. 

 

Table III Equivalent Synonyms 

No Original Equivalent 
1 Class Type 
2 Class record-type 
3 Class Record 
4 Instance Object 
5 Subclass derived-type 
6 Property Value 
7 Property Operation 
8 Member Column 
9 Variable Object 

 
3.6 Hypothesis: essetially equivalent phrases 

It is impossible to list all equivalent phrases. 
Sample equivalent phrases are listed in Table IV. 

Table IV Equivalent Phrases 

No Original Equivalent 
1 data type Type 
2 data type record-type 
3 class type record-type 
4 base class base-type 
5 sub object Column 
6 Subobject Column 
7 member subobject Column 
8 data member Column 
9 function member Operation 

 

Object-Orientation Proposed theory 
 
 
 
 
 
 
 
 
 
 
 

 

Fig 27 Object-Orientation is Theory with Highly 
Redundant Terms. Proposed Theory Contains No 
Redundancy 

Fig 27 and fig 28 summarize the comparison of 
theories in graphical way (sec 6 details the 
comparison of theories). While there are derived 
terms (like record-type) in the proposed theory, the 
most important concepts are type and object. 

type 
class 

interface 
class type 

class object 
object class 

object 
instance 

type 
object 
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Range Domain 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

Fig 28 Partial Mapping of Terms; Graphical Version of 
Table II and Table III 

 
3.7 Scope of the solutions 

Literatures about Object-Orientation often relate 
class and object with method. Method is operation. 
The first author of this paper explained methods in 
[32], contrasted Module-based Encapsulation 
versus Type-based Encapsulation in [33], and 
related module to namespace in [34]. Methods have 
also been explained in the light of orthogonality in 
[35]. NUSA is a programming-language that adopts 
specific approach of Module-based Encapsulation. 
In that approach, type cannot contain operation or 
operator [33]. This approach is also adopted by 
TTM in Other Orthogonal Very Strong Suggestion 
number 2 “Types and operators unbundled'' [36]. 

Solving the problems listed in the previous 
section is a prerequisite requirement before solving 
the problems of defining methods in the precise 
way. All of these mount to the decision of 
excluding the treatment of methods (in Object-
Orientation folklore) in this paper. 

 
3.8 Column and Arity 

In this paper, the term column is used instead of 
field, attribute , and data member. A column is an 
object, but an object is not necessarily a column. 

A C++ source-code below shows that object1 is a 
column, and necessarily an object. On the other 
and, object2 is an object; but not a column. 
 

typedef struct Type1 
{ 
  public: char object1;}} 
}; 
 
void main() 
{ 
  struct Type1 Object2;}} 
  Object2.object1 = 'y';  
  // there are two objects 
} 

 

We denote the number of columns in record-type 
as well as record-object using the function Arity. 

• ∀ RT ∈ Record-types Arity(RT) ≥ 0     (34) 
• ∀ RO ∈ Record-objects Arity(RO) ≥ 0  (35) 

 
3.9 Hypothesis on some common conventions 

Programmers and authors have some conventions 
on writing the source-code. Some of the 
conventions are prefixing the type name with T (for 
Type) or C for (Class). Programming library Turbo 
Vision from Borland use prefix T. Microsoft in its 
.NET programming library use prefix C 
(msdn.microsoft.com/en-us/library/20t753se.aspx , 
accessed 2012-05-03, is an example).  
 
4. RESULTS (PROVING THE SOLUTIONS) 

4. 1 Replacing instance by object 
We take an example repeated from sec II.B and 
name it as Sentences 1a to serve as an example 
how we can make better explanation. 
 

An object is created by creating a new instance 
of a class. Objects of the same class have exactly 
the same functionality, but the properties within 
the objects are what make them different. 
 

The following Sentences 1b are the result of 
replacing instance by object, with the mapping #4 
in Table II. 

 
An object is created by creating a new object of a 

class. Objects of the same class have exactly the 
same functionality, but the properties within the 
objects are what make them different. 
 
The mapping shows there is no new information in 
the first sentence "An object is created by creating a 
new object''. It is redundant. 
 
4. 2 Replacing class by type 

We start this section by improving the rewritten 
sentences in the previous section. We apply 
mapping #2 in Table II: replace class by type for all 
rewritten sentences within this subsection. 
Sentences 1c are the result of the first rewrite. 

An object is created by creating a new object of a 
type. Objects of the same type have exactly the 
same functionality, but the properties within the 
objects are what make them different. 
 

The rewritten text is clearer. The concepts are 
becoming integrated without redundancy. Here is 

 
• class  

• class type  
• data type  

• object class  
• object 

• instance 

• type 
• record 

• record-type 
 

• object 
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another example, Sentence 2a, that is copied from 
www.delphibasics.co.uk/Article.asp? Name=OO. 
 

We have defined a class called TSimple as a new 
data type. 
 

We use mapping #2 in Table II to replace class 
by type.  Sentence 2b is the result having the 
conceptual integrity. 
 

We have defined a type called TSimple as a new 
data type. 
 

We refer to the sentence below as Sentence 3a. It 
is written in Sec 9.2 of C++ standard. 
 

A class definition introduces a new type. 
 

This is Sentence 3b obtained by replacing class 
with type, and introduces with defines. 

A type definition defines a new type. 
 

4. 3 Using equivalent synonyms 
We start this section by improving the rewritten 

Sentences 1c in the previous section. We replace 
properties with values using the mapping #6 in 
Table II. The result is Sentences 1d below. 

An object is created by creating a new object of a 
type. Objects of the same type have exactly the 
same functionality, but the values within the objects 
are what make them different. 
 

Sometimes replacing the words by means of 
equivalent phrases is better. Using the mapping #3 
in Table III we replace data type in Sentence 2b 
with record-type. The result is Sentence 2c below. 

We have defined a type called TSimple as a new 
record-type. 

 

The resulting text will be compared against the 
improvement of source-code in sec 4.6. In the 
subsequent sentences, we cover the more complex 
sentences. 

The next sentence is taken from point 1 within 
Chap 9 (chapter about Classes) in C++ Standard 
[7]. We call it Sentence 4a. 

An object of a class consists of a (possibly 
empty) sequence of members and base class 
objects. 
 

We use the mapping #2 in Table II to replace 
class by record-type, mapping #6 in the same table 
to replace member with column, and replace one of 
the word object with column. We add - after the 

word base and remove the space before the word 
type (the word type that substitutes the word class). 
The result is Sentence 4b. 

An object of a record-type consists of a (possibly 
empty) sequence of columns and base-type 
columns. 

 

In the conversion of two subsequent original 
sentences, we replace class with record-type 
(mapping #2 in Table II). The original sentences are 
taken from chapter 3 point 3 in C++ standard [7]. 
We call the first one as Sentence 5a (see below). 

Note: class objects can be assigned, passed as 
arguments to functions, and returned by functions. 
 

We rewrite the previous sentence by replacing 
class with record-type. The result is Sentence 5b. 

Note: record-type objects can be assigned, 
passed as arguments to functions, and returned by 
functions. 
 

This is another sentence from the C++ standard 
[7] chapter 9 and the same point (3). We call it 
Sentence 6a. 

(except objects of classes for which copying has 
been restricted; see 12.8). 
 

We apply the same mapping to replace class with 
record-type. The result is Sentence 6b below. 

(except objects of record-types for which 
copying has been restricted; see 12.8). 
 
4. 4 Using equivalent phrases 

The rewriting of sentences can be complex. In 
this section we convert the phrases of sentences. 
Point 3 in chap 9 of the C++ standard [7] is written 
as what we call Sentence 7a below. 

Complete objects and member subobjects of a 
class type shall have nonzero size. 
 

We apply the mapping #3 (class type with 
record-type) and mapping #7 (replace member 
subobject with column) for rewriting; both are 
from Table III. The result is Sentence 7b below. 

Complete objects and columns of a record-type 
shall have nonzero size. 
 

In which they can be rewritten as two sentences 
Sentence 7c and Sentence 7d to make explanation 
more explicit about C++. 

Complete objects of a record-type shall have 
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nonzero size. Columns of a record-type shall have 
nonzero size. 
 

Similar rewriting (replacing class type with 
record-type, mapping #3 in Table III) can be 
applied to another sentence within C++ standard. 
This is the Point 4 in chap 9 of the C++ Standard. 
We call it Sentence 8a. 

Note: aggregates of class type are described in 
8.5.1. 
 

Using the mapping #3 in Table III (replace class 
type with record–type) we obtain Sentence 8b. 

Note: aggregates of record–type are described in 
8.5.1. 
 

The next example for this subsection comes from 
point 4 of chap 9 of C++ standard which we refer to 
as Sentence 9a. POD is short for Plain Old Data. 
That term is unnecessary. 

A POD-struct is an aggregate class that has no 
non-static data members of type non-POD-
struct, non-POD-union (or array of such types) or 
reference, and has no user-declared copy 
assignment operator and no user-declared 
destructor. 
 

We rewrite Sentence 9a by replacing POD-struct 
with struct, class with record-type, non-static with 
dynamic, data member with column, reference with 
address, and operator with operation. The result is 
Sentence 9b below. 
 

A struct is an aggregate record-type that has no 
dynamic columns of type non-struct, non-union 
(or array of such types) or address, and has no user-
defined copy assignment operation and no user-
defined destructor. 
 
4. 5 Paraphrasing 

Rethinking further, Sentence 9b can be improved 
by paraphrasing to be Sentence 9c below. C++ has 
two record-type-qualifiers: struct  and class . The 
word aggregate is not needed. 

A record-type with qualifier struct has no 
dynamic columns of type non-struct, non-struct-
union (or array of such types) or address; and has 
no user-defined copy assignment operation and no 
user-defined destructor. 

 

Other paraphrasing techniques that results in 
better explanation are discussed in the following 

two subsections. 
 
4.5.1 Changing the word order 

The words constituting phrases 'record-type 
objects' are paraphrased into 'objects of record-
type'. We apply the rule to rewrite the end of 
Sentence 4b ('record-type objects') to be 'objects of 
record-type' in Sentence 4c below. 

An object of a record-type consists of a (possibly 
empty) sequence of columns and base-type 
columns. 
 

We can apply a similar rule to rewrite Sentence 
5b to be Sentence 5c below. 

Note: objects of record-type can be assigned, 
passed as operands to functions, and returned by 
functions. 

 
4.5.2 Changing "objects of <x-type>" into “x-

objects” 
Objects of record-type can be paraphrased into 

record-objects. This paraphrasing technique allows 
us to rewrite Sentence 5c into Sentence 5d below. 

Note: record-objects can be assigned, passed as 
operands to functions, and returned by functions. 
 

Finally, we can also paraphrase Sentence 6b into 
Sentence 6c below. 

(except record-objects for which copying has 
been restricted; see 12.8). 

 
4. 6 Removing unnecessary phrases or sentences 

The further result from the proposed theory is 
that we can remove unnecessary phrases or 
sentences. Sentence 3b can be removed altogether 
from the (C++) standard. 

 
4. 7 Reversing the conventions, applying the 

theory to source-code 
We apply the refinement of the theory to the 

refinement of source-code. We start with the theory 
reformulated as Sentence 2c in sec 4.3. 

We have defined a type called TSimple as a new 
record-type. 
 

Secondly, we check the correctness of theory 
(rewritten sentences) to the accompanying source-
code. Here is the code obtained from www. 
delphibasics.co.uk/Article.asp? Name=OO. 

 
type (* Define a simple class *) 

TSimple = class 
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simpleCount : Byte; 
property count : Byte read simpleCount; 
procedure SetCount (count : Byte); 

end; 
 

The proposed theory matches the source-code. 
We apply the replacement of text according to the 
proposed theory. 

• replace the word class with record-type in 
the comment 

• replace the word class with record (because 
record is record-type) in Line 2 

• replace the word property with function 
• replace type name TSimple with Simple 

(reverse the conventions, drop the prefix T 
from type-name) 

 
In addition we replace = by :=  as assignment 

operation. Delphi uses the symbol = 
inconsistenly, it can mean comparison-operation 
and assignment-operation. The result of 
converted source-code is as follows: 

 
type (* Define a simple record–type *) 
 Simple := record 
  simpleCount : Byte; 
  function count : Byte read simpleCount; 
  procedure SetCount (count : Byte); 
 end; 

 
The converted source-code is no longer a Delphi 

source-code. But the source-code reflects the good 
theory. The source-code can now be explained with 
integrated concepts, not by disintegrated concepts. 

This is the refined explanation for the source-
code called Sentence 2d, in which the type-name 
TSimple has been replaced by Simple. 

We have defined a type called Simple as a new 
record-type. 

 
5. APPLICATIONS IN NUSA 
PROGRAMMING-LANGUAGE 

5.1 NUSA: language that conforms to the 
proposed theory 

The theory that underlies NUSA programming-
language conforms to the proposed theory and 
conceptual integrity. There is no concept of class, 
data member, property, and instance in NUSA. The 
original source-code inside sec 4.6 that is written in 
Delphi can be rewritten in NUSA as follows: 

type Simple := Thing + 
  record { word count; }; 
 
word count (Simple self)  
{ return (self.Count); } 

 
void SetCount (Simple& self; word count)  
{ self.Count := count; } 
 

That source-code can be explained and theorized 
without involving the concepts of class, data 
member, property, and instance. Sentence 2e below 
(rewritten from Sentence 2d) theorizes the source-
code concisely. 

We have defined a new record-type called 
Simple. 
 

5.2 Type, object, name for metatype and types 
NUSA uses type  for the name of metatype. 

There is only one metatype in NUSA. The name of 
objects cannot intersect with the name of types. 
NUSA adheres to the formulas #1 through #33. 

By conforming to formula #23 and #24 NUSA 
avoids two problems: confusing type with object, 
confusing phrases class object versus object class. 

In NUSA the system-defined root record-type is 
named Thing , not object .  It removes the 
possibility of mistaking type with object. Table IV 
explains Thing  in NUSA. The explanation can be 
compared to the theories contained in subsec 8.2.1 
of C# standard and subsec 4.3.2 of Java standard. 

Table IV Partial table of types in NUSA 

Type Description Example 
Thing Root system-defined base record-

type for other record-types  
Thing 
Object1; 

 

The design also removes the confusing terms. In 
sec 2.9 we show example of confusing word order 
in C# standard. In this section we show how the 
confusion can be removed. 

Except for type Thing, every record-type has 
exactly one direct base-type. The type Thing  has no 
direct base-type and is the ultimate base-type of all 
other record-types. 
 
5.3 Support for inheritance and polymorphism 

NUSA is similar to Tutorial D [23] in terms of 
unbundling the operations. The most significant 
difference between the two is the explicit notion of 
module and modular programming [32]. 
Unbundling the operations from record-types does 
not prohibit the support of polymorphism, due to 
the usage of namespace within NUSA [34].  

Reference [34] shows that NUSA can handle 
inheritance. Indeed, the boxed sentence in the 
previous subsection implies the support of 
inheritance in NUSA. In this subsection we present 
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an overview of how NUSA handles polymorphism 
related to the inheritance. 
Program Demo; // inheritance, polymorphism 
type Type1 := Thing + 
   Record { boolean column1; }; 
type Type2 := Type1 +  
  Record { char column2; }; 
 
void operation1 (Type1 this)  
// polymorphic operation, accepts operand 
{ // whose type is derived from Type1 
  writeline (this.column1); 
} 
 
void main () 
{ 
  Type2 Object2; 
  // call the polymorphic operation 
  operation1 (Object2); 
} 

 
6. COMPARISON OF THEORIES 

In this section we compare the existing 
theories versus the proposed theory for type 
and object.  Table V summarizes the 
comparison of theories. The proposed theory 
eliminates 12 problems associated with the 
existing theories. 

Table V Comparison of theories 

No Existing  
concept/theory 

Proposed 
concept/theory 

1 Informal Formal 
2 Not universal Universal; independent 

of the programming-
language 

3 Contains the 
redundancy due the 
term object and 
instance. 

The term instance (and 
the redundancy) is 
removed. 

4 Contains the 
redundancy due the 
term class and type. 

The term class (and the 
redundancy) is 
removed. 

5 Conceptual disintegrity: 
type equals object 

Conceptual integrity: 
type ≠  object 

6 Conceptual disintegrity: 
class equals object 

Conceptual integrity. 
The term class is 
removed (corollary of 
solution #4). 

 
No Existing  

concept/theory 
Proposed 
concept/theory 

7 Conceptual disintegrity: 
object equals 
intermediate-code 

Conceptual integrity. 
Intermediate-code is 
not a basic concept 

8 Incorrect semantic Correct semantic when 

when we apply the 
substitution principle. 

we apply the 
substitution principle. 

9 Confusing word order 
(e.g., of class object 
and object class) 

No confusing word 
order 

10 Difficult to understand 
concepts (e.g., the term 
/concept instance) 

No difficult to 
understand concepts 
(e.g., instance and 
class are eliminated) 

11 Everything is an object. Not everything is an 
object (see the 4 basic 
concepts). 

12 No concept is defined 
(due to informality, #1) 

All concepts (type and 
object) are defined. 

 
The following table summarizes the sections 

introducing the problems with existing theories and 
the solutions. We use the abbreviation sec to refer 
to subsection. 

Table VI Solutions (and formulas) for the problems 

No Sec Solution 
1 II.A Formal theory for type, object, and 

differences between type and object. 
Formula #1-3, 13-14, 21-24 

2 II.B Universal (language-independent) 
theory using the concept type even if 
the programming-languages use the 
word class. The solution is within all 
formulas and mappings in sec III.  

3 II.C Basic Concepts and The Formal 
Definitions remove the need for the 
term instance. 

4 II.D Basic Concepts and The Formal 
Definitions remove the need for the 
term instance. 

5 II.E Formal theory for differentiating type 
versus object. Subsection III.D.3. 

6 II.F Basic Concepts and The Formal 
Definitions remove the need for the 
term instance. 

7 II.G Principle solutions: (a) Basic Concepts 
and (b) Code-translation theory [14] 
that uses the term 'intermediate-code' 
instead of 'object-code'. 

No Sec Solution 
8 II.H Principle solutions: (a) Basic Concepts 

and (b) Code-translation theory [14] 
that uses the term 'intermediate-code' 
instead of 'object-code'. 

9 II.I Basic Concepts and The Formal 
Definitions remove the confusing word 
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order, especially subsection III.D.1. 
Additional solution can be inferred 
from section IV.B. 

10 II.J Basic Concepts and The Formal 
Definitions remove the need for the 
term instance. 

11 II.K Formal theory for type and the formal 
differences between type and object 
prove not everything is an object. 

12 II.L Basic Concepts and The Formal 
Definitions. 

 

Solution for the problems #7 and #8 needs code-
translation theory as described in [30] (see 
'intermediate-code' in fig 29 below).  

 
Fig 29 Code-translation processes 

 

Sentences in the textbooks, specifications, or 
theories in the webpages can be perceived as 
theories. Table VII shows that using the theory 
proposed in this paper; explanations in textbooks 
and specifications, and more detailed theories can 
be written using consistent and very limited terms.  

Table VII Tabulation of rewritten sentences with 
conceptual integrity, consistent and limited terms 

No Initial sentence(s) Final sentences, with 
reference to formula 

1 An object is created by 
creating a new 
instance of a class. 
Objects of the same 
class have exactly the 
same functionality, but 
the properties within 
the objects are what 
make them different. 

Objects of the same 
type have exactly the 
same functionality, but 
the identities and 
values are what make 
them different. 
Formula (13, 14, 33) 

 
No Initial sentence(s) Final sentences, with 

reference to formula 
2 We have defined a 

class called TSimple as 
a new data type. 

We have defined a new 
record-type called 
Simple. Formula (9). 

3 A class definition A record-type 

introduces a new type. definition defines a 
new type.  
Formula (30a). 

4 An object of a class 
consists of a (possibly 
empty) sequence of 
members and base 
class objects. 

A record-object 
consists of a (possibly 
empty) sequence of 
columns and base-type 
columns.  
Formula (35). 

5 Note: class objects can 
be assigned, passed as 
arguments to functions, 
and returned by 
functions. 

Note: record-objects 
can be assigned, passed 
as arguments to func 
tions, and returned by 
functions  
Formula (17). 

6 (except objects of 
classes for which 
copying has been 
restricted; see 12.8). 

(except record-objects 
for which copying has 
been restricted; see 
12.8). Formula (17). 

7 Complete objects and 
member subobjects of a 
class type shall have 
nonzero size. 

Objects and columns of 
a record-type shall 
have nonzero size. 
Formula (17, 35). 

8 Note: aggregates of 
class type are described 
in 8.5.1. 

Note: aggregates of 
record-type are 
described in 8.5.1. 
Formula (9). 

9 A POD-struct is an 
aggregate class that has 
no non-static data 
members of type non-
POD-struct, non-POD-
union (or array of such 
types) or reference, and 
has no user-declared 
copy assignment 
operator and no user-
declared destructor. 

A record-type with 
qualifier struct has no 
dynamic columns of 
type non-struct, non-
union (or array of such 
types) or address, and 
has no user-defined 
copy assignment 
operation and no user-
defined destructor. 
Formula (9, 34). 

 
Rewritten sentence #3 (using the word record-type) 
can be removed because it is redundant. Our 
proposed theory can be used to reduce the 
explanations in the specifications. 
 

 
 

7. CONCLUSIONS 
In this paper we have described the problems 

with existing theories underlying the Object-
Oriented Programming. Existing theories lack 
conceptual integrity among the concepts of type, 
object, instance, and class. Class and instance are 
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redundant and anomalous concepts (the two 
appendices offer proper explanation of class). 

This paper proves that the concept of object and 
type can be mathematically formulated. Prior to this 
paper, the concept of type and object are not 
formulated formally and uniquely. To the best of 
the authors' knowledge, the mathematical formula 
for type and object are either informal, or formal 
but redundant with the term class and instance. 

We have proposed a theory that fulfills the 
conceptual integrity principle. There is neither 
redundant nor isolated concept. We focus on 
informal and formal definition of the concepts of 
type and object. Both concepts are disjoint, shown 
through 35 mathematical formulas. 

To aid understanding of the proposed theory, 
NUSA programming-language is designed and its 
code-translators are created. NUSA is not an 
OOPL, but a general-purpose with conceptual 
integrity; providing encapsulation, inheritance, and 
polymorphism without resorting to class.  Class is 
not required for encapsulation, inheritance, and 
polymorphism. Class is not a basic concept. 

The independence of basic concepts 
formulation can be used to increase the maturity 
level of software engineering. One day all software 
engineers understand “Concepts Every Software 
Engineer should know”. The concepts will be few, 
universally agreed, matematically and linguistically 
precise, integrated, and comprehensible like the 
concepts in physics. 

 
APPENDIX 1: CLASS AS RECORD-TYPE FOR 

DYNAMICALLY-ALLOCATED OBJECTS 
While there are thousands of OOPLs, from the 

memory-allocation perspective there are essentially 
two allocation strategies: static and dynamic. C# 
and Java require record-objects to be dynamically 
allocated.  The term reference type is added for 
class, introducing more difficulty. 

The term may seem to invalidate the concept of 
record-value, as can be seen in [27]. But here we 
prove that the dynamic allocation like in C# and 
Java does not invalidate the concept of record-
value. The operational-semantic of 
 
an_object := type_name (arguments_list) ; 
 

is  
 

for all columns in an_object 
an_object.columns[i] := columns[i] 
(type_name (actual_operands_list)) 

 

Mathematically we write: 

 

∀ Columns[i]  ∈ Columns 
  An_object.Columns[i]  := type_id (arg1 [, argk]) [i]  

 
That the record-object (An_object) is a 

dynamically-allocated object does not change the 
fact that the value of argi is assigned to Columns[i]. 
Thus, the concept of class in C# and Java is 
correctly referred to as record-type. 

 

APPENDIX 2: CLASS AS MODULE 
In C#, Java, and similar programming-languages, 

class is mapped not only to record-type but also a 
module. Thus, M is a name for record-type and 
module-object. 

NUSA helps understanding class as module. Fig 
30 shows the translated source-code in NUSA. 
Module M; 
 
interface 
 
type M := Record { }; 
M M (); 
char object2 := 'a'; 
void operation2(); 
 
implementation 
 
M M () 
{ 
  M this;  
  return (this); 
} 
 
integer object1 := 2; 
 
void operation2() 
{ 
  Object2 := 3; 
} 
 
void operation1() 
{ 
  Object1 := 'b'; 
} 

Fig 30 Equivalent source-code in NUSA 

 

Classes in C# and Java are both record-types and 
modules. This still confirms the theory that the 
common denominator for class is: record-type. 
Classes in other OOPLs (notably C++) are not 
modules. 
APPENDIX 3: MODELING CLASS AS 

DERIVED CONCEPTS  
This appendix explains the similarity of physics’ 

base and derived dimensions with the proposed 
basic and derived concepts. Table VIIII shows two 
base dimensions and two derived dimensions in 
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physics. All derived dimensions must be based on 
base dimension(s). 

Table VIII. Partial list of base dimensions and derived 
dimensions in physics; for various classic engineering 

Base dimension Derived dimension 
Length (L) 
Time (T) 

Area (L2) 
Speed (L1T-1) 

 

Table IX tabulates class as derived concept, not a 
basic one; based on the explanation in Appendix 1 
and Appendix 2. Class in C++, Delphi, and alike 
belong to the class as T1 (merely as record type). 
Class in C#, Java, and alike belong to the class as 
T1 Ob1; a class is a type as well as an object (of 
type module). 

 Table IX. Partial list of basic concept and derived 
concept for software engineering 

Basic concept Derived concept 
Type (T) 
Object (Ob) 

Class (T1) 
Class (T1Ob1) 
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