Journal of Theoretical and Applied Information Technology
30" June 2013. Vol. 52 No.3 B

© 2005 - 2013 JATIT & LLS. All rights reserved-

" A mmmm—
F7aYTTI]

ISSN:1992-8645 www.jatit.org E-ISSN:1817-3195

TOWARD THE MATURITY OF SOFTWARE ENGINEERING:
UNIVERSAL, FORMAL, AND MATHEMATICAL
DEFINITION FOR TYPE AND OBJECT AS TWO DISJOINT
BASIC CONCEPTS

'BERNARIDHO | HUTABARAT, *KETUT E PURNAMA, *MOCHAMAD HARIADI
! Student, Department of Electrical Engineering,,I$8rabaya
2 Lecturer, Department of Electrical EngineeringS)Burabaya
3Assoc Prof, Department of Electrical EngineerifigS,| Surabaya

E-mail: *bernaridho@gmail.copiketut@ee.its.ac.id®>mochar@ee.its.ac.id

ABSTRACT
Software engineering has not reached maturity leseklassic engineering. Theoretical foundation for
software engineering lacks the precision and usaleagreement of terms. By contrast, classic erging
are founded on the seven base dimensions thatecise and universally agreed.

This paper aims to bring software engineering intaturity, in terms of the precision of terms by
establishing and mathematically defining two basincepts: type and object. Just like the seven base
dimensions in physics be part of theoretical fodiatafor classic engineering, the two basic consdppe

and object are the theoretical foundation for safenengineering.

This paper lists twelve problems with current digfoms of type and object. The proposed definitaomd
concepts are linguistically tested and mathemdgidafmulated using thirty five formulas. Each cept —
type, object — is unique and has single interpigiafl his paper shows that class is a derived qune@ot
a basic concept — and that class can be definéloeoproposed disjoint basic concepts: type andcbbje

Keywords: Type, Object, Conceptual Integrity, Basic ConcEpigineering

1. INTRODUCTION textbooks, and international standardk is the
Engineering books such as [1] excludednformal text explaining the formal things (e.g.,
Software Engineering as engineering branclprogramming-language, equations) that has not

Reference [1] does not write any reasons fdpeen exposed to scrutiny.
rejection, but software engineering lack of well- Fig 1 shows the total seven base dimensions and
definedness of something similar to the seven baseveral derived dimensions in physics that underlie
dimensions is perhaps the primary factor. classic engineering. There are two characteristics

Many software engineering books and researoliorth mentioning. Firstly, the number of base
papers have been written. Few — if any — attempt @imensions is fixed; while the number of derived
solve the above very important problem. This papeatimensions can vary over time. Secondly, all
is an attempt to solve the problem. derived concepts are based on base dimensions.

The authors of this paper examine the problems Having those two properties is the consequence
with the prevalent theory: Object-Orientation. Theof this paper's aim. Adjusting to the proposed
authors examine the definitions in standardssoncepts at hand, the authors aim to establish four
textbooks, research papers, and webpages abduaisis concepts that are fixed forever. The second
Object-Orientations (or Object-Oriented [2]). similar property is that all derived concepts skoul

In examining the problems and proposing thalways be based on the basic concepts. These two
solutions, two approaches are uskwoiguistic and properties are absent in software engineering.
mathematic It is the linguistic approach that has Fig 2 shows the idea in which there are only four
not been taken extensively by any previous papédsasic concepts, and all derived concepts are based
Despite the proliferation of mentions about formabn the basic concepts. The scope of this papéeis t
approach in software engineering research papewo of the four basic concepts: type and object.
informal explanations dominate the research paper,

e ——
372

Journal of Theoretical and Applied Information Technology

30" June 2013. Vol. 52 No.3 N
© 2005 - 2013 JATIT & LLS. All rights reserved- T
ISSN:1992-8645 www.jatit.org E-ISSN:1817-3195
Derived units
SI BASE UNITS without special S| DERIVED UNITS WITH SPECIAL NAMES AND SYMBOLS
Solid lines Indicate multiplication, broken lines indicate division
Gy
ABSORBED DOSE
DOSE EQUIVALENT
meter
m
becquerel Vs hertz ()
AcTRITY s FREQUENCY
second s
TIME henry ! (WB/A) nm\ctj‘w'm’.
mole| ol] % “\ INDUCTANCE MAGNETIC
§ FLUX DENSITY
AMOUNT OF
SUBSTANCE
T SO T
ELECTRIC CURRENT \ :
farad shemens o
kebvin [~ Dy
TR = ‘f'(‘zws CAPACITANCE RESISTANCE CONDUCTANCE
TEMPERATURE £°C = TIK = 27315
cd lux fovm?®) lumen (cdsn u«adun it = “'m(nvm. m
LUMINOUS INTENSITY
SOUID ANGLE PLANE ANGLE

Fig 1 Base-dimensions and Derived-dimensions irsiekyfoundation for Classic Engineering

Basic Concept Has Id ? Derived Concepts

Module

~

Basic-Type

General R
‘ Record Type
Collection-Type

©,

Special
Object

Basic-Object
General -Obi
Object Record-Object

Collection-Object

| - Basic-Value

Value Record-Value

ol

INEN

t—— Collection-Value

©

Special

(Operation,

/ Basic-Operation
S

General Record-Operation

(Operation,
Collection-Operation

Fig 2 Proposed Basic-concepts and Derived-condeptSoftware Engineering.

Operation

|

373

Journal of Theoretical and Applied Information Technology
30" June 2013. Vol. 52 No.3 B

© 2005 - 2013 JATIT & LLS. All rights reserved-

" A mmmm—
F7aYTTI]

ISSN:1992-8645 www.jatit.org E-ISSN:1817-3195

This paper is organized as follows. The firs2.2 Lack of universality
section introduces the subject, the problem, ardefinitions of object are ad hoc. We provide four
scope of the solution. The second section lis@xamples among literally thousands of webpages
twelve (12) problems in Object-Orientation fromcontaining the definition of object. Following each
research papers, international standards, textbookample definition is one or two thought-provoking
and webpages. The third section describes tlggiestions. A webpage from Monash University
solutions: type, object, and their disjointness ar@vww.csse.monash.edu.au/damian/papers/PDF/
mathematically formulated using propositionakyberdigest.pdfaccessed 2011-07-19) defines
calculus (set theory). The solution is guided by th
paraphrased definition of conceptual integrity. The an object is anything that provides a way o

fourth section applies the proposed theory to solvgcate, access, modify, and secure data.
the problems in the second section. The fifth secti

presents NUSA programming-language that show@9 3 First Sample Definition of Object

how a non-OOPL can have expressive power of One valid question for the first sample definition
OOPLs (encapsulation, inheritance, polymorphisniy "If a procedure provides a way to locate daa, i
without resorting to class. The sixth sectiorhe procedure an object?".

compares the old versus new theory. The seventhThe second sample comes from webpagew.

section concludes the study. Appendix 1 explaingordig.com/definition/Object-oriented (accessed
the universal definition of class based on BaS|§011_07_01)_ It defines object as

Concepts. Appendix 2 explains non-universat . , - -
definition of class, based on the basic concepts Packaging data and functionality together into

Appendix 3 proves that class is derived concosp'l’,n'ts within a running computer programbjec_s
similar to the way of physics. are the basis of modularity and structure in|an

object-oriented computer program.
2. THEORY OF OBJECT-ORIENTATION
2.1 The Informality of Theories

Fig 4 Second Sample Definition of Object

One of weaknesses of OO theory is presented | One valid question for the second definition is:
ref [3]. Bertino and Martino wrote "has there been no modular program before Object-
' : Oriented Programming Languages were made?"

Object-Oriented systems can be classified into wQ webpage does not answer the question
main categories: systems supporting the notion of The third sample comes from SAP - é giant

less anr:j thhose supportllng tT.e notl?ndtybe " | software corporation. Authorized personnels in
Although there are no clear lines of demarcaliol,.//help.sap.com/saphelp/nw2004s/helpdata/en/
between them c3/225b5654f411d19... (accessed 2011-07-19)

The second example is from Grady Booch, thgefine object as
key author of UML who in ref [4] defines class as

Theseobject are first defined by their character
The termsclass and type are usually (but nof| and their properties which are represented by their

always) interchangeable ctassis slightly different|| internal structure and their attributes (data).
concept than aype in that it emphasizes th

importance of hierarchies ofass. Fig 5 Third Sample Definition of Object
There are two deficiencies to find in the Two valid questions for the second definition are
definition of class: "What is the character of an object?" and "Why do
. It is informal (and Consequenﬂy imprecise):other authors not define that ‘character of an(ﬂbje
note the wordisually defines the object?"

« Itis incorrect. The notion of type hierarchy The fourth example of webpage defining the
also exists. The terralass hierarchy does object is www.slideshare.net/rickogden/beginners-

not give more emphasis théype hierarchy guide-to-object-orientatioaccessed 2011-07-19).

The vagueness, the ambiguity, and the lack[of an opjectis created by creating a new instarjce
well-founded boundaries have given way t0 thes g class Object of the samelasshave exactly

obscurity of definitions. It is up to the individug {he same functionality, but theroperties within

authors to come up with their opinion regarding th biect hat makes them diff t
difference between class and type. UML standa fuﬁge object are What makes the difterent.

[5, 6] do not define what object-orientation is. Fig 6 Fourth Sample Definition of Object

374

Journal of Theoretical and Applied Information Technology
30" June 2013. Vol. 52 No.3 B

© 2005 - 2013 JATIT & LLS. All rights reserved-

" A mmmm—
F7aYTTI]

ISSN:1992-8645 www.jatit.org E-ISSN:1817-3195

That definition is keyword dependent, being'Class") in the standard equates class to typessCl
dependent on the usage of keywolaks One valid is redundant.
question is "Oracle Corp claims that Oracle
PL/SQL is object-oriented, and Borland claims tHat A classis atype
T‘%rbo Pascal 5.5 up to TurbO.PascaI 7.01s OlOJeCII—"ig 10 Sample sentence containing redundant terms:
oriented; but those programming-languages do N@fass and type

have class. Does the author mean that Oracﬁ_le redundancy is present in subsec 4.2.16 of Java
PL/SQL and Turbo Pascal are not 0bject-orlentestandalrol [9] that i boxed in Fig 11. It shows the

language just because they do not have an

; . . dundancy and vagueness.

classes?" Referring to three previous examples, th

webpage does nqt answer those questions. We often use the terrtype to refer to either a

In §evera| previous para}graphs the authors ab%?assor aninterface.

mentioned webpages written by both academies —

and giant corporations. The ad hoc definitions thelyig 11 Sample Sentence Containing Redundant Terms:

have given do not match the expectation of hig ype, Class, and Interface; with No Clear Boundarie

degree of precision and trustworthiness of writings Redundancy also happens in relation to the way
both terms are used. Here is an example taken from

2.3 Redundancy of the term object and instance a research paper [10].

Object and instance are redundant in OO literature— . . .
The fourth sample definition in sec 11.B “Lack-of- Generics for the Masses” (GM) and "Scrap your

universality” serves as an example, yet this proble Boilerplate” (SYB) are generic programming

is not limited to including the webpages not trdstg approaches based on some ingenious applications
by academic community. International standards | of Haskelltype clas®s.

suffer the same problem. C++ standard [7] sec 1.9
contains these two statements:

Fig 12 Sample Sentence Containing Term that is
Unnecessarily Long: Type Class

An instance of each object with automatic| Reference [11] is a paper about Java type
storage duration (3.7.2) is associated with eacHualifier. One statement contains redundancy
entry into its block. Such ambject exists and regarding class and type (see Fig 13).
retains its last-stored value during the executibn| For anyclassC, a reference dfype readonly C
the block and while the block is suspended (by may not be used to modify thebjectit refers to,
call of a function or receipt of a signal) which is a particularly useful annotation fpr

method arguments and results.

Fig 7 Fifth Sample Definition of Object
ig 13 Another Sample Sentence Containing Redundant

Here is another example from research paper [erms: Class and Type

The terminstanceis redundant.
Reference [12] is a research paper titled

An objectis aninstanceof aclass ‘ "Typeless programming" which contains this boxed

sentence below with the word "type".
The term Vector< super Vector< extends

.) List<Integer>> is for example a corragpein Java
2.4 Redundancy of the term object and instance| 5 g

This is the consequence of the absence of format

Fig 8 Sixth Sample Definition of Object

differences among class and type. Here is an Fig 14 A Sample Sentence Containing the Term Type
example COpIed frorhttpZ//WWW.de|DthaSICS.CO. Yet the Source_code that fo"ows Contains the
uk/Article.as[? Name=00. word "class" instead of type. The code explaining

. . that statement starts with this line (note the word
We have defined elasscalled TSimple as a new cjassinstead otyps.

data type

cl ass Matrix extends Vector<Vector

Fig 9 Sample Sentence Containing Redundant Terms:
<Integer> >

Class and Data Type

The redundancy is also present in the C+fig 15 A Source-code Containing the Word Class,

Standard [7]. The initial sentence of chap 9 (itle Inconsistent with the Sentence Preceding It
Fig 16 shows the latest example in this subsec,

e ——
375

Journal of Theoretical and Applied Information Technology

30" June 2013. Vol. 52 No.3 N
© 2005 - 2013 JATIT & LLS. All rights reserved- T

ISSN:1992-8645 www.jatit.org E-ISSN:1817-3195

taken from [13] sec 3. The author speaks aboUsHElEurRIERTEIEN

type; however, the third entry contains class. Dialog | Editor
SQL> CREATE TABLE /* object */ objectl (c char): A

3. Accessibility of Types

‘We capture accessibility of types in a predicate I' b T accessible-in P stating that in the context Table created

of a program I' the type T is accessible in package P.

SQL> SELECT object_name FROM user objects:

T T+ T accessible-in P

PrimT True

Iface I pid I = P v is-public T I OBJECT_NAME

Class C RS T vy o, A I | (S e 0 S S S S SO |

Array elemT T+ elemT accessible-in P

OBJECT1
Fig 16 Redundancy of Terms: the Heading and Human

Language Sentences are Inconsistent with the SQL> SELECT type nawe FROM user_types;

Mathematical Formula
TYPE_NAME

2.5 Conceptual disintegrity: type equals object

Type should not be equal to object, and vice S v
versa. Oracle PL/SQL equates type with object a.* - d
pictured in Fig 17. PL/SQL programming- Ianguage“’
creators confused object with type. Fig 18 Incorrectness of Type = Object; Typ©bject.

i TRM FDB APR HDG n > 1 row selected in 0.1¢

2. Command Window - New

2.6 Conceptual disintegrity: class equals object
Similar mistake and problem appear in Java
ROl REATEINPE=RSASNOBIECTNG e cheaxy iy standard [9] sec 4.3.2; asserting that "The class

e ¥ Object is a superclass (8.1.4) of all other cldsses
Object is said to be equal to class. Table Il tatad
partial content of C# standard [14] subsection18.2.
SOL> ~ that shows the essentially same mistake.

Dialog | Editor |

Type created

mm & O TRM FDB i7 APR HDG 11/C m » Type

Table II. Class equals Object

Fig 17 Creating the Type in Oracle PL/SQL

_ _ _ Type | Description Example
We test our hypothesis by creating an object. [pject [The ultimate base tyfobject o = null;
object = type, then the contents of metadata-vigw of all other types

user_objects anduser_types will be the same.
But fig 18 shows the contents are different. Hence:2 7 Conceptual disintegrity: object equals
» The concept of type looks to be equal to the¢ntermediate-code
concept of object, but The disintegrity of concepts becomes evident.
> The concept of type is different from that ofwe start with the notion afbject code The object
object (hence a contradiction, a conceptuadode meansintermediate code in the code
disintegrity). translation textbooks such as [16]. The intermediat
> The differences are not precisely formulatedcode is the result of the compilation of sourceecod
According to [17] there are two possible
Similar disintegrity takes place in subsectiordefinitions for object:
8.2.1 of C# Standard [14] which contains this entry « gbject = intermediate code
for object. The header says Type but the entry says . gpject code = intermediate code
object. C# standard committee equates type with

object (see Table I). Both equations are proved to be false, shown

Reference [15] also mistook object with type. Ifyelow through modus Tollens. The modus is
one of the definition the author wrotebjects are formalized as follows:

implementations of abstract data types

if pthenq

~q
then o

Fig 19 Modus Tollens

376

Journal of Theoretical and Applied Information Technology
30" June 2013. Vol. 52 No.3 B

© 2005 - 2013 JATIT & LLS. All rights reserved-

" A mmmm—
F7aYTTI]

ISSN:1992-8645 www.jatit.org E-ISSN:1817-3195

Let us assign thabbject is the outcome of However, the sentence is semantically incorrect
compilation process to p and object is due to the double word 'Class class'. Applying the
intermediate codeto g. To show the imprecision in substitution test for the entire text of the stadda
IEEE definition, we must show thatg~holds. will result in more occurences of semantic error.
Consequently, p-holds too. While the g-is read as
object it is NOT intermediate code It is the fact 2.9 Confusing word order
that object is not intermediate code. We can then The following boxed text is contained in
conclude thatobject is NOT the outcome of subsection 17.1.2.1 of C# Standard [14]. Note there
compilation process are two phrases in which the difference is only on

the word order: class object versus object class.
2.8 Incorrect semantics

Theories within Object-Orientation literature cgn Except forclass object every class has exactly
be semantically incorrect. The repetition of worg®ne direct base class. Tabject classhas no direct
is evident from the IEEE definition and some othebase class and is the ultimate base class oftel ot
example texts in the standard. We explore thelasses.
secqnd pqssibility of equality in the previou.sFig 22 Confusing Word Order
section: object = intermediate code. If that edyali
holds, the second equality cannot hold.

Linguistically, the two equalities must be presente 2-10Difficult to understand concepts .
like the ones below. We argue that the concept like instance is hard to

. object = intermediate code gnderstand. .Consequently, the concepts such as
. object code = intermediate code code 'instance variables' are even harder to understand.
Reference [20] mentioned the difficulty in

Notice the repetition of the word code. Fig 21explaining the concept of instance.

shows another example exhibiting similar problem. Jarvi, Marcus, and Smith have offered strikingly
A possible improvement is done by writing twodifferent programming concepts that are limited to

equalities for IEEE Standard Glossary of Softwar&€++ (one of Object-Oriented programming-

Engineering Terminology which are shown below: languages). They created a class named concept,

« object = intermediate like this one from ref [21].

e object code = intermediate code

concept LessThanComparable<typename T>

The last proposed equation is free from thé
. L ool operator <(const T&a, const T&Db);
repeated Wgrds proplem. Bgt the- equality of OPJ"CEool operator >(const T&a, const T&b)
= intermediate is in conflict with any English {return b <a;}
dictionary [18]. No English dictionary equatgsbool operator <=(const T&a, const T&h)
object with intermediate or intermediate code. {reumi(b<a);} =~

. . bool operator >=(const T&a, const T&b)

Incorrect semantics is also shown througherym 1(a < b); }

substitutions test [19]. Let us take one example

from Java standard [9].

Fig 23 The Class Implemented as Concept

4.3.1 Anobjectis aclassinstanceor an array. »
4.3.2 AClass objectexists for each referenggpe | 2.11Difficult to understand concepts

The claim that everything is an object was made
Fig 20 Two sentences that will be tested for seitant by Adele Goldberg and David Robson in their book
correctness about Smalltalk [22]. It has been rejected by TTM
If the semantics is correct, the semantics of thisommunity [23] but favored by [24]. Interestingly
statement below should be correct. We substitu{e4] listed one step "Acquire the Class Concept by
object with 'class instance’. Abstraction of Many Common Objects". It is a
contradiction to "Everything is an object". If

A Class class instanceexists for each referenge everything is an object, we do not need class. In a
type previous book, Adele Goldberg (with Alan Kay)

Fig 21 Example of Incorrect Semantics Found through €duated value with object (ref [25] page 12).
Words Substitution

377

Journal of Theoretical and Applied Information Technology
30" June 2013. Vol. 52 No.3 B

© 2005 - 2013 JATIT & LLS. All rights reserved-

" A mmmm—
F7aYTTI]

ISSN:1992-8645 www.jatit.org E-ISSN:1817-3195
2.12No concept is defined Value Operation Type Object in [30]. Our proposed

Some research papers (e.g. [26]) do not defirteasic concepts are similar to the four core corscept
any concept). The authors in [26] attempted tproposed in [23]. We use 'object' (instead of
explain Object-Orientation using logic. There is novariable AS in [23]) because
definition of object, type, class, methods, and the
usual terms in Object-Orientation. The author of (1) Not all objects are variables; some objects are
[27] refersproperties in C# as syntactic sugar. If constants [30].
property is asyntactic sugar it deserves neither a (2) Even further, not all objects are value-
notion of Basic Concept nor definition. assignable [30].

Some objects cannot be assigned to values; hence
3. PROPOSED SOLUTIONS some objects are neither constants nor variables. A
3.1 Integrity: irreducibility and unity good informal definit_ion of object can be found in

Brooks in [28, 29] has written abocbnceptual C standard [31] that in sec 3.14 defines object as:
integrity but he does not define it. References [28
29] only wrote Conceptual integrity is the most
important consideration in system design'

We define conceptual integrity as timegrity of
concepts and consequently include thenity of
concepts. The unity of conceptrecludes the
redundancy of concept The system that lacks
conceptual integrity has conceptual disintegritg. A
the systems lack the unity of concepts, it embodies
redundant and incoherent concepts. 321 Type

References [28, 29] wrote "i$ better to have a ~ Type is defined as follows:
system that omit certain anomalous features and ¢ Types are first categorized into metatypes

' region of data storage in the execution
environment, the contents of which can represent
values.

The following subsections contain informal
definitions for basic concepts that were partially
written in ref [30].

improvements, but it still reflects one set of drett (MT) and nonmetatypes (NMTs)
ideas, than to have one that contains many good, ¢ A type may or may not have identity.
yet providing uncoordinated ideaslf we remove » TypeCategories := {General-types,
"good but" from the original sentence; and replace Special-types}
features improvements and ideas with concepts * General-types contain values.
we get this slightly paraphrased sentence: « Special-types contain no values.
» General-types := {Basic-types, Record-
It is better to have a system omit certain types, Collection-types}

anomalousconcepts but to reflect one set of goqd
concepts than to have one that contains many
uncoordinatedoncepts

e SpecialTypes := {void, Module, Program}

.] 3.2.2 Object
Fig 24 Proposed Theory About the System Having Object is defined as follows:

Conceptual Integrity * An object has identity.

e Anobjectis of some type.
Objects of Special-types cannot have value
Objects of General-types are General-

That statement will be the basis of this paper. We
hypothesize thatlassandinstance are anomalous
and redundant concepts. We hypothesizedhpct

; . : . objects
is also an anomalous concept in Object-Oriented Obiect ¢ Special-t Special
literature, but not anomalous if defined precisely. obj]ee(;: 0 pecial-types are - special-

We propose a precise definition for thabject

concept in this paper. » General-objects have value

e Special-objects do not have value

3.2 Unique Basic Concepts and Their Informal L .
definitions 3.2.3 Disjointness of types and objects

We introduce four basic concepts along with 1€ disjointness of type.s and objects are
their informal definitions: VOTO, abbreviation for formulated formally as follows:

e ——
378

Journal of Theoretical and Applied Information Technology

30" June 2013. Vol. 52 No.3

N

RN

© 2005 - 2013 JATIT & LLS. All rights reserved-

" A mmmm—
F7aYTTI]

ISSN:1992-8645

www.jatit.org

E-ISSN:1817-3195

Object is not type.
« Type is not object.
Therefore

» The concepts of object and type are
disjoint (see Fig 25).
Individual objects are disjoint from
individual types.

>

3.4 Unique Basic Concepts and Their Formal
definitions
The concepts are formal if they only have one
interpretation.

Basic_Concepts
Object} (1)
0 G O Basic_Concepts (uniquefic

:= {Value, Operation, Type,

@)

U: Universe of (basic) concef
[simplified by excluding
two others: value, operatio

ts The basic concepts of programming introduced

here have two important properties:
nl Formal (Hence there is nasually, like the

Fig. 25 Type and Object are Disjoint Concepts

one in Booch).
Nonredundant (type only, no redundancy

3.3 Categorization of Basic Concepts into Basic,

Collection, and Record
The author of [30]
categorization toward basic concepts that imp

the presence of twelve derived concepts (Fig. 26):

Basic-type
Basic-object
Basic-value
Basic-operation
Record-type
Record-object
Record-value
Record-operation
Collection-type
Collection-object
Collection-value
Collection-operation

Those derived concepts will prove to

sufficient and useful for the rewritten theoriesdlan

sentences in section 4.

Basic-type Basic-obje

Collection-type

/ Record-type

Record-object

Collection-

Collection-value operation

Record-value Record-operation

Fig 26 Formal Definition for Basic Concepts; Fulfihe
Principle of Irreducibility and Conceptual Integyit

proposed orthogonal

Collection-object

with other concept like class). 2)
34.1 Type

These are the itemized definitions for type.

lied * OtOTypes Hasld(t) ~ HasNold(t) ?3)
« Types = MetaTypel NonMetaTypes 4)
« Metatypen NonMetaTypes £1 (5)
* NonMetaTypes = GeneralTypés

SpecialTypes (6)

e [Ot0 General-types SetOfValuesg)1 (7)
e [t Special-types SetOfValues(t)&F (8)

General-types = Basic-typésRecord-types

O Collection-types (9)
» Basic-typesh Record-types £l (20)
» Basic-typesn Collection-types =] (12)
« Record-types Collection-types 1 (12)

3.4.2 Object
These are the itemized definitions for object.

be ¢ [o0 Objects (has_id (0)) (13)
* [o0 Objectsdt 0 Types (IsOfType (o, t))
(14)
* Objects = SpecialObjects GeneralObjects
(15)
» SpecialObjects GeneralObjects £l (16)

« GeneralObjects = Basic-objecisRecord-

objects] Collection-objects a7
» Basic-objectsh Record-objects £ (18)
« Basic-objectsy Collection-objects £1 (19)

Record-objects Collection-objects £1 (20)

3.4.3 Disjointness of types and objects
The disjointness is formulated as follows:

Ot 0 TypesO o O Objects (o t) (21)
Typesn Objects =1 (22)
O t O Types ungouted (lowercase(id(ty)
object (23)

e ——
379

Journal of Theoretical and Applied Information Technology

30" June 2013. Vol. 52 No.3 B
© 2005 - 2013 JATIT & LLS. All rights reserved- T
ISSN:1992-8645 www.jatit.org E-ISSN:1817-3195

3.4.4

The category is defined as a relation that is

00 o O Objects ungouted (lowercase(id(o¥))
type (24)

Category Relation

transitive. The relation is denoted by symkoThe
words denoting the operands to the operatias

singular. The application of the category relation

types is listed below:
Metatype< Type (25)
NonMetaType< Type (26)
General-typel NonMetaType 27
Special-type NonMetaType (28)
Basic-type< General-type (29)
Record-type< General-type (30)
Collection-type< General-type (31)

original text. The presence of multiple equivalent
terms is due to the careless wording in textbooks
and international standards.

.Table Ill Equivalent Synonyms

No | Original Equivalent

1 |Class Type

2 |Class record-type
3 | Class Record

4 | Instance Object

5 | Subclass derived-type
6 | Property Value

7 | Property Operation

8 | Member Column

9 | Variable Object

3.6 Hypothesis: essetially equivalent phrases
It is impossible to list all equivalent phrases.
Sample equivalent phrases are listed in Table IV.

The transitivity makes for these relations forp,,q v Equivalent Phrases

types

. General-type Type (through No | Original Equivalent
NonMetatype) (27a)|1__|data type Type
e Special-type Type (through NonMetatype) 2 data type record-type
(28a) 3 class type record-type
« Basic-type< Type (through General-type g bage (t:)I.an é’ alse-type
and NonMetaType) (29a) sub objec oumn
6 Subobject Column
* Record-type Type (through General-type -
7 member subobject Column
and NonMetaType) (30a)
. 8 data member Column
e Collection-type< Type (through General- 5 function member Operation
type and NonMetaType) (31a) b
Object-Orientation Proposed theory
Formulas #4 through #12 are partially captuned

in the six formulations below

A general-type is a type
A special-type is a type

A basic-type is a type

A record-type is a type

A collection-type is a type

Concerning object and value we can write

* General-object Object (32)
[0 GO0O General-objects, has_value (GO)

(33)
Proof:

0 o O Objects1t [0 Types (IsOfType (o, t)) (14)
0t O General-types SetOfValuesé)] @)

3.5 Hypothesis: equivalent synonyms
In this section we list synonyms of one word in

type
class
interface
class type
class object
object class
object
instancy

type
object

Fig 27 Object-Orientation is Theory with Highly
Redundant Terms. Proposed Theory Contains No
Redundancy

Fig 27 and fig 28 summarize the comparison of
theories in graphical way (sec 6 details the
comparison of theories). While there are derived
terms (like record-type) in the proposed theorg, th
most important concepts are type and object.

e ——
380

Journal of Theoretical and Applied Information Technology
30" June 2013. Vol. 52 No.3 B

© 2005 - 2013 JATIT & LLS. All rights reserved-

" A mmmm—
F7aYTTI]

ISSN:1992-8645 www.jatit.org E-ISSN:1817-3195

Range Domain We denote the number of columns in record-type
as well as record-object using the function Arity.

¢« [ORT 0O Record-types Arity(RT:2 0 (34)

e [RO Record-objects Arity(ROx 0 (35)

* type
» « record
* record-type

3.9 Hypothesis on some common conventions

Programmers and authors have some conventions
on writing the source-code. Some of the
conventions are prefixing the type name with T (for
Type) or C for (Class). Programming library Turbo
Vision from Borland use prefix T. Microsoft in its
Fig 28 Partial Mapping of Terms; Graphical Versioh .NET programming library use prefix C
Table Il and Table Il (msdn.microsoft.com/en-us/library/20t753se.aspx
accessed 2012-05-03, is an example).

 object

* instancé

3.7 Scope of the solutions
Literatures about Object-Orientation often related. RESULTS (PROVING THE SOLUTIONS)

class_and object witmethod. Methoq is operation. 4. 1 Replacing instance by object
The first author of this paper explained methods (e take an example repeated from sec I1.B and

[32], contrasted Module-based Encapsulatiopsme it asSentences 1a to serve as an example
versus Type-based Encapsulation in [33], anfow we can make better explanation.

related module to namespace in [34]. Methods have

also been explained in the light of orthogonality | 5, objectis created by creating a neémstance
[35]. NUSA is a programming-language that adoptgs 5 class Objecs of the samelass have exactly
specific approach of Module-based Encapsulatibfne same functionality, but theroperties within
In that approach, type cannot contain operation Fhe objecs are what make them different.
operator [33]. This approach is also adopted by

TTM in Other Orthogonal Very Strong Suggestion | following Sentences 1b are the result of

number 2 “Types and operators unbundled" [36]. ojacing instance by object, with the mapping #4
Solving the problems listed in the previous, tapie |I.

section is a prerequisite requirement before sglvin
the problems of defining methods in the preci
way. All of these mount to the decision of
excluding the treatment of methods (in Obje¢
Orientation folklore) in this paper.

© An objectis created by creating a neljectof a
class Object of the samelass have exactly the
same functionality, but th@roperties within the
object are what make them different.

—

3.8 Column and Arit . . . L
y he mapping shows there is no new information in

In this paper, the term column is used instead p "An obiect i db :
field, attribute, and data member. A column is anthe wst_ser:tenpe n object s created by cregan
new object". It is redundant.

object, but an object is not necessarily a column.

A C++ source-code below shows that objectl is 3
column, and necessarily an object. On the other
and, object2 is an object; but not a column.

2 Replacing class by type
We start this section by improving the rewritten
sentences in the previous section. We apply

mapping #2 in Table II: replace class by type fbr a

t ypedef struct Typel . . R b
yP P rewritten sentences within this subsection.

{) .
publ i c: char objectl;}} Sentences 1c are the result of the first rewrite.
h — . .
An object is created by creating a neljectof a
void main() type Objecs of the sameype have exactly the
struct Typel Object2:) same functionality, but thpro_pertles within the
Object2.objectl = 'y; object are what make them different.
/I there are two objects . .
} The rewritten text is clearer. The concepts are

becoming integrated without redundancy. Here is

e ——
381

Journal of Theoretical and Applied Information Technology
30" June 2013. Vol. 52 No.3 B

© 2005 - 2013 JATIT & LLS. All rights reserved-

" A mmmm—
F7aYTTI]

ISSN:1992-8645 www.jatit.org E-ISSN:1817-3195

another exampleSentence 2a, that is copied from word base and remove the space before the word
www.delphibasics.co.uk/Article.asp? Name=00O type (the word type that substitutes the word ¢lass
The result isSentence 4b.

We have defined elasscalled TSimple as a ne
datatype An objectof arecord-typeconsists of a (possibl

empty) sequence ofcolumrs and baséype
We use mapping #2 in Table Il to replace classolumrs.

by type. Sentence 2b is the result having the

conceptual integrity. In the conversion of two subsequent original

sentences, we replace class with record-type
We have defined typecalled TSimple as a new (mapping #2 in Table Il). The original sentences ar

datatype taken from chapter 3 point 3 in C++ standard [7].

We call the first one aSentence 5a (see below).

<

We refer to the sentence belowSestence 3a. It
is written in Sec 9.2 of C++ standard. Note: class objecs can be assigned, passed|as

arguments to functions, and returned by functions.

‘ A classdefinition introduces a netype

We rewrite the previous sentence by replacing
This is Sentence 3b obtained by replacing class class with record-type. The resultSantence 5b.
with type, and introduces with defines.

Note: record-type objecs can be assigned,
‘ A typedefinition defines a netype ‘ passed as arguments to functions, and returned by
functions.

4. 3 Using equivalent synonyms o
We start this section by improving the rewritten_ This is another sentence from the C++ standard

Sentences 1c in the previous section. We replacel’] chapter 9 and the same point (3). We call it

properties with values using the mapping #6 ipentence 6a.

Table II. The result iSentences 1d below.

Uy

(except objects oflasss for which copying ha
An objectis created by creating a nebjectof a ||_Peen restricted; see 12.8).

type Objecs of the sameype have exactly the

same functionality, but thealues within theobject

are what make them different.

We apply the same mapping to replace class with
record-type. The result Bentence 6b below.

. . (except objects ofrecord-types for which
Sometimes replacing the words by means opying has been restricted: see 12.8).
equivalent phrases is better. Using the mapping+#3

in Table Il we replacalata type in Sentence 2b
with record-type The result isSentence 2c below.

4. 4 Using equivalent phrases
The rewriting of sentences can be complex. In
We have defined gypecalled TSimple as a new this section we convert the phrases of sentences.

record-type Point 3 in chap 9 of the C++ standard [7] is writte

as what we calbentence 7a below.
The resulting text will be compared against the - .

improvement of source-code in sec 4.6. In the Completeobjecs andmember subobject of a

subsequent sentences, we cover the more compf@gSStypeshall have nonzero size.

sentences. _ _ ~ We apply the mapping #3 (class type with
The next sentence is taken from point 1 W'th'riecord-type) and mapping #7 (replaceember
Chap 9 (chapter about Classes) in C++ Standagdhopject with column) for rewriting; both are

[7]. We call it Sentence 4a. from Table 1Il. The result iSentence 7b below.

An object of a class consists of a (possibly Completeobjecs andcolumrs of arecord-type
empty) sequence ofmembers and baseclass|| shall have nonzero size.

objecs.

In which they can be rewritten as two sentences

We use the mapping #2 in Table Il to replac&entence 7c and Sentence 7d to make explanation
class by record-type, mapping #6 in the same tabifore explicit about C++.

to replace member with column, and replace one_af :
the word object with column. We add - after the Complete objecs of a record-type shall have|

e —
382

Journal of Theoretical and Applied Information Technology
30" June 2013. Vol. 52 No.3 B

© 2005 - 2013 JATIT & LLS. All rights reserved-

" A mmmm—
F7aYTTI]

ISSN:1992-8645 www.jatit.org E-ISSN:1817-3195

nonzero sizeColumrs of arecord-typeshall have| two subsections.
nonzero size.

4.5.1 Changing the word order

Similar rewriting (replacing class type with The words constituting phrases 'record-type
record-type, mapping #3 in Table Ill) can begpjects' are paraphrased into 'objects of record-
applied to another sentence within C++ standargype'. We apply the rule to rewrite the end of
This is the Point 4 in chap 9 of the C++ Standardsentence 4b (‘record-type objects’) to be 'objects of
We call it Sentence 8a. record-type" irSentence 4c below.

Note: aggregates dflasstype are described iT An objectof arecord-typeconsists of a (possibly

851, empty) sequence ofcolumrs and baséype
Using the mapping #3 in Table Il (replace clat golumrs.
type with record—type) we obtaBentence 8b. We can apply a similar rule to rewrigentence

Note: aggregates oecord—typeare described i 2° t0 beSentence Sc below.

8.5.1. Note: objecs of record-type can be assigned

The next example for this subsection comes fr)fassgd as operands to functions, and retumefl by
point 4 of chap 9 of C++ standard which we referlt unctions.

as Sentence 9a. POD is short for Plain Old Data.)))
That term is unnecessary. 45.2 Changlng "ObjeCtS of <X-type>" into “x-

objects”

A POD-struct is an aggregatelassthat has ng Objects of record-type can be paraphrased into
non-static data members of type non-POD- | record-objects. This paraphrasing technique allows
struct, non-POD-union (or array of such types) gr us to rewriteSentence 5c into Sentence 5d below.
reference and has no user-declared ch‘

Y - - -
assignment operator and no user-decldfed Note: record-objecs can be assigned, passed as

operands to functions, and returned by functions

destructor.

Finally, we can also paraphraSentence 6b into

We rewriteSentence 9a by replacing POD-struct Sentence 6¢ below.

with struct, class with record-type, non-static hwit
dynamic, data member with column, reference wjth (except record-objecs for which copying has
address, and operator with operation. The result keen restricted; see 12.8).
Sentence 9b below.

4. 6 Removing unnecessary phrases or sentences

A struct is an aggregatecord-typethat has ng The further result from the proposed theory is
dynamic colums of type non-struct, non-union | that we can remove unnecessary phrases or

(or array of such types) addressand has no usel- sentencesSentence 3b can be removed altogether
defined copy assignmemperation and no user; from the (C++) standard.

defined destructor.

4.7 Reversing the conventions, applying the
4. 5 Paraphrasing theory to source-code
Rethinking furtherSentence 9b can be improved We apply the refinement of the theory to the
by paraphrasing to b&entence 9c below. C++ has refinement of source-code. We start with the theory
two record-type-qualifiersstruct andclass . The reformulated aSentence 2cin sec 4.3.
word aggregate is not needed.

We have defined gypecalled TSimple as a ne

<

A record-type with qualifier struct has no|| record-type
dynamic colums of type non-struct non-struct-
union (or array of such types) @ddress and has Secondly, we check the correctness of theory

no user-defined copy assignmerdperationand no| (rewritten sentences) to the accompanying source-
user-defined destructor. code. Here is the code obtained frowww.

delphibasics.co.uk/Article.asp? Name=00
Other paraphrasing techniques that results in

better explanation are discussed in the followingype (* Define a simple class *)
TSimple= cl ass

e ——
383

Journal of Theoretical and Applied Information Technology
30" June 2013. Vol. 52 No.3 B

© 2005 - 2013 JATIT & LLS. All rights reserved-

" A mmmm—
F7aYTTI]

ISSN:1992-8645 www.jatit.org E-ISSN:1817-3195
simpleCount : Byte;
property count : Byte read simpleCount; void SetCount (Simple& self; word count)
pr ocedur e SetCount (count : Byte); { self.Count := count; }

end;

That source-code can be explained and theorized
The proposed theory matches the source-codeithout involving the concepts of class, data
We apply the replacement of text according to thexember, property, and instan@entence 2e below

proposed theory. (rewritten fromSentence 2d) theorizes the source-
« replace the word class with record-type irfode concisely.
the comment We have defined a newecord-type called

* replace the word class with record (becaLsgimp|e_
record is record-type) in Line 2

 replace the word property with function 5.2 Type, object, name for metatype and types
* replace type name TSimple with Simple NUSA usestype for the name of metatype.
(reverse the conventions, drop the prefix TThere is only one metatype in NUSA. The name of
from type-name) objects cannot intersect with the name of types.
NUSA adheres to the formulas #1 through #33.

In addition we replace = by as assignment By conforming to formula #23 and #24 NUSA
operation. Delphi uses the symbol =avoids two problems: confusing type with object,
inconsistenly, it can mean comparison-operationonfusing phraseslassobjectversusobjectclass
and assignment-operation. The result of In NUSA the system-defined root record-type is

converted source-code is as follows: named Thing , nNot object . It removes the
possibility of mistaking type with object. Table IV
type (* Eefineasimple record-type *) explainsThing in NUSA. The explanation can be
Ss'im'lee Count _rgyctg_rd compared to the theories contained in subsec 8.2.1
function count - Byte r ead simpleCount; of C# standard and subsec 4.3.2 of Java standard.
eng)cedur e SetCount (count : Byte); Table IV Partial table of types in NUSA
Type | Description | Example
The converted source-code is no longer a Delpfiihing |Root system-defined base recond-ing
source-code. But the source-code reflects the good |type for other record-types Objectl;

theory. The source-code can now be explained with

integrated concepts, not by disintegrated concepts. The design also removes the confusing terms. In
This is the refined explanation for the sourcesec 2.9 we show example of confusing word order

code calledSentence 2d, in which the type-name in C# standard. In this section we show how the

TSimple has been replaced by Simple. confusion can be removed.
We have defined &pe called Simple as a neyy Except for type Thing, everyrecord-type has
record-type exactly one direct baggpe ThetypeThing has no
direct basdypeand is the ultimate base-type of all
5. APPLICATIONS IN NUSA | otherrecord-typs.

PROGRAMMING-LANGUAGE
51 NUSA: language that conforms to the 5.3 Support for inheritance and polymorphism

proposed theory NUSA is similar to Tutorial D [23] in terms of

The theory that underlies NUSA programming-unbu”d“r‘g the operations._ The mos_t_sign?ficant
language conforms to the proposed theory arfdifference between the two is the explu_:lt notidn o
conceptual integrity. There is no concept of clasgnodule —and modular programming [32].
data member, property, and instance in NUSA. Thgnbundling the operations from record-types does
original source-code inside sec 4.6 that is written Not prohibit the support of polymorphism, due to
Delphi can be rewritten in NUSA as follows: the usage of namespace within NUSA [34].

Reference [34] shows that NUSA can handle
inheritance. Indeed, the boxed sentence in the
previous subsection implies the support of

word count (Simple self) inheritance in NUSA. In this subsection we present
{ return (self.Count); }

t ype Simple := Thing +
record { word count; };

e ——
384

Journal of Theoretical and Applied Information Technology

© 2005 - 2013 JATIT & LLS. All rights reserved-

30" June 2013. Vol. 52 No.3 N

" A mmmm—
F7aYTTI]

ISSN:1992-8645

www.jatit.org E-ISSN:1817-3195

an overview of how NUSA handles polymorphism |when we apply the |we apply the

related to the inheritance.

substitution principle. [substitution principle.

Pr ogr amDemo; // inheritance, polymorphism
t ype Typel := Thing +
Recor d { boolean columni,; };
type Type2 := Typel +
Recor d { char column2; };

void operationl (Typel this)

/I polymorphic operation, accepts operand

{/l whose type is derived from Typel
writeline (this.columnl);

}

void main ()

Type2 Object2;
/I call the polymorphic operation
operationl (Object2);

}

©

Confusing word order [No confusing word
(e.g., ofclass object |order

andobject clas$
10|Difficult to understand [No difficult to
concepts (e.g., the termanderstand concepts
/concept instance) (e.g.,instanceand
classare eliminated)
11{Everything is an objeclNot everything is an
object (see the 4 basi
concepts).

12|No concept is defined |All concepts (type and
(due to informality, #1)object) are defined.

[g)

The following table summarizes the sections

6. COMPARISON OF THEORIES

introducing the problems with existing theories and
the solutions. We use the abbreviation sec to refer
to subsection.

In this section we compare the existing _
theories versus the proposed theory for type Table VI Solutions (and formulas) for the problems

and object. Table V summarizes the [No|Sec Solution

comparison of theories. The proposed theory 1A Formal theory for type, object, 4
eliminates 12 problems associated with the

existing theories.

Table V Comparison of theories

differences between type and obj
Formula #1-3, 13-14, 21-24
2(ll.B Universal (languagédependen

No|Existing Proposed theory using the concept type eve
concept/theory concept/theory the programmmgangu_age_s use t
1linformal Formal word class. The solution is within
2|Not universal Universal; independe formulas and mappings in sec Il
of the programming- 3|1.C Basic Concepts and The Forr
language Definitions remove the need for t
3|Contains the The term instance (and term instance.
redundancy due the [the redundancy) is 4/11.D Basic Concepts and The Fort
term object and removed. Definitions remove the need for t
instance. term instance.
4|Contains the The term class (and t 5(ILLE Formal th_eory for d|ff_erent|at|ng tyf
redundancy due the |redundancy) is ver;us object. Subsection 111.D.3.
term class and type. |removed. 6|11.F Basic Concepts and The Fori
5/Conceptual disintegrit{Conceptual integrity: Definitions remove the need for the

type equals object |type# object

term instance.

o))

Conceptual disintegrityConceptual integrity.
class equals object [The term class is
removed (corollary of

71.G Principle solutions: (a) Basic Conce
and (b) Coddranslation theory [14
that uses the term 'intermediatede)
instead of 'object-code’.

solution #4). .
No|Sec Solution

No|Existing Proposed 8|Il.H Principle solutions: (a).Basic Conce
concept/theory concept/theory and (b) Code—transl:a_momheory [14
7|Conceptual disintegrityConceptual integrity. _that useslthg term |rl1termed|amele

object equals Intermediate-code is '”St?ad of ‘object-code'.
intermediate-code not a basic concept olil.1 Bas_lc__ Concepts and The_ Fory
8|Incorrect semantic Correct semantic when Definitions remove the confusing wq

Journal of Theoretical and Applied Information Technology
30™ June 2013. Vol. 52 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved-

N

RN

" A mmmm—
F7aYTTI]

ISSN:1992-8645

www.jatit.org

E-ISSN:1817-3195

order, espec
Additional so

ially subsection

lution can be inferr

from section IV.B.

.0

introduces a new type!.

definition defines a
newtype
Formula (30a).

10/11.J Basic Concepts and The For | 4|An object of a class |A record-object
Definitions remove the need for { consists of a (possiblyconsists of a (possibly
term instance. empty) sequence of |empty) sequence of

111K Formal theory for type and the forn members and base |columrs and bas#ype
differences between type and ob class objects. columrs.
prove not everything is an object. Formula (35).

12)11.L Basic Concepts and The Fort 5|Note: class objects caMote:record-objecs

Definitions.

Solution for the problems #7 and #8 needs cod
translation theory as described

'intermediate-code’ in fig 29 below).

SourceCode

> CompileLink

Unmaterialized
Runnable-Code

Materialized
RunnableCode

Intermed
Code

iate

Fig 29 Code-translation processes

Sentences in the textbooks, specifications, or
theories in the webpages can be perceived as
theories. Table VII shows that using the theory

proposed in this paper; explanations in textbooks
and specifications, and more detailed theories can
be written using consistent and very limited terms.

Table VII Tabulation of rewritten sentences with
conceptual integrity, consistent and limited terms

be assigned, passed ¢
arguments to function
and returned by

xsan beassigned, pass
as arguments to func
tions, and returned by,

in [30] (see functions. functions
Formula (17).
6|(except objects of (exceptrecord-objecs

classes for which
copying has been
restricted; see 12.8).

for which copying has
been restricted; see
12.8).Formula (17).

~

Complete objects and
member subobjects o
class type shall have
nonzero size.

Objecs andcolumrs of
arecord-typeshall
have nonzero size.
Formula (17, 35).

(o]

Note: aggregates of
class type are describ
in 8.5.1.

Note: aggregates of
record-typeare
described in 8.5.1.
Formula (9).

No

Initial sentence(s)

Final sentences, wit
reference to formula

=

An objectis created by
creating a new
instanceof aclass
Objecs of the same
classhave exactly the
same functionality, bul
the properties within
theobject are what
make them different.

/Object of the same
typehave exactly the
same functionality, bu
the identitiesand
values are what make
them different.
Formula (13, 14, 33)

A POD-struct is an
aggregate class that
no non-static data
members of type non-
POD-struct, non-POD
union (or array of sucl
types) or reference, al
has no user-declared
copy assignment
operator and no user-
declared destructor.

A record-typewith
qualifier struct has no
dynamiccolumrs of
typenon-struct, non-
union (or array of suc
types) or address, and
has no user-defined
copy assignment
operationand no user-
defined destructor.
Formula (9, 34).

7.

CONCLUSIONS

Rewritten sentence #3 (using the word record-type)
can be removed because it is redundant. Our
proposed theory can be used to reduce the
explanations in the specifications.

In this paper we have described the problems

w With existing theories underlying the Object-
Oriented Programming. Existing theories lack
conceptual integrity among the concepts of type,

NollInitial sentence(s) Final sentences, with
reference to formula
2|We have defined a |We have defined a ne
class called TSimple acord-typecalled
a new data type. Simple.Formula (9).
3|A class definition Arecord-type

object, instance, and class. Class and instance are

e ——
386

Journal of Theoretical and Applied Information Technology
30" June 2013. Vol. 52 No.3 B

© 2005 - 2013 JATIT & LLS. All rights reserved-

" A mmmm—
F7aYTTI]

ISSN:1992-8645 www.jatit.org E-ISSN:1817-3195

redundant and anomalous concepts (the two
appendices offer proper explanation of class). [Columng O Columns _

This paper proves that the concept of object andAn_object.Columng := type_id (arg[, arg])
type can be mathematically formulated. Prior ts thi
paper, the concept of type and object are not That the record-object (An_object) is a
formulated formally and uniquely. To the best ofdynamically-allocated object does not change the
the authors' knowledge, the mathematical formulfct that the value of args assigned to Columnsfi].
for type and object are either informal, or formalThus, the concept of class in C# and Java is
but redundant with the term class and instance. ~ correctly referred to as record-type.

We have proposed a theory that fulfills the
conceptual integrity principle. There is neitherappENDIX 2: CLASS AS MODULE
redundant nor isolated concept. We focus on |, cx java, and similar programming-languages,
informal and formal definition of the concepts of; |55 is mapped not only to record-type but also a

type and object. Both concepts are disjoint, showg,,qule. Thus, M is a name for record-type and
through 35 mathematical formulas. module-object.

To aid understanding of the proposed theory, \ysA helps understanding class as module. Fig
NUSA programming-language is designed and itgq ghows the translated source-code in NUSA.
code-translators are created. NUSA is not Fodul e M:

OOPL, but a general-purpose with conceptugl
integrity; providing encapsulation, inheritancedani nterface
polymorp_hism without resorting to_clas_s. Class §ype M:= Record{}:
not required for encapsulation, inheritance, angw
polymorphism. Class is not a basic concept. char object2 :='a’;

The independence of basic conceptgeid operation2();
formulation can be used to increase the matur
level of software engineering. One day all softwal
engineers understand “Concepts Every Softwang m ()
Engineer should know”. The concepts will be few{
universally agreed, matematically and linguistigall M this; .
precise, integrated, and comprehensible like t'ﬁeret“rn(th's)’
concepts in physics.

tg/rrpl ement ati on

integer objectl := 2;
APPENDIX 1: CLASS AS RECORD-TYPE FOR
DYNAMICALLY-ALLOCATED OBJECTS
While there are thousands of OOPLs, from theobject2 := 3;
memory-allocation perspective there are essentially
two allocation strategies: static and dynamic. G# . .
. . © Vvoid operation1()
and Java require record-objects to be dynamically
allocated. The termeference typeis added for | Objectl :="b;
class, introducing more difficulty. }
The term may seem to invalidate the concept afig 30 Equivalent source-code in NUSA
record-value, as can be seen in [27]. But here we
prove that the dynamic allocation like in C# and Classes in C# and Java are both record-types and
Java does not invalidate the concept of recordnodules. This still confirms the theory that the

void operation2()

value. The operational-semantic of common denominator for class is: record-type.
Classes in other OOPLs (notably C++) are not
an_object := type_name (arguments_list) ; modules.

APPENDIX 3: MODELING CLASS AS
DERIVED CONCEPTS
Z),: ?;chgég?oqu:‘nzﬂ]—f’_bﬁclhmns[i] This appendix explains the similarity of physics’
(tyEe_nan%e (actual_o'perands_nst)) bas_e and der|_ved dimensions with the proposed
basic and derived concepts. Table VIIII shows two
Mathematically we write: base dimensions and two derived dimensions in

is

e ——
387

Journal of Theoretical and Applied Information Technology

30" June 2013. Vol. 52 No.3

N

RN

© 2005 - 2013 JATIT & LLS. All rights reserved-

" A mmmm—
F7aYTTI]

ISSN:1992-8645 www.jatit.org

E-ISSN:1817-3195

physics. All derived dimensions must be based on [9]
base dimension(s).

Table VIII. Partial list of base dimensions and isled

dimensions in physics; for various classic engiimeger (10]
Base dimension Derived dimension

Length (L) Area (L9

Time (T) Speed (ET% [11]

Table IX tabulates class as derived concept, not a
basic one; based on the explanation in Appendix 1
and Appendix 2. Class in C++, Delphi, and alike [12]
belong to the class as {merely as record type).

Class in C#, Java, and alike belong to the class as
T Ob%; a class is a type as well as an object (of
type module).

TablelX. Partial list of basic concept and derived [13]
concept for software engineering

Basic concept Derived concept

Type (T) Class (T)

Object (Ob) Class (FOb') [14]
ACKNOWLEDGMENT [15]

The first author thanks The Ministry of
Communication and Information of Indonesia for
financial support in the making of NUSA codel16]
translator.

REFERENCES: [17]

[1] Saeed MoaveniEngineering Fundamentals:[ls]
An Introduction to Engineering 2" ed,
Thomson Engineering. 2005. [19]

ISO. ISO/IEC 2382-15:1999Information
technology -- Vocabulary -- Part 15:
Programming language$SO. 1999. [20]
Elisa Bertino, Lorenzo Martino.Object-
Oriented Database Systems: Concepts and
Architectures Addison Wesley, 1993.

Grady Booch et alObject-Oriented Analysis [21]
and Design 3¢ edition. Addison Wesley,
2007.

OMG. OMG Unified Modeling Language
Infrastructure Object Management Group[22]
2011.

OMG. OMG Unified Modeling Language
Superstructure Object Management Group[23]
2011.

ISO. ISO/IEC 14882:2003 Programming
Languages -- €+. ISO. 2003. [24]
Twan Basten, Wil M. P. van der Aalst.
“Inheritance of behavidy in The Journal of
Logic and Algebraic Programming=lsevier.
2001.

(2]

[3]

[4]

[5]

[6]

[7]
[8]

James Gosling, Bill Joy, Guy Steele, Gilad
Bracha, Alex Buckley.The Java Language
Specification Oracle Corp. 2012.

Martin Sulzmann, Meng Wang. Modular
Generic Programming with Extensible
Superclassésin ACM SIGPLAN September
16. 2006.

David Greenfieldboyce and Jeffrey S. Foster.
“Type Qualifier Inference for JaVa in
OOPSLA October 200p@p 21-25. ACM 978-
1-59593-786-5/07/0010. 2007.

Martin Plimicke. Typeless programming in
Java 5.0 with wildcards in Proceedings of
the 5th international symposium on Principles
and practice of programming in Jav&ACM

pp 73-82. 2007.

Norbert Schirmer. Analysing the Java
Package/Access Concepts in Isabelle/MHOL
in Concurrency and Computation: Practice
and Experience2003; 0:1-10. John Wiley &
Sons. 2003.

ECMA International. ECMA-334 Standard.
C# Language Specificatio2006.

Antero Taivalsaari.On the notion of Objett

in Journal of Systems Softwardol 21:3-13
pp 3-16; 1993.

Alfred V. Aho et al. Compilers: Principles,
Techniques, and Togl€™ edition. Addison-
Wesley, 2006.

IEEE. IEEE Standard Glossary of Software
Engineering TerminologyEEE. 1990.

Oxford. Oxford American English Dictionary
Oxford. 2005.

Geoffrey Leech, Margaret Deuchar, Robert
Hoogenraad.English Grammar for Today
MacMillan. 1982.

José de Oliveira GuimardesTHe Green
language type systém in Computer
Languages, Systems & Structurdsisevier.
20009.

Jaakko Jarvi, Mat Marcus, Jacob N. Smith.
“Programming with C++ concepts in
Science of Computer Programmin2009.01.
Elsevier. 2009.

Adele Goldberg, David Robso8malltalk-80:
The Language and Its Implementation
Addison-Wesley. 1983.

C. J. Date, Hugh DarwenThe Third
Manifesto: Foundation for Object/Relational
Databases1998.

Haibin Zhu, MengChu ZhauMethodology
First and Language Second: A Way to Teach
Object-Oriented Programmingin OOPSLA
2003, October 26-30ACM 1-58113-751-
6/03/0010. 2003.

388

Journal of Theoretical and Applied Information Technology

30" June 2013. Vol. 52 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved-

R

" A mmmm—
F7aYTTI]

ISSN:1992-8645 www.jatit.org

E-ISSN:1817-3195

(25]

(26]

[27]

(28]
(29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

Adele Goldberg, Alan Kay.Smalltalk-72
Instruction Manual Xerox Palo Alto Research
Center. 1972.

Derek Rayside, Gerard T. CampbellAr!
Aristotelian Understanding of Object-
Oriented Programminy in OOPSLA 2000,
10/00 2000 ACM ISBN 1-58113-200-
x/00/0010. 2000.

Nicu G. Fruja. Towards proving type safety
of G#", in Computer Languages, Systems &
Structures Elsevier. 2009.

Frederick P. Brooks.The Mythical Man
Month Addison Wesley. 1975.

Frederick P. Brooks.The Mythical Man
Month, 2" edition, Addison Wesley. 1995.
Bernaridho |. Hutabarat. Programming
Concepts: with NUSA Programming-
language Ma Chung Press. 2010.

ISO. ISO/IEC 9899:1999 Programming
Languages-C. ISO. 1999.

Bernaridho l. Hutabarat. Modular
Programming: A Revolutionary Approadida
Chung Press. 2010.

Bernaridho I. Hutabarat, Mochamad Hariadi,
Ketut E. Purnama, and Mauridhi H. Purnomo.
“Module, Modular Programming, and
Module-based Encapsulation: Critiques and
Solutions; in The 5th International
Conference on Information & Communication
Technology and Systend€TS). pp 233-240.
ISSN 2085-1944. 2009.

Bernaridho |[|. Hutabarat, Lucky Irawan.
"Simple and Universal Theory of Namespace
and Its Relationship to Repetition using For():
How it affects the design of NUSA
programming-languade in Journal of
Computer Sciencepp 167-176. ISSN 1412-
9523. University of Pelita Harapan. 2011.
Bernaridho |. Hutabarat, Mochamad Hariadi,
Ketut E. Purnama, and Mauridhi H. Purnomo.
“NUSA (Neat Uniform Simple Architecture):
A Highly Orthogonal Programming
Languagé, in Proceedings of the World
Congress on Engineering and Computer
Science2011 Vol | WCECS 2011, October
19-21, 2011, San Francisco, USA. 2011.
Hugh Darwen. The Third Manifesto, ACM
SIGMOD Record, vol. 24, no. 1, pp. 39-49,
March 1995.

389

