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ABSTRACT 
 

In this paper, we find a family of -ary sequences with ideal two-level autocorrelation with symbols in the 
finite field . The proposed family may be considered as a generalization of the well-known nonbinary 
sequences introduced by Helleseth and Gong. Using the constructed sequences and -sequences, we 
present a family of  -ary sequences of which the correlation property is optimal in terms of the Welch 
lower bound. 
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1. INTRODUCTION  

Pseudorandom sequences with good correlation 
properties have many applications in modern 
communication systems and cryptography, such as 
radar, CDMA communication systems, and stream 
cipher cryptosystems [1-5]. The design of 
sequences with two-level ideal autocorrelation, 
which play important roles in synchronization 
applications and also have close connection to 
different sets, has been an interesting research topic 
for decades [2] and [4]. In recent years, there have 
been numerous researches on binary sequences with 
two-level autocorrelation property, see [2] for 
details. However, for -ary sequences with two-
level autocorrelation, without using a subfield 
constructions, there is only one general construction 
for any arbitrary odd prime , which is the -
sequences. Helleseth and Gong [4] presented a 
construction of -ary sequences with ideal two-
level autocorrelation for any odd , which 
generalized the ternary family by Helleseth, Kumar 
and Martinsen [5]. This is another general 
construction for -ary sequences with ideal 
autocorrelation property and we refer it as HG 
sequence in the sequel. Using -ary HG sequences, 
Jang, et al presented a family of nonbinary 
sequences having optimal auto- and cross-
correlation property with respect to the well-known 
Welch bound [6]. 

In the present paper, we give a class of -ary 
sequence with two-level ideal autocorrelation which 

shall be referred as a generalization of the HG 
sequence. With the proposed construction, a family 
of -ary sequence with period , size  and 
the maximal nontrivial correlation value  not 

exceeding  is proposed. 

2. PRELIMILARIES 

Let  and  an odd prime. 
Throughout we denote the finite field of order  
by  and its nonzero elements by , and we 
assume  is a primitive element of . Let 

. We denote  as  and  as  

when convenient. Let  (and, respectively, 
) be the trace mapping from  into the 

subfield (and, respectively, from  into ). 
They are given by 

 

For simplicity, we denote  (and, 
respectively, ) as  (and respectively, 

). 
Given two sequences  
and  of period , we 
define the periodic cross correlation between  and 
 at shift  as 

 

where  is the -th root of unity given by 

. In particular, we denote the cross 
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correlation of  with itself at shift  by , 
which is the autocorrelation of . A sequence  of 
period  is called an ideal two-level 
autocorrelation sequence if  for any 

. 

Let  where  and 

 is a basis for  over 

. Then the function  in  is a 
quadratic form over  if it can be expressed as 

 

where . The quadratic form in odd 
characteristic has been well analyzed in [7]. The 
rank of a quadratic form is the minimum number of 
variables required to represent the function under 
the nonsingular coordinate transformations, which 
is related to the dimension of the vector space  in 

, i.e., 
 

for all .  More precisely, 
. 

It is well known that any quadratic form of 
rank  can be transferred to one of the following 
three canonical form [7].  

Lemma 1. For any quadratic form  in , if 
the rank of  is , then  is equivalent to 
the following 

 

where ,  
and  is a fixed nonsquare in . For any element 

, the number of solutions to the equation 
 is as follows: 

 

where  and  are functions in , 
respectively, given by 

 

and 

 

Let  be a polynomial with coefficients in  
such that  for any . Let  

be a positive integer such that  
and . Then, 

where  is a quadratic form 
over  and  is a nonsquare in . 

The main result depends on the following lemma 
which is an extension and consequence of results 
from Trachtenberg [9] and Helleseth and Gong [4].  

Let  be a quadratic form over  in 
 variables of rank . Let  be a non-square 

in  and define 

 

Then 

 

Helleseth and Gong in [4] introduced a family of -
ary sequences with ideal two-level autocorrelation. 

Theorem 1. ([4]) Let  be an integer 
such that . Define  

 and  for 
, where indices of  are taken 

modulo . Let  and 
 for . Define 

              (1) 

Then the sequence over  defined by 
 has an ideal two-level 

autocorrelation. 
Using the above Helleseth-Gong sequences, a 

family of -ary sequences of period  with 
size , which has the optimal correlation property, 
was constructed in [8]. That is, the maximum 
nontrivial correlation value  of all pairs of 
distinct sequences in the family does not exceed 

, which means the family has optimal 
correlation with respect to Welch lower bound [6]. 

3. NONBINARY SEQUENCES WITH IDEAL 
AUTOCORRELATION 

Similar to the idea adopted by Helleseth and Gong, 
we present a family of nonbinary sequences with 
two-level autocorrelation in this paper. 

Theorem 2. Let  be an positive integer such that 
. Let  be an integer 

such that . Define  

 and  for 
, where indices of  are taken 
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modulo . Let  and 
 for . Define 

                                  (2) 

Then the sequence over  defined by 
 has an ideal two-level 

autocorrelation. 

Remark 1. For the special case of , the 
function  defined in Theorem 2 turns to be the 
function  in Theorem 1. Then the sequences 

 and  are the same. In general, we will 
show in Proposition 2 and Example 1 that there 
exist integers  such that the sequences  and 

 are cyclically inequivalent. Hence we regard 
the sequences obtained in Theorem 2 as generalized 
Hellseth-Gong sequences. 

We firstly give an interesting result which will 
be used in the proof of Theorem 2. 

Define a vector 
 

and the right circular shift operator  over  as 
 

By iterating the shift operator  over , we can 

obtain a set  
Define a  matrix  as 

              (3) 
where 

 (4) 
is an element of  and the indices of ’s and ’s 
are taken modulo . 
For example, when  and , denoting 

 for  for simplicity, 
we obtain the matrix  as follows. 

 

The determinant of the matrix  as defined in (3) 
is characterized in Proposition 1. 
 
Proposition 1. Let  with . 
The determinant  is given by 

 

Proof. Note that for , 

 

For , by replacing the -th row 
by the sum of the -th and -th row (where 

indices are taken modulo ), we obtain a 
matrix  with entity 

Then dividing the elements in the -th row by 
 and the elements in the -th 

column by , the determinant of the matrix  
becomes 

 

where  is a  matrix such 
that 

 

We repeat the process above for the matrix , i.e., 
for  we replace the -th row the 
sum of the -th and -th row (where indices 
are taken modulo ). Performing these row 
operations on  leads to a matrix where all 
elements are zeros except for only two nonzero 
elements in each row. The only nonzero elements in 
the resulting matrix  are 

 

and for , 

Thus, the determinant of  is a product of two 
terms along two “diagonals" corresponding to 
indices  and  respectively 
for . That is to say, the 
determinant 

 
Note that the determinant of the matrix with 
rows  for  is one half of the 
matrix with row  for . 
This implies 
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The proof is ended.                                          
We can now complete the proof of Theorem 2. 
Proof of Theorem 2. The autocorrelation of  
at shift  is given by 

 

In the following we will investigate the value of 
 when  is nonzero. From the definition, one 

has  for any  since 

 
 for .  
Denote . It follows from 
Lemmas 2 and 3 that 

where 
  
is a quadratic form over  and  is the rank of 

. To determine the rank , as stated in Section 
2, we need to consider the number of solutions 

, such that 

 for all . In the 
following we represent each element 

 in the form  where  or 
 is a non-square in the subfield . For simplicity, 

we denote 

,  
then 

 

Thus,  is equivalent to 

 

i.e., 

 

If this holds for all , we must have 

 

and 

 

The first equation holds for all  if and 
only if 

 

The second equation follows directly as a 
consequence of  by considering 

. Hence,  
holds for all  if and only if . 

That is to say, in order to show the rank of  is 
, it suffices to show that the equation 

 has only one solution . 
From the definition of , we have 

 

Further, since ,  for 
 and , 

 

where . Raising the linearized equations 

 to the  power for , 
we can obtain a linear equation system with 

 equations in the  unknowns  
for . The coefficient matrix 

 of this system is given by 

 
where the indices are taken modulo  and 

 is the coefficient of  in the equation 

. Note that  and 
 for . Thus the vector 

 becomes 
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where  is as given in (4). Denote the 

variables  for . Then it 
follows from Proposition 1 that the determinant of 
the coefficient matrix  is 

Note that  is a square. 
Thus, if  is a non-square,  for 

, which implies . When 
, suppose the determinant , then we 

have  for some integer , 
which is equivalent to 

. Since 
, we have . 

This leads to a contradiction . Thus, 

the linear equation system with  
for  has  as its only 
solution. This implies the quadratic form 

 has rank 
 when . Thus,  

when is nonzero.                                              
 
The following proposition characterize the 
sufficient and necessary condition for cyclic 
equivalence of the sequences given in Theorems 1 
and 2. 
Proposition 2. Let . Let  and 

 be the sequences as defined in Theorems 1 
and 2. Then  if and only if 

 and for any , , where 

. 
Proof. As discussed in the proof of Theorem 2, 

 

where  is a 
quadratic form in ,  and  is a 

nonsquare of . Note that  if 
and only if the rank of the quadratic form  
equals to zero. That is to say,  if 
and only if  holds for any 

. Similar to the method adopted in 

Theorem 2,  holds for any 
 is equivalent to the linearized 

equation 

 

holds for any . From the definition of 
 for , this equation is 

rewritten as 

Therefore,  holds for any 

 if and only if  for 
. It is easily obtained that 

 for  and  for 
.                                             

 
Due to Proposition 2, the task of finding cyclically 
inequivalent sequences in Theorems 1 and 2 can be 
reduced to find parameters  such that the 
condition  for  is not 
fulfilled, which is independent of the value of  and 

. We give two such examples in the following. 
Example 1. (i) For  and , it follows 
from the definition that 

 and 
.Denote 

. 
If , then the inverse of  modulo  is 

. This implies 

. 
Then for any odd prime  and positive integer , 
the two sequences 

 
and 

 
are cyclically inequivalent. 
(ii) For  and , it follows from the 
definition that 

and . Denote 
. If , then the 

inverse of  modulo  is . This implies 

. 
Then for any odd prime  and positive integer 
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, the two sequences 

and 

are cyclically inequivalent. 

Now we turn to the construction of a sequence 
family of which the (auto- and cross-) correlation is 
optimal up to the Welch bound. Similar to the 
method in [6], an extended family of -ary 
sequence with optimal cross correlation property is 
presented in this paper. 
 
Let  be defined as in Theorem 2. A family of 

-ary sequence of period  with family size 
 is defined as 

 (5) 

where  and 
 is an enumeration of 

elements in the field . Specially let . 
The following theorem can be similarly proved 
with the method adopted in the proof of Theorem 7 
in [8]. Here we omit the proof. 
Theorem 3. The family  defined in (5) has the 
optimal correlation property with 

. 

4. CONCLUSION 

In this paper, we generalized the function given in 
[4], which generates sequences over  with two-
level ideal autocorrelation. Among the proposed 
sequences, which is referred as the generalized HG 
sequences, we have found sequences cyclically 
inequivalent to the HG sequences. In addition, a 
nonbinary sequence family with optimal correlation 
property was constructed. 
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