10th June 2013. Vol. 52 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645

www.jatit.org

E-ISSN: 1817-3195

GENERALIZED *P*-ARY SEQUENCES WITH TWO-LEVEL AUTOCORRELATION

¹ XINJIAO CHEN, ² HUANGUO ZHANG

¹Affiliation, School of Computer Science Wuhan University, P.R. CHINA

²Affiliation, School of Computer Science Wuhan University, P.R. CHINA

E-mail: ¹xinjiaochen@hotmail.com, ²liss@whu.edu.cn

ABSTRACT

In this paper, we find a family of *p*-ary sequences with ideal two-level autocorrelation with symbols in the finite field \mathbb{F}_p . The proposed family may be considered as a generalization of the well-known nonbinary sequences introduced by Helleseth and Gong. Using the constructed sequences and *m*-sequences, we present a family of *p*-ary sequences of which the correlation property is optimal in terms of the Welch lower bound.

Keywords: Communication Systems, Pseudorandom Sequences, Correlation, Ideal Two-Level Autocorrelation

1. INTRODUCTION

Pseudorandom sequences with good correlation properties have many applications in modern communication systems and cryptography, such as radar, CDMA communication systems, and stream cipher cryptosystems [1-5]. The design of sequences with two-level ideal autocorrelation, which play important roles in synchronization applications and also have close connection to different sets, has been an interesting research topic for decades [2] and [4]. In recent years, there have been numerous researches on binary sequences with two-level autocorrelation property, see [2] for details. However, for p-ary sequences with twolevel autocorrelation, without using a subfield constructions, there is only one general construction for any arbitrary odd prime p, which is the msequences. Helleseth and Gong [4] presented a construction of p-ary sequences with ideal twolevel autocorrelation for any odd p, which generalized the ternary family by Helleseth, Kumar and Martinsen [5]. This is another general construction for p -ary sequences with ideal autocorrelation property and we refer it as HG sequence in the sequel. Using *p*-ary HG sequences, Jang, et al presented a family of nonbinary sequences having optimal auto- and crosscorrelation property with respect to the well-known Welch bound [6].

In the present paper, we give a class of p-ary sequence with two-level ideal autocorrelation which

shall be referred as a generalization of the HG sequence. With the proposed construction, a family of *p*-ary sequence with period $p^n - 1$, size p^n and the maximal nontrivial correlation value R_{max} not exceeding $p^{n/2} + 1$ is proposed.

2. PRELIMILARIES

Let n = (2m + 1)e and p an odd prime. Throughout we denote the finite field of order p^n by \mathbb{F}_{p^n} and its nonzero elements by $\mathbb{F}_{p^n}^*$, and we assume α is a primitive element of \mathbb{F}_{p^n} . Let $q = p^e$. We denote \mathbb{F}_{p^e} as \mathbb{F}_q and \mathbb{F}_{p^n} as $\mathbb{F}_{q^{2m+1}}$ when convenient. Let $\operatorname{Tr}_e^n(x)$ (and, respectively, $\operatorname{Tr}_1^e(x)$) be the trace mapping from \mathbb{F}_{p^n} into the subfield \mathbb{F}_q (and, respectively, from \mathbb{F}_q into \mathbb{F}_p). They are given by

$$\operatorname{Tr}_{e}^{n}(x) = \sum_{i=0}^{2m} x^{p^{ie}}, \quad \operatorname{Tr}_{1}^{e}(x) = \sum_{i=0}^{e-1} x^{p^{i}}.$$

For simplicity, we denote $\operatorname{Tr}_1^n(x)$ (and, respectively, $\operatorname{Tr}_1^e(x)$) as $\operatorname{Tr}_n(x)$ (and respectively, $\operatorname{Tr}_e(x)$).

Given two sequences $a = \{a_0, a_1, \dots, a_{N-1}\}$ and $b = \{b_0, b_1, \dots, b_{N-1}\}$ of period N, we define the periodic cross correlation between a and b at shift τ as

$$C_{a,b}(\tau) = \sum_{t=0}^{N-1} \omega^{a_t - b_{t+\tau}},$$

where ω is the *p*-th root of unity given by $\omega = e^{\frac{2\pi\sqrt{-1}}{p}}$. In particular, we denote the cross

<u>10th June 2013. Vol. 52 No.1</u>

© 2005 - 2013 JATIT & LLS. All rights reserved

ISSN: 1992-8645	www.jatit.org	E-ISSN: 1817-3195
-----------------	---------------	-------------------

correlation of a with itself at shift τ by $A_a(\tau)$, which is the autocorrelation of a. A sequence a of period N is called an ideal two-level autocorrelation sequence if $A_a(\tau) = -1$ for any $\tau \neq 0 \pmod{N}$.

Let $x = \sum_{i=0}^{2m} x_i \alpha_i$ where $x_i \in \mathbb{F}_q$ and $\alpha_i, i = 0, 1, \cdots, 2m$ is a basis for $\mathbb{F}_{q^{2m+1}}$ over \mathbb{F}_q . Then the function Q(x) in $\mathbb{F}_{q^{2m+1}}$ is a quadratic form over \mathbb{F}_q if it can be expressed as

$$Q(x) = Q(\sum_{i=0}^{2m} x_i \alpha_i) = \sum_{i=0}^{2m} \sum_{j=0}^{2m} b_{i,j} x_i x_j$$

where $b_{i,j} \in \mathbb{F}_q$. The quadratic form in odd characteristic has been well analyzed in [7]. The rank of a quadratic form is the minimum number of variables required to represent the function under the nonsingular coordinate transformations, which is related to the dimension of the vector space \mathcal{W} in $\mathbb{F}_{q^{2m+1}, i.e.,}$

 $\mathcal{W} = \{ y \in \mathbb{F}_{q^{2m+1}} | Q(x+y) = Q(x) \}$ for all $x \in \mathbb{F}_{q^{2m+1}}$. More precisely, $\rho = 2m + 1 - \dim(\mathcal{W}).$

It is well known that any quadratic form of rank ρ can be transferred to one of the following three canonical form [7].

Lemma 1. For any quadratic form Q(x) in \mathbb{F}_q , if the rank of Q(x) is ρ , then Q(x) is equivalent to the following

Type I: $B_{\rho}(x)$; Type II: $B_{\rho-1}(x) + \mu x_{\rho}^2$; Type III: $B_{\rho-2}(x) + x_{\rho-1} - \lambda x_{\rho}^2$; where $B_{\rho} = x_1 x_2 + \dots + x_{\rho-1} x_{\rho}$, $\mu \in \{1, \lambda\}$ and λ is a fixed nonsquare in \mathbb{F}_q . For any element $\xi \in \mathbb{F}_q$, the number of solutions to the equation $Q(x) = \zeta$ is as follows:

Type I:
$$q^{2m} + v(\zeta)q^{2m-\rho/2};$$

Type II:
$$q^{2m} + \eta(\zeta \mu)q^{2m+1-(\rho+1)/2};$$

Type III:
$$q^{2m} - v(\zeta)q^{2m-\rho/2};$$

where v(x) and $\eta(x)$ are functions in \mathbb{F}_q , respectively, given by

$$v(x) = egin{cases} -1 & ext{if } x
eq 0, \ q-1 & ext{otherwise.} \end{cases}$$

and

$$\eta(x) = \begin{cases} 0 & \text{if } x = 0, \\ 1 & \text{if } x \text{ is a squre} \\ -1 & \text{otherwise.} \end{cases}$$

Let p(x) be a polynomial with coefficients in \mathbb{F}_{p^n} such that $p(\lambda x) = \lambda p(x)$ for any $\lambda \in \mathbb{F}_{p^e}$. Let d be a positive integer such that $gcd(d, p^n - 1) = 2$ and $d \equiv 2 \pmod{p^e - 1}$. Then,

$$\sum_{x \in \mathbb{F}_{p^n}} \omega^{\operatorname{Tr}_n(p(x))} = \frac{1}{2} \Big(\sum_{x \in \mathbb{F}_{p^n}} \omega^{\operatorname{Tr}_e(Q(x))} + \sum_{x \in \mathbb{F}_{p^n}} \omega^{\operatorname{Tr}_e(rQ(x))} \Big)$$

where $Q(x) = \operatorname{Tr}_{e}^{n}(p(x^{d}))$ is a quadratic form over \mathbb{F}_{q} and r is a nonsquare in \mathbb{F}_{q} .

The main result depends on the following lemma which is an extension and consequence of results from Trachtenberg [9] and Helleseth and Gong [4].

Let Q(x) be a quadratic form over \mathbb{F}_q in 2m + 1 variables of rank ρ . Let r be a non-square in \mathbb{F}_q and define

$$S = \frac{1}{2} \Big(\sum_{x \in \mathbb{F}_{q^{2m+1}}} \omega^{\operatorname{Tr}_{k}(Q(x))} + \sum_{x \in \mathbb{F}_{q^{2m+1}}} \omega^{\operatorname{Tr}_{k}(rQ(x))} \Big).$$

Then

$$S = \begin{cases} 0, & \text{if } \rho \text{ is odd,} \\ \pm q^{(2m+1)-\rho/2}, & \text{if } \rho \text{ is even.} \end{cases}$$

Helleseth and Gong in [4] introduced a family of *p*-ary sequences with ideal two-level autocorrelation.

Theorem 1. ([4]) Let $s, 1 \le s \le 2m$ be an integer such that gcd(s, 2m + 1) = 1. Define $b_0 = 1$, $b_i = b_{2m+1-i}$ and $b_{is} = (-1)^i$ for $i = 1, 2, \cdots, m$, where indices of b_{is} are taken modulo 2m + 1. Let $u_0 = b_0/2 = (p+1)/2$ and $u_i = b_{2i}$ for $i = 1, 2, \cdots, m$. Define

$$f_0(x) = \sum_{i=0}^m u_i x^{(p^{2ie}+1)/2}.$$
 (1)

Then the sequence over \mathbb{F}_p defined by $a(t) = \operatorname{Tr}_n(f_0(\alpha^t))$ has an ideal two-level autocorrelation.

Using the above Helleseth-Gong sequences, a family of p-ary sequences of period $p^n - 1$ with size p^n , which has the optimal correlation property, was constructed in [8]. That is, the maximum nontrivial correlation value C_{max} of all pairs of distinct sequences in the family does not exceed $p^{n/2} + 1$, which means the family has optimal correlation with respect to Welch lower bound [6].

3. NONBINARY SEQUENCES WITH IDEAL AUTOCORRELATION

Similar to the idea adopted by Helleseth and Gong, we present a family of nonbinary sequences with two-level autocorrelation in this paper.

Theorem 2. Let k be an positive integer such that gcd(n,k) = e. Let $s, 1 \le s \le 2m$ be an integer such that gcd(s, 2m + 1) = 1. Define $b_0 = 1$, $b_i = b_{2m+1-i}$ and $b_{is} = (-1)^i$ for $i = 1, 2, \cdots, m$, where indices of b_{is} are taken

<u>10th June 2013. Vol. 52 No.1</u>

© 2005 - 2013 JATIT & LLS. All rights reserved.

modulo 2m + 1. Let $u_0 = b_0/2 = (p+1)/2$ and $u_i = b_{2i}$ for $i = 1, 2, \cdots, m$. Define

$$f(x) = \sum_{i=0}^{m} u_i x^{(p^{2ik}+1)/2}.$$
 (2)

Then the sequence over \mathbb{F}_p defined by $b(t) = \operatorname{Tr}_n(f(\alpha^t))$ has an ideal two-level autocorrelation.

Remark 1. For the special case of k = e, the function f(x) defined in Theorem 2 turns to be the function f_0 in Theorem 1. Then the sequences $\{a(t)\}$ and $\{b(t)\}$ are the same. In general, we will show in Proposition 2 and Example 1 that there exist integers k such that the sequences $\{a(t)\}$ and $\{b(t)\}$ are cyclically inequivalent. Hence we regard the sequences obtained in Theorem 2 as generalized Hellseth-Gong sequences.

We firstly give an interesting result which will be used in the proof of Theorem 2.

Define a vector

 $\varepsilon = (\varepsilon_0, \varepsilon_1, \cdots, \varepsilon_{2m}), \ \varepsilon_i = (-1)^i \text{ for } 0 \le i \le 2m$ and the right circular shift operator σ over ε as $\sigma(\varepsilon) = (\varepsilon_{2m}, \varepsilon_0 \cdots, \varepsilon_{2m-1}).$

By iterating the shift operator σ over ε , we can obtain a set $\Gamma = \{\varepsilon, \sigma(\varepsilon), \cdots, \sigma^{2m}(\varepsilon)\}.$

Define a $(2m + 1) \times (2m + 1)$ matrix M as $M_{i,j} = \beta_{j-i}(tz_i z_j - 1),$

where

 $\beta = \sigma^{r}(\varepsilon) = (\varepsilon_{2m+1-r}, \cdots, \varepsilon_{2m}, \varepsilon_{0}, \cdots, \varepsilon_{2m-r}) \quad (4)$ is an element of Γ and the indices of β_{i} 's and z_{i} 's are taken modulo 2m + 1.

For example, when m = 2 and r = 1, denoting $t_{i,j} = tz_i z_j - 1$ for $0 \le i, j \le 4$ for simplicity, we obtain the matrix M as follows.

$$M = \begin{pmatrix} t_{0,0} & t_{0,1} & -t_{0,2} & t_{0,3} & -t_{0,4} \\ -t_{1,0} & t_{1,1} & t_{1,2} & -t_{1,3} & t_{1,4} \\ t_{2,0} & -t_{2,1} & t_{2,2} & t_{2,3} & -t_{2,4} \\ -t_{3,0} & t_{3,1} & -t_{3,2} & t_{3,3} & t_{3,4} \\ t_{4,0} & -t_{4,1} & t_{4,2} & -t_{4,3} & t_{4,4} \end{pmatrix}.$$

The determinant of the matrix M as defined in (3) is characterized in Proposition 1.

Proposition 1. Let $\beta = \sigma^r(\varepsilon)$ with $0 \le r \le 2m$. The determinant det(M) is given by

$$det(M) = 2^{2m-1} \left(\prod_{i=0}^{2m} (tz_i z_{i+r} - 1) + \prod_{i=0}^{2m} (tz_i z_{i+r-1} - 1) \right).$$

Proof. Note that for $i = 0, 1, \dots, 2m$,

$$\beta_i + \beta_{i-1} = \begin{cases} 2, & \text{if } i = r, \\ 0, & \text{otherwise.} \end{cases}$$

For $i = 0, 1, \dots, 2m$, by replacing the *i*-th row by the sum of the *i*-th and (i + 1)-th row (where indices are taken modulo 2m + 1), we obtain a matrix N with entity

$$N_{i,j} = \beta_{j-i}(tz_iz_j - 1) + \beta_{j-(i+1)}(tz_{i+1}z_j - 1)$$
$$= \begin{cases} tz_j(z_i + z_{i+1}) - 2, & \text{if } j - i = r, \\ \beta_{j-i}tz_j(z_i - z_{i+1}), & \text{otherwise.} \end{cases}$$

Then dividing the elements in the *i*-th row by $t(z_i - z_{i+1})$ and the elements in the *j*-th column by z_j , the determinant of the matrix N becomes

$$det(N) = \prod_{i=0}^{2m} (t(z_i - z_{i+1})) \prod_{j=0}^{2m} z_j \cdot det(R),$$

where R is a $(2m + 1) \times (2m + 1)$ matrix such that

$$R_{i,j} = \begin{cases} \frac{(tz_j(z_i+z_{i+1})-2)}{tz_j(z_i-z_{i+1})}, & \text{if } j-i=r, \\ \beta_{j-i}, & \text{otherwise.} \end{cases}$$

We repeat the process above for the matrix R, i.e., for $i = 0, 1, \dots, 2m$ we replace the *i*-th row the sum of the *i*-th and (i + 1)-th row (where indices are taken modulo 2m + 1). Performing these row operations on R leads to a matrix where all elements are zeros except for only two nonzero elements in each row. The only nonzero elements in the resulting matrix S are

$$\begin{split} S_{i,i+r} = & \beta_{r-1} + (tz_{i+r}(z_i + z_{i+1}) - 2)/tz_{i+r}(z_i - z_{i+1}) \\ = & 2(tz_i z_{i+r} - 1)/tz_{i+r}(z_i - z_{i+1}) \\ \text{and for } j = i + r + 1, \\ S_{i,j} = & \beta_{r+1} + (tz_j(z_{i+1} + z_{i+2}) - 2)/tz_j(z_{i+1} - z_{i+2}) \end{split}$$

$$=2(tz_{i+2}z_j-1)/tz_j(z_{i+1}-z_{i+2}).$$

Thus, the determinant of S is a product of two terms along two "diagonals" corresponding to indices (i, i + r) and (i, i + r + 1) respectively for $i = 0, 1, \dots, 2m$. That is to say, the determinant

$$det(S) = \prod_{i=0}^{2m} \frac{2(tz_i z_{i+r} - 1)}{tz_{i+r}(z_i - z_{i+1})} + \prod_{i=0}^{2m} \frac{2(tz_{i+2} z_{i+r+1} - 1)}{tz_{i+r+1}(z_{i+1} - z_{i+2})}$$
$$= \prod_{i=0}^{2m} \frac{2(tz_i z_{i+r} - 1)}{tz_{i+r}(z_i - z_{i+1})} + \prod_{i=0}^{2m} \frac{2(tz_{i+1} z_{i+r} - 1)}{tz_{i+r}(z_i - z_{i+1})}.$$

Note that the determinant of the matrix with rows r_i for $i = 0, 1, \dots, 2m$ is one half of the matrix with row $r_i + r_{i+1}$ for $i = 0, 1, \dots, 2m$. This implies

(3)

10th June 2013. Vol. 52 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

JATIT

ISSN: 1992-8645

<u>www.jatit.org</u>

E-ISSN: 1817-3195

$$\begin{split} \det(M) &= \det(N)/2 \\ &= \prod_{i=0}^{2m} (t(z_i - z_{i+1})) \prod_{j=0}^{2m} z_j \cdot \det(R)/2 \\ &= \prod_{i=0}^{2m} (t(z_i - z_{i+1})) \prod_{j=0}^{2m} z_j \cdot \det(S)/4 \\ &= 2^{2m-1} (\prod_{i=0}^{2m} (tz_i z_{i+r} - 1) + \prod_{i=0}^{2m} (tz_{i+1} z_{i+r} - 1)) \\ &= 2^{2m-1} (\prod_{i=0}^{2m} (tz_i z_{i+r} - 1) + \prod_{i=0}^{2m} (tz_i z_{i+r-1} - 1)). \end{split}$$

The proof is ended.

We can now complete the proof of Theorem 2.

Proof of Theorem 2. The autocorrelation of $\{b(t)\}$ at shift τ is given by

$$\begin{split} A_b(\tau) &= \sum_{t=0}^{p^n-2} \omega^{b(t+\tau)-b(t)} \\ &= \sum_{t=0}^{p^n-2} \omega^{\operatorname{Tr}_n(f(\alpha^{t+\tau})-f(\alpha^t))} \\ &= -1 + \sum_{x \in \mathbb{F}_{p^n}} \omega^{\operatorname{Tr}_n(f(\alpha^\tau x)-f(x))}. \end{split}$$

In the following we will investigate the value of $A_b(\tau)$ when τ is nonzero. From the definition, one has $f(\lambda x) = \lambda f(x)$ for any $\lambda \in \mathbb{F}_{p^e}$ since

$$(p^{2ik}+1)/2 \equiv 1 \pmod{p^e-1}$$

for $i = 0, 1, \cdots, m$.

Denote $p(x) = f(\alpha^{\tau} x) - f(x)$). It follows from Lemmas 2 and 3 that

$$\begin{split} A_b(\tau) + 1 &= \frac{1}{2} \left(\sum_{x \in \mathbb{F}_{p^n}} \omega^{\operatorname{Tr}_e(Q(x))} + \sum_{x \in \mathbb{F}_{p^n}} \omega^{\operatorname{Tr}_e(rQ(x))} \right) \\ &= \begin{cases} 0, & \text{if } \rho \text{ is odd,} \\ \pm q^{2m+1-\rho/2}, & \text{otherwise,} \end{cases} \end{split}$$

where

$$\begin{split} Q(x) &= \operatorname{Tr}_e^n(p(x^2)) = \operatorname{Tr}_e^n(f(\alpha^{\tau}x^2) - f(x^2)) \\ \text{is a quadratic form over } \mathbb{F}_q \text{ and } \rho \text{ is the rank of } \\ Q(x). \text{ To determine the rank } \rho, \text{ as stated in Section } \\ 2, \text{ we need to consider the number of solutions } \\ y &\in \mathbb{F}_{p^n}(=\mathbb{F}_{q^{2m+1}}) \quad, \text{ such } \text{ that } \\ Q(x+y) &= Q(x) \text{ for all } x \in \mathbb{F}_{p^n} \text{ . In the } \\ \text{following we represent each element } \\ c &= \alpha^{\tau} \in \mathbb{F}_{p^n} \text{ in the form } c = t\gamma^2 \text{ where } t = 1 \text{ or } \\ t \text{ is a non-square in the subfield } \mathbb{F}_q. \text{ For simplicity, } \\ \text{we denote } \end{split}$$

$$v_i = u_i(c^{(p^{2ik}+1)/2} - 1) = u_i(t\gamma^{p^{2ik}+1} - 1),$$

then

$$Q(x) = \operatorname{Tr}_{e}^{n}(f(\alpha^{\tau}x^{2}) - f(x^{2})) = \operatorname{Tr}_{e}^{n}\left(\sum_{i=0}^{m} v_{i}x^{p^{2ik}+1}\right)$$

Thus,
$$Q(x + y) = Q(x)$$
 is equivalent to
 $\operatorname{Tr}_{e}^{n} \left(\sum_{i=0}^{m} v_{i}((x+y)^{p^{2ik}+1}) = \operatorname{Tr}_{e}^{n} \left(\sum_{i=0}^{m} v_{i}x^{p^{2ik}+1} \right),$
i.e.,
 $\operatorname{Tr}_{e}^{n} \left(\sum_{i=0}^{m} v_{i}(x^{p^{2ik}}y+xy^{p^{2ik}}) + \sum_{i=0}^{m} v_{i}y^{p^{2ik}+1} \right) = 0.$
If this holds for all $x \in \mathbb{F}_{q^{2m+1}}$, we must have
 $\operatorname{Tr}_{e}^{n} \left(\sum_{i=0}^{m} v_{i}(x^{p^{2ik}}y+xy^{p^{2ik}}) \right)$
 $= \operatorname{Tr}_{e}^{n} \left(x \left(\sum_{i=0}^{m} \left(v_{i}^{p^{-2ik}}y^{p^{-2ik}} + v_{i}y^{p^{2ik}} \right) \right) \right)$

=0and

$$\operatorname{Tr}_{e}^{n} \left(\sum_{i=0}^{m} v_{i} y^{p^{2ik}+1} \right) = 0.$$

The first equation holds for all $x \in \mathbb{F}_{q^{2m+1}}$ if and only if

$$L(y) = \sum_{i=0}^{m} \left(v_i^{p^{-2ik}} y^{p^{-2ik}} + v_i y^{p^{2ik}} \right) = 0.$$

The second equation follows directly as a consequence of L(y) = 0 by considering $\operatorname{Tr}_e^n(yL(y)) = 0$. Hence, Q(x+y) = Q(x) holds for all $x \in \mathbb{F}_{q^{2m+1}}$ if and only if L(y) = 0. That is to say, in order to show the rank of Q(x) is 2m + 1, it suffices to show that the equation L(y) = 0 has only one solution y = 0. From the definition of v_i , we have

$$L(y) = \sum_{i=0}^{m} u_i \Big((t\gamma^{p^{-2ik}+1}-1)y^{p^{-2ik}} + (t\gamma^{p^{2ik}+1}-1)y^{p^{2ik}} \Big).$$

Further, since $u_i = b_{2i}$, $b_i = b_{2m+1-i}$ for $i = 0, 1, \dots, m$ and gcd(s, 2m+1) = 1,

$$L(y) = \sum_{i=0}^{2m} b_i (t \gamma^{p^{ik}+1} - 1) y^{p^{ik}} = \sum_{i=0}^{2m} b_{is} (t \gamma^{q^{isf}+1} - 1) y^{q^{isf}},$$

where f = k/e. Raising the linearized equations L(y) = 0 to the q^{isf} power for $i = 0, 1, \dots, 2m$, we can obtain a linear equation system with 2m + 1 equations in the 2m + 1 unknowns $y^{q^{jsf}}$ for $j = 0, 1, \dots, 2m$. The coefficient matrix $M = (m_{i,j})$ of this system is given by

$$m_{i,j} = b_{(j-i)s}(t\gamma^{q^{isf}+q^{jsf}}-1)$$

where the indices are taken modulo 2m + 1 and $m_{i,j}$ is the coefficient of $y^{q^{jsf}}$ in the equation $(L(y))^{q^{isf}} = 0$. Note that $b_{is} = (-1)^i$ and $b_i = b_{2m+1-i}$ for $i = 1, \dots, m$. Thus the vector $b = (b_0, b_s, \dots, b_{2ms})$ becomes

<u>10th June 2013. Vol. 52 No.1</u>

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 <u>www.jatit.org</u> E-ISSN: 1817-3195

$$b = (1, -1, \dots, (-1)^m, (-1)^m, \dots, -1)$$

Theorem 2, $Q_1(x+y) = Q_1(x)$ holds for any
$$= (-1)^m ((-1)^m, \dots, (-1)^{2m}, (-1)^0, \dots, (-1)^{2m} \mathcal{Y}_1 \in \mathbb{F}_{q^{2m+1}}$$
 is equivalent to the linearized
equation
$$= (-1)^m \sigma^{m+1}(\varepsilon)$$

where $\sigma^{m+1}(\varepsilon)$ is as given in (4). Denote the variables $z_i = \gamma^{q^{isf}}$ for $i = 0, 1, \dots, 2m$. Then it follows from Proposition 1 that the determinant of the coefficient matrix M is

$$\begin{aligned} \Delta &= (-1)^m 2^{2m-1} \left(\prod_{i=0}^{2m} (tz_i z_{i+m+1} - 1) + \prod_{i=0}^{2m} (tz_i z_{i+m} - 1) \right) \\ &= (-1)^m 2^{2m} \prod_{i=0}^{2m} (tz_i z_{i+m} - 1). \end{aligned}$$

Note that $z_i z_{i+m} = \gamma^{q^{isf} + q^{(i+m)sf}}$ is a square. Thus, if t is a non-square, $tz_i z_{i+m} - 1 \neq 0$ for $i = 0, 1, \dots, 2m$, which implies $\Delta \neq 0$. When t = 1, suppose the determinant $\Delta = 0$, then we have $\gamma^{q^{isf}+q^{(i+m)sf}} = 1$ for some integer i, which equivalent is to $\gamma^{\gcd(q^{msf}+1,q^{2m+1}-1)} = 1$. Since $(q^{msf}+1, q^{2m+1}-1) = 2$, we have $\gamma^2 = 1$. This leads to a contradiction $c = t\gamma^2 = 1$. Thus, the linear equation system with $(L(y))^{q^{isf}} = 0$ for $i = 0, 1, \dots, 2m$ has y = 0 as its only solution. This implies the quadratic form $Q(x) = \operatorname{Tr}_{e}^{n}(f(\alpha^{\tau}x^{2}) - f(x^{2}))$ has rank 2m+1 when $\tau \neq 0$. Thus, $A_b(\tau) + 1 = 0$ when is nonzero.

The following proposition characterize the sufficient and necessary condition for cyclic equivalence of the sequences given in Theorems 1 and 2.

Proposition 2. Let f = k/e. Let $\{a(t)\}$ and $\{b(t)\}$ be the sequences as defined in Theorems 1 and 2. Then $C_{a,b}(\tau) = p^n - 1$ if and only if $\tau = 0$ and for any $0 \le i \le 2m$, $b_i = b_{\sigma(i)}$, where $\sigma(i) \equiv i \cdot f^{-1} \pmod{2m+1}$.

Proof. As discussed in the proof of Theorem 2,
$$C_{a,b}(\tau)+1 = \frac{1}{2} \Big(\sum_{x \in \mathbb{F}_{p^n}} \omega^{\operatorname{Tr}_e(Q_1(x))} + \sum_{x \in \mathbb{F}_{p^n}} \omega^{\operatorname{Tr}_e(rQ_1(x))} \Big),$$

where $Q_1(x) = \operatorname{Tr}_e^n(f_0(x^2) - f(cx^2))$ is a quadratic form in $\mathbb{F}_{q^{2m+1}}$, $c = \alpha^{\tau}$ and r is a nonsquare of \mathbb{F}_q . Note that $C_{a,b}(\tau) = p^n - 1$ if and only if the rank of the quadratic form $Q_1(x)$ equals to zero. That is to say, $C_{a,b}\tau = p^n - 1$ if and only if $Q_1(x+y) = Q_1(x)$ holds for any $x, y \in \mathbb{F}_{q^{2m+1}}$. Similar to the method adopted in

$$\sum_{i=0}^{m} \left(u_i (y^{q^{2i}} + y^{q^{2m+1-2i}}) \right)$$
$$= \sum_{i=0}^{m} \left(u_i c^{\frac{q^{2if}+1}{2}} y^{q^{2if}} + u_i (c^{\frac{q^{-2if}+1}{2}} y^{q^{-2if}})^{q^{(2m+1)f}} \right)$$

holds for any $y \in \mathbb{F}_{q^{2m+1}}$. From the definition of $u_i = b_{2i}$ for $i = 0, 1, \cdots, m$, this equation is rewritten as

$$\sum_{i=0}^{2m} b_i y^{q^i} = \sum_{i=0}^{2m} b_i c^{\frac{q^{if}+1}{2}} y^{q^{if}} = \sum_{i=0}^{2m} b_{if^{-1}} c^{\frac{q^i+1}{2}} y^{q^i}.$$

Therefore, $Q_1(x+y) = Q_1(x)$ holds for any $x, y \in \mathbb{F}_{q^{2m+1}}$ if and only if $b_i = b_{if^{-1}} c^{\frac{q^i+1}{2}}$ for $i = 0, 1, \cdots, 2m$. It is easily obtained that $c = \alpha^{\tau} = 1$ for $i = 0$ and $b_i = b_{if^{-1}}$ for $i = 0, 1, \cdots, 2m$.

Due to Proposition 2, the task of finding cyclically inequivalent sequences in Theorems 1 and 2 can be reduced to find parameters m, s, f such that the condition $b_i = b_{\sigma(i)}$ for $i = 0, 1, \dots, 2m$ is not fulfilled, which is independent of the value of p and e. We give two such examples in the following.

Example 1. (i) For m = 2 and s = 2, it follows from the definition that $B = (b_0, b_1, b_2, b_3, b_4) = (1, -1, -1, 1, 1)$ and $(u_0, u_1, u_2) = (1, -1, 1)$.Denote

$$B' = (b_{\sigma(0)}, b_{\sigma(1)}, b_{\sigma(2)}, b_{\sigma(3)}, b_{\sigma(4)}).$$

$$f = 2 \quad \text{then the inverse of } f \text{ modulo } 2m \neq 0$$

If f = 2, then the inverse of f modulo 2m + 1 is 3. This implies

$$B' = (b_0, b_3, b_1, b_4, b_2) = (1, 1, -1, 1, -1) \neq B$$

Then for any odd prime q and positive integer e, the two sequences

$$a(t) = \operatorname{Tr}_n(lpha^t - lpha^{t(q^2+1)/2} + lpha^{t(q^4+1)/2})$$
 and

$$b(t) = \operatorname{Tr}_n(\alpha^t - \alpha^{t(q^4+1)/2} + \alpha^{t(q^8)})$$

are cyclically inequivalent.

(ii) For m = 3 and s = 2, it follows from the definition that

+1)/2

$$\begin{split} B &= (b_0, b_1, b_2, b_3, b_4, b_5, b_6) = (1, 1, -1, -1, 1, 1, -1) \\ \text{and } (u_0, u_1, u_2, u_3) &= (1, -1, 1, -1) . \text{ Denote} \\ B' &= (b_0, b_{\sigma(1)}, \cdots, b_{\sigma(6)}). \text{ If } f = 3, \text{ then the} \\ \text{inverse of } f \text{ modulo } 2m + 1 \text{ is 5. This implies} \\ B' &= (b_0, b_5, b_3, b_1, b_6, b_4, b_2) &= \\ (1, 1, -1, 1, -1, 1, -1) \neq B & . \end{split}$$

Then for any odd prime p and positive integer

10th June 2013. Vol. 52 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 <u>www.jatit.org</u> E-ISSN: 1817-3

e, the two sequences

$$a(t) = \operatorname{Tr}_n(\alpha^t - \alpha^{t(q^2+1)/2} + \alpha^{t(q^4+1)/2}) - \alpha^{t(q^6+1)/2})$$

and

$$b(t) = \operatorname{Tr}_{n}(\alpha^{t} - \alpha^{t(q^{10}+1)/2} + \alpha^{t(q^{20}+1)/2} - \alpha^{t(q^{30}+1)/2}) = \operatorname{Tr}_{n}(\alpha^{t} - \alpha^{t(q^{10}+1)/2} + \alpha^{t(q^{6}+1)/2} - \alpha^{t(q^{2}+1)/2}) = \operatorname{Tr}_{n}(\alpha^{t} - \alpha^{t(q^{10}+1)/2} + \alpha^{t(q^{6}+1)/2} - \alpha^{t(q^{2}+1)/2})$$

are cyclically inequivalent.

Now we turn to the construction of a sequence family of which the (auto- and cross-) correlation is optimal up to the Welch bound. Similar to the method in [6], an extended family of p-ary sequence with optimal cross correlation property is presented in this paper.

Let f(x) be defined as in Theorem 2. A family of *p*-ary sequence of period $p^n - 1$ with family size p^n is defined as

$$\begin{split} \mathcal{S} &= \left\{ s_i(t) \mid 0 \leq i \leq p^n - 1, 0 \leq t \leq p^n - 2 \right\}, \quad (5) \\ \text{where} \quad s_i(t) &= \operatorname{Tr}_n(\alpha^t) + \operatorname{Tr}_n(f(v_i\alpha^{2t})) \quad \text{and} \\ \left\{ v_i \mid 0 \leq i \leq p^n - 1 \right\} \quad \text{is an enumeration of} \\ \text{elements in the field } \mathbb{F}_{p^n}. \text{ Specially let } v_{p^n - 1} = 0. \\ \text{The following theorem can be similarly proved} \\ \text{with the method adopted in the proof of Theorem 7} \\ \text{in [8]. Here we omit the proof.} \end{split}$$

Theorem 3. The family S defined in (5) has the optimal correlation property with

$$C_{max} = p^{n/2} + 1.$$

4. CONCLUSION

In this paper, we generalized the function given in [4], which generates sequences over \mathbb{F}_p with twolevel ideal autocorrelation. Among the proposed sequences, which is referred as the generalized HG sequences, we have found sequences cyclically inequivalent to the HG sequences. In addition, a nonbinary sequence family with optimal correlation property was constructed.

REFERENCES

- [1] S.W. Golomb. Shift register sequences. Aegean Park Press, 1982.
- [2] S.W. Golomb and G. Gong. Signal design for good correlation for wireless communication, cryptography, and radar. Cambridge University Press, 2005.
- [3] M.K. Simon, J.K. Omura, R.A. Scholtz, and B.K. Levitt. Spread Spectrum Communications. Electrical Engineering,

Telecommunications, and Signal Processing Series. Computer Science Press, 1988.

- [4] T. Helleseth and G. Gong. New nonbinary sequences with ideal two-level autocorrelation. Ieee Transactions on Information Theory, 48(11):28682872, 2002.
- [5] T. Helleseth and P. V. Kumar. Sequences with low correlation. In V. S. Pless and W. C. Human, editors, Handbook of Coding Theory, pages 17651853. Elsevier Science, 1998.
- [6] L. R. Welch. Lower bounds on maximum cross-correlation of signals. Ieee Transactions on Information Theory, 20(3):397399, 1974.
- [7] Rudolf. Lidl and Harald Niederreiter. Finite fields. Cambridge University Press, Cambridge ; New York :, 2nd ed. edition, 1997.
- [8] J. W. Jang, Y. S. Kim, J. S. No, and T. Helleseth. New family of p-ary sequences with optimal correlation property and large linear span. Ieee Transactions on Information Theory, 50(8):1839 1844, 2004.

