
Journal of Theoretical and Applied Information Technology
 10th June 2013. Vol. 52 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

11

ARCHITECTURE OF MALWARE TRACKER
VISUALIZATION FOR MALWARE ANALYSIS

1CHAN LEE YEE, 2MAHAMOD ISMAIL, 3NASHARUDDIN ZAINAL, 4LEE LING CHUAN
1,4PhD Student, Department of Electrical, Electronic and System Engineering, Universiti Kebangsaan

Malaysia, Malaysia
2Professor, Department of Electrical, Electronic and System Engineering, Universiti Kebangsaan Malaysia,

Malaysia
3Dr, Department of Electrical, Electronic and System Engineering, Universiti Kebangsaan Malaysia,

Malaysia

E-mail: 1chanleeyee@f13-labs.net, 2mahamod@eng.ukm.my, 3nash@eng.ukm.my, 4lclee_vx@f13labs.net

ABSTRACT

Malware is a man-made malicious code designed for computer destructive purposes. The early destructive
programs were developed either for pranks or experimental purposes. However, in this day and age,
malware are created mainly for financial gain. Since years ago, the use of malware attack tools, such as
keylogger, screen capture software, and trojan were rapidly used to commit cybercrimes. The figures are
expected to increase significantly and the attack tools are becoming more sophisticated in order to evade the
detection of current security tools. The malware debugger analysis process is an essential part of analyzing
and comprehending the purpose and the destructive part of the malware. It is an exhausting and time
consuming task; moreover, in-depth computer knowledge is required. With the popularity and variety of
malware attacks over the Internet, the number of virus needed to be analyzed by computer security experts
are rapidly increasing and has bottlenecked the effectiveness of the analysis process. In this paper, we
present a method to visually explore the reverse engineering of a binary executable flow over time to aid in
the identification and detection of malicious program on x86-32 platform. We first achieve the pre-
execution analysis for a sketch of a program’s behavior by combining static analysis and graphical
visualization to construct a control flow graph (CFG) as an interface for the analyzed code. Each node in
the CFG graph which represents a basic block allows analysts to be selective in the components they
monitor. All nodes in the CFG express the complex relationships and causalities of the analyzed code. As
the binary executes, those codes that are dynamically generated will be monitored and captured; thus, a
fuller understanding of the execution’s behavior will be provided. The backward track approach which
allows analysts to restudy the changes of the executed instructions’ memory during dynamic analysis
provides a chance for analysts to restudy the execution behavior of the executed instructions. The overall
architecture of the visualization debugger, both statically and dynamically will be explained in this paper.
To the end of the paper, we analyze a malware test case; W32/NGVCK.dr.gen virus with our malware
tracker visualization toolkit and the analysis results proves that our visualization malware tracker tool can
simplify the analysis process by displaying the analyzed code in basic block approach. This work is a
substantial step towards providing high-quality tool support for effective and efficient visualization
malware analysis.

Keywords: Malware Visualization Debugger, Static Analysis, Dynamic Analysis, Malware Analysis

1. INTRODUCTION

In computing, a software application is engaged
to instruct computers to perform the indicated task
designed, either for benign or destruction purposes.
With the intention of concealing the design
methodology and protect the privacy of an
application, many software are ultimately translated
into binary before execution. Binary is much harder
to understand compared to high level scripting

programs as only zero (0) and one (1) are
represented inside the binary code. However, the
advantage of a binary executable can be misused for
malicious purposes where the destructive code can
be distributed either in a dedicated binary
executable file or hidden inside the victim’s
binaries. The creation of malware as a primary
vehicle for carrying out various cybercrimes for
huge financial gains has become today’s most
serious security threat on the Internet. According to

http://www.jatit.org/
mailto:1chanleeyee@f13-labs.net
mailto:2mahamod@eng.ukm.my
mailto:3nash@eng.ukm.my
mailto:lclee_vx@f13labs.net

Journal of Theoretical and Applied Information Technology
 10th June 2013. Vol. 52 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

12

Computer Economics 2007 Malware Report,
malware infections in 2006 cost $13.3 billion
dollars. Although the trend over the last two years
has downturned the cost of malware infections, the
cost of malware infections should still be a concern
to companies of any size. The report states two
factors for the reduction in malware infections cost;
the wider spread deployment of anti-malware
applications, and malware targeted at specific
organizations and people [1].

Although many automated security tools have
been created to automate the detection of malicious
portions of a program, unfortunately, the tools are
still not smart enough to track down new protection
techniques that are created to dodge security
software. With the proper skills and knowledge, the
old school method of malware reverse engineering
techniques remains the most effective way to
distinguish the evil code from a benign program.

Malware tracking is a difficult and time
consuming process which provides insight of the
structure and functionality of an executable
program. Currently, static and dynamic reverse
engineering tools are available to help security
researchers analyze processes to verify whether any
irregular code is hiding inside a test program [2]. In
static analysis, a further insight of the malware
body is studied [3]. It parses the instructions that are
found in the binary image to understand and detect
the malicious functions and its shell code. String
searching tools and disassemblers (e.g. IDA Pro
[4]) are examples of static analysis tools. Dynamic
analysis is designed to inspect and monitor a run-
time executable action [5]. It identifies the
execution instructions and the behavior via
monitoring the execution. The changes of the
system including registry modification, installation
of new service and network communication will be
kept track. The run-time of an executable is
controlled with dynamic analysis tools. It includes
debuggers (such as OllyDbg [6], GDB [7], WinDbg
[8]), Operating System State tracking (such as
Sysinternals’ Processmon tool [9]) and system call.
Most of the executable debugger tools generate a
large swath of assembler instruction code which is
arranged in ascending order from the smallest to the
largest of offset address. The parsed assembly code
could be a used or unused code. Thus, more time
has to be invested in comprehending a binary
executable program.

This paper aims to illustrate that the visualization
of malicious or vulnerable program data flow
tracking can facilitate a security expert in their
investigation for purposes of comprehending the

irregular activities of a malicious program and
creating signatures for security devices for
automated detection. The targeted suspicious
program will be analyzed and parsed into human
readable assembly code sequences. The assembly
program will interact with graphical visualization
and display the analyzed code in basic block
approach. The control flow graph information
approach simplifies the identification of malicious
program instruction in fraction code. The dynamic
analysis module is devised to work with graphical
visualization to inspect and visualize the execution
path. The approach can provide the overall concept
of program execution in a particular variable,
register value and memory location.

In summary, this paper is to demonstrate the
ability to develop a competitive visualization of
malicious binary code tracking and analyzing in a
much simpler way. The overall architecture of the
malware tracker visualization toolkit will be
discussed in this paper. We address the combination
of static and dynamic techniques with a
visualization flow chart creator to construct and
maintain the data flow analysis. Key features of our
approach are the ability to update the analysis to
include overwritten code and the ability to store the
changes of IA-32 bit 4GB memory for the
backward tracing purpose. Towards the end, we
make several contributions. We propose and
develop the malware tracker visualization with the
integration of static and dynamic debugging process
to simplify the malware reverse engineering
process. With the combination of static and
dynamic analysis, security analysts are able to find
and analyze code that is beyond the reach of either
static or dynamic analysis alone, thereby providing
an in-depth understanding of a suspicious creature’s
possible behavior. The proposed visualization
graph program flow gives an analyst a more
comprehensive view of an executable behavior.
Irregular events are more intuitively identifiable
when presented visually. The integration of a
dynamic debugging tool with the visualization
graph enables the sophisticated assembly code
distribution steering and animation as well as
visualization. The proposed backward trace done by
storing the changes of IA-32 bit memory and
instruction’s contents into a database allows
analysts to review or restudy the executed
instructions over a large swath of binary code
without having to restart the dynamic analysis
process.

This article is articulated according to the
following structure. Section 2 describes related

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 10th June 2013. Vol. 52 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

13

work. An overview of architecture engine is
presented in section 3. Section 5 discusses the
experimental results of the malware tracker
visualization toolkit. Finally, section 5 briefly
concludes and outlines future work.

2. PREVIOUS AND RELATED WORK

Application of the debugger is to run and monitor
the execution of an arbitrary program. It can be
used to alter or control the execution of a target
program in order to monitor the memory and
variable of the registers. Developing a perfect
debugger that translates Windows/x86 binaries into
assembly instructions is a difficult and complicated
task as many considerations need to be taken into
account. For example, variable size of instructions,
the presence of data inside the code section and the
hidden portion of code that is unreachable statically.
As illustrated in [10], a hybrid approach that
integrates control flow with linear traversal
techniques is used to improve the coverage of
translation and reduce the disassembler errors. To
further increase the accuracy of analysis,
disassemblers implement speculative disassembly
techniques [11] that verify the disassembler results
after a certain assumption is made to continue the
analysis process in order to accept the translating
results. For instance, Kruegel et al. [12] use control
flow graph analysis and statistical methods to
increase the accuracy of producing valid
disassembled instructions.

Visualization of program execution to study and
monitor program executions have been used in the
past with good results. Xia [13] presents their
methodology to visually represent and analyze the
program flow of a system. With the proposed
visualization, users are able to detect irregularities
in binary execution and accentuate trouble spots of
illegal file access. The taint propagation gives the
user the ability to gauge the impact of a potentially
malicious program or file to aid in the recovery
process.

Madou et al. [14] combined static and dynamic
techniques to identify unreachable code that is
possible through either technique alone. They start
from an execution trace and construct a control flow
graph of a program to thwart software resistance
techniques; thus, additional code will be able to be
found and located.

A Windows’s instrument, BIRD: Binary
Interpretation using Runtime Disassembly [15],
translates the binary file into individual assembly
language instructions via disassembly both

statically and dynamically. It works well on
compiler generated programs. By integrating static
and dynamic disassembling, BIRD is able to locate
the unknown area as much as possible.
Unfortunately, the instrument does not come with
any debugger information such as the symbol table,
relocation table, etc.

The VERA framework [16] presents a dynamic
analysis method to visualize the overall flow of a
program. It provides an enhanced method to speed
up the reverse engineering process in order to
provide better understanding of the flow and
composition of a compiled executable. The authors
claim that the tool is able to reduce the amount of
time to extract key features of an executable and
improve productivity.

3. MALWARE TRACKER VISUALIZATION
ARCHITECTURE OVERVIEW

3.1 Overview

Malware reverse engineering is a process that can
be tedious and very time consuming. It requires a
lot of patience in understanding the function and the
true intent of a program. The proposed approach of
the visualization malware tracker by combining
static and dynamic techniques to construct and
maintain data flow analysis that form the interface
simplifies the overall malware analysis process;
thus, the true intention of the creature is
understandable in a comprehensive way.

Figure 1 illustrates the architecture of the
malware tracker visualization toolkit. Typically, the
toolkit consists of a Mini Graph that visualizes the
analysis results from both static and dynamic
analysis. The visualization results generated from
Mini Graph provide a comprehensive view in
regards to the path of execution program to the
analysts. Unlike the traditional analysis and
debugger applications, the toolkit is integrated with
a database to store the entire data changes of every
execution in memory. This is to allow the analysis
and debugger processes to be able to resimulate and
restudy the changes of memory status of the
executed instructions via the Backward Tracing
function. Overall, the malware reverse engineering
tasks via the Malware Tracker Visualization
consists of the following steps:

1 Execute the suspicious program in an isolated
environment

2 Attach the suspicious program to be analyzed
via the Visualization Debugger Interface

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 10th June 2013. Vol. 52 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

14

3 Extract the targeted Win32 portable executable
(PE) program via the Debugger Engine to
handle the entire reverse engineering process.

4 Diassemble the targeted program via the
Disassembler Engine component to translate
the machine language into human-readable
assembly language.

5 Analyze the targeted program statically and
present the analyzed results in the Disassembly
Windows (instructions in assembly code
listing) and Mini Graph (control flow graph
(CFG) based).

6 Analyze the targeted program dynamically and
work simultaneously with Mini Graph. Every
stepping execution happening on the
Disassembly Windows will interact with the
Mini Graph for the overall execution paths.

7 Resimulate the traced execution based on the
collected trace information deterministically
via the Backward Tracing component.

Figure 1. System Architecture of the Visualization

Malware Tracker Toolkit

3.2 Isolated Environment

Reverse engineering of an unknown binary
executable is a tiresome and repetitive process.
With no prior knowledge of testing a piece of
software, various situations might be encountered
and the worst situation is one in which the operating
system’s functionality or safety when analyzing a
suspicious instance could be jeopardized. Thus, a
well configured and isolated environment [17] is
crucial to protect the system from any nefarious
activity that could happen while analyzing or
studying an unknown creature. In this project,
VMware software [18] is chosen as our isolated
virtualization system. The selection is due to the

isolation and snapshot feature, where it enables the
analyst to restore the operating system back to its
original pre-infection state in a separated
environment. This is a precaution step to ensure no
normal computer activity is compromised.

The configuration of the virtualization system to
have the ability to take the current state of the
system is crucial and has been set as our necessary
baseline for our malware analysis environment. The
current state provides a known-good system to
compare with subsequent system state over the
execution of suspicious binary. Once the snapshot
feature is taken, the subsequent system state can
recover to its pre-infected state in a very short
period of time without re-installing or re-
configuring the environment.

3.3 Visualization Debugger Interface

As illustrated in Figure 1, the toolkit is built as a
layered system. The user interface is implemented
using the Python programming language and the Qt
application development framework [19] for
flexibility. Figure 2 shows the graphical view of the
proposed high level debugger. The left side of the
figure shows the Disassembly Windows of the
Visualization Debugger Interface divided into four
columns, “Address”, “Hex”, “Disassembly” and
“Comment”. The column of “Address” illustrates
the instruction’s address in the memory. Both
operation code (opcode) and assembly language are
located at column “Hex” and column
“Disassembly”. The “Comment” column is an
optional column and the data that appears in the
column is limited to the Application Programming
Interface (API) detected. The right side of Figure 2
displays the equivalent of general purpose registers
values. The general purpose registers is much like a
variable in any other high-level programming
language. It acts as temporary holders for values.
The Info section, located at the bottom contains the
current segment register and other related
information.

The Visualization Debugger Interface adds
custom functions, such as loading, saving data,
executing stepping execution, run tracing and
breakpoint setting. These integrated applications are
functionally very similar to many reverse
engineering software such as OllyDbg [6], WinDbg
[8], and GDB software [7]. The Visualization
Debugger Interface also includes the Log function,
where the entire reverse engineering and analysis
activities such as loading targeted program to be
analyzed, tracing activities, breakpoint settings,
transmitting data to Mini Graph for visualization

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 10th June 2013. Vol. 52 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

15

will be logged together with the time of each
activity. This approach allows analysts to trace back
their analysis activities for recording and reporting
purposes.

Figure 2. The Visualization Debugger Interface

3.4 The Debugger Engine and Disassembler
Engine

The Debugger Engine is designed for examining

and manipulating debugging targets on the
x86/Windows platform. Analyzer can set
breakpoints, monitor events, read memory
processes and view the analyzed program
graphically. As illustrated in Figure 1, the
Visualization Debugger Interface will emit the
targeted creature to the next phase of the Debugger.
The “Data In” refers to the targeted executable file
that needs to be analyzed.

The Disassembler Engine is designed to translate
the machine language code to high level readable
assembly program. Only the Win32 portable
executable (PE) files that targets the Intel x86
instruction set is available to be translated. Before
initiating the static and dynamic analysis
components, the Disassembler Engine will process
the entire output from the Debugger Engine to
ensure that the output can be sent to either the Static
or Dynamic Analysis component. The details of the
Static and Dynamic Analysis will be discussed in
the next section.

3.5 Static and Dynamic Analysis

Both static and dynamic analysis modules are
designed to interact with the debugger engine to
conduct static and dynamic reverse engineering,
respectively. The static analysis enables security
analysts to find and analyze binary codes by
traversing the statically analyzable control flow
which begins from known entry points in the code.
The initial statically analyzable code may be
incomplete because some codes are not reachable

through statically analyzable control flow, and may
lead to un-analyzed code.

Dynamic analysis analyzes and locates analyzed
code that is missed by static analysis. It keeps track
of already translated instruction block and checks
whether the code has been modified every time it is
executed. Instrumentation [20] is a technique
whereby an existing code fragment is modified by
adding small code snippets at key points in order to
change its behavior. Accurately detecting new un-
analyzed code is important, as it allows analysts to
re-instrument the new codes and use them to re-
seed the new parsing results.

The integration of static and dynamic approach is
to ensure the analysis results have zero room for
disassembly errors. In the effort to ensure the
accuracy of the analysis output, the framework
applies both static and dynamic disassembly. The
analysis framework begins the analysis process
statically to reveal as many instructions as possible,
and these instructions will be marked as translated
areas, P. The rest of the instructions that can only
be uncovered during dynamic analysis will be
marked as unknown areas, P’. The unknown areas
will be revealed gradually at run-time during
dynamic analysis. This approach allows the
translating results to be returned as much as it can
especially when the program’s control is transferred
to the unknown areas. By integrating static and
dynamic analysis, the parsing process of every
instruction in the targeted binary is guaranteed.

3.6 Forward and Backward Tracing

As the binary executes, new dynamic code will
be generated. For every dynamic analysis, we
determine the extent code which has been
overwritten. If code is overwritten, our visualization
debugger will clean up the existing CFG and re-
invoke the parsing process to update the CFG of the
program. The re-invoke process includes
identifying the new code and presenting the updated
CFG to analysts.

Throughout the dynamic analysis, the memory
changes of dynamic analysis will be monitored.
Any changes of the execution memory will be
saved in our database. As mentioned earlier, reverse
engineering is a time consuming process and can be
tedious. Some important parameter or relevant
register’s value might easily be overlooked.
Sometimes, the understanding of previous
execution, could lead to better comprehension of
the next execution; thus, it is crucial for any
debugger to provide forward and backward track

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 10th June 2013. Vol. 52 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

16

functions in dynamic analysis. Forward track
function allows stepping execution and monitors the
changes of both register and variant. Backward
track function allows analysts to track back
executed instructions. Previous executed
instructions can be restudied and re-understood for
the next forward execution functions.

3.7 Mini Graph - Visualization Results

Throughout the reverse engineering process, both
static and dynamic analysis will communicate with
uDraw(Graph) software [21] which is installed in
the Mini Graph to display the analysis results in
control flow graph (CFG) based. uDraw(Graph) is a
freely available package from the University of
Bremen, Germany for creating flow charts,
diagrams, hierarchies or structure visualizations
using automatic layout. We use the software to
create a graph representation of the analysis module
which visualizes the result of the analyzed code
graphically and simultaneously with static and
dynamic analysis process. The visualization
debugger which acts as a socket client, is used to
send the transmitted graph commands to the Mini
Graph as socket server to instruct the
uDraw(Graph) to visualize the assembly command
in basic block base.

The overall idea of the approach is that the static
analysis engine will emit disassembler control flow
to Mini Graph to display the interactions among
collaborating objects in sequence of basic block
diagrams. A key feature is to determine the skeleton
of an analyzed executable file. Static analysis and
control flow graph forms an analysis interface that
simplifies the analysis task, providing a flexible
analysis mechanism. The integration of static
analysis and control flow graph allows analysts to
be selective in the components they analyze. The
analysis operation could be performed based on the
components that they have selected, in the
granularity of data collected.

The Mini Graph presents several different
algorithms for positioning nodes and routing edges,
and this is extremely useful information for analysts
when dealing with larger functions with many
conditional jumps. It begins by dividing the
assembly code using the basic block approach
which is designed to analyze code independently.
The basic block approach forms a contiguous block
of code with a single entry point and a single exit
point at both the beginning and the end of the block
without any jumps or jump targets in the middle.
The control transfer instruction (CTIs) [12] such as
conditional and unconditional jumps or return

instructions will control the connection of every
basic block to construct a visualization graph.
Instructions such as je, jne, and jmp are the example
of instructions that are grouped under jump
conditions.

The analysis process can be done by traversing
the statically analyzable control flow starting from
known entry points of the code. It is very common
to analyze a program with varied circumstances. As
soon as an instance executable file is parsed with
static disassembler process, an overall structure of
the body program including the designed task with
different condition path will be performed in a list
of translated assembly program format.
Unfortunately, the static analysis process fails to
trace the program’s execution path dynamically.
Thus, the direction of instructions’ path fails to be
determined.

Figure 3. A Mini Graph debugger

The reverse engineering of sequence
visualization through static analysis is the next
logical step for the tool. A visualization graph
generated using an example function is shown in
Figure 3. The nodes in this figure represent basic
blocks and are labeled with the start address of the
first instruction and the end address of the last
instruction in the corresponding instruction
sequence. The solid and directed edges between
nodes represent the target of control instructions. In
this example, the algorithm is invoked for the
function start at address 00401005 and a jump
candidate, 00401010. Conditional branches will be
handled after the second node, which are 0040102c
or 0040104d. In particular, the option of the
execution jump candidate is relied on the return
result of conditional jumps at node 00401010
during dynamic analysis. However, static analysis
only gives an overall structure or idea of the
analyzed program. Figure 4 shows the results of the
analyzed program generated from the Static
Analysis displayed at the Mini Graph component.

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 10th June 2013. Vol. 52 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

17

Figure 4. Visualization Results

The dynamic analysis works together with the
CFG graph generated by Mini Graph. Every debug
option generated at the Visualization Debugger
Interface will communicate with Mini Graph. An
execution instruction at a particular node will be
highlighted to notify the analyst of the current
position of the overall debugging process and also
to show the analysts the overall execution path of
the analyzed program based on certain
environment.

The static analysis examines a program code
statically without executing a program.
Unfortunately, due to the statically analyzable code,
some analyzed results will not be generated until
run-time and the un-analyzable code is only
reachable via dynamic analysis technique. Dynamic
analysis is designed to monitor and visualize the
execution path of an executable. It enables the
tracing and stepping through an instance program.
The entire intermediate values of variables will be
monitored as well. To initialize the dynamic
analysis, single stepping is executed and the
execution will return to the control debugger to wait
for further instructions. The entire dynamic process
will be preceded via single stepping and this
process will keep routine until the end of the
process or the analysis task is terminated.

The idea of this section is to trace the executable
program by running step by step processes together
with the Mini Graph generated at the previous static
analysis section. The relevant portion of the code
will be highlighted to display the unification
procedure while the program is stepping through.
The idea of this approach is to provide an overall
concept of the program execution in a manner that
shows the paths of control flow. The intermediate
values of the parameters involved in the program
can help the security analyzer to understand
accurately the details of the suspicious program
execution.

Figure 5 shows the interaction of the dynamic
debugger with Mini Graph. Every stepping
execution on the left will interact with mini-graph
simultaneously as shown on the right of the figure
and the relevant ellipse shape will be highlighted
via the execution stepping program passing through
the portion of instructions. For detailed instructions
set within each basic block, analysts can simply
click the desired ellipse and the detail of
instructions will be displayed.

Another important feature of dynamic analysis is
the capability of updating the disassembler and
control flow graph. As mentioned previously, some
analyzable code is beyond the reach of static
analysis until the execution in real-time. Thus, in
order to gain better understanding of the malicious
code, dynamic analysis is designed to analyze the
code overwrite [22] at real-time. Dealing with code
overwrite is complicated as some new code is not
presented until the code pointer is pointed to the
address. The intention of code overwrite is to
invalidate portions of an existing static code
analysis.

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 10th June 2013. Vol. 52 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

18

As the binary executes, new dynamic codes will
be generated. For every dynamic analysis, we
determine the extent to which the code has been
overwritten. If the code is overwritten, our
visualization debugger will clean up the existing
CFG and re-invoke the parsing process to update
the CFG of the program. The re-invoke process
includes identifying the new code and presenting
the updated CFG to analysts.

Figure 5: Interaction of dynamic debugger with mini-

graph

Throughout the dynamic analysis, the memory
changes of dynamic analysis will be monitored.
Any changes of the execution memory will be
saved in our database. Since reverse engineering is
a time consuming process and can be tedious, some
important parameters or relevant register’s values
might easily be overlooked. Sometimes, the
understanding of previous execution could lead to
better comprehension of the next execution; thus, it
is crucial for any debugger to provide forward and
backward track functions in dynamic analysis.
Forward track function allows stepping execution
and monitors the changes of both register and
variant. Backward track function allows analysts to
track back executed instructions. Previous executed
instructions can be restudied and re-understood for
the next forward execution functions.

4. EXPERIMENTAL RESULTS

In this section, we present some experimental
results. Since our toolkit is in an early stage of
development, our analysis can only analyze the
Windows binary in user mode.

4.1 Original Entry Point Identification

As mentioned previously, the integration of the
Debugging Engine with the Mini Graph provides a
solution of identifying the original entry point
(OEP) of a packed executable. This approach is
helpful in removing packers which were
implemented by many malware samples. Typically,
packer or obfuscation technique is a common
manner that has been implemented by malware
authors to thwart the detection of computer security
tools. To perform an evaluation of the preliminary
via our malware tracker visualization framework, a
binary executable file with the original entry point,
“00401005”, encrypted with the BeRoEXE Packer
(BEP) was loaded with our framework. Figure 6
shows the translated results transmitted to Mini
Graph. Referring to the figure, a deobfuscating loop
was involved. The generated CFG results in Mini
Graph being able to locate the OEP easily by
selecting the node with only incoming generated
node. As shown in the figure, nodes within the
program were correlated with each other. Typically,
the nodes that are most likely to consist of the OEP
of a program is the node with only incoming
generated node and only two nodes comply to the
condition, which are nodes labeled as 1 and 2. Both
instructions within the node labeled as 1 and 2 are
shown in Figure 7 (a) and Figure 7 (b). The
instructions with the node labeled as 1 in Figure 6
illustrate the instruction of jumping out of the BEP
obfuscation loop to the offset address of the original
entry point at 00401005.

Figure 6: Close-up of the BeRoEXEunpacking loop

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 10th June 2013. Vol. 52 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

19

Figure 7.(a) Execution instructions that instruct the

binary to jump out of the obfuscation loop to the original
entry point of the binary at the offset address of 00401005

Figure 7. (b) Execution program finish

4.2 Forward and Backward Experimental Test

In this section, the forward and backward tracing
component will be exhibited. Both the top and the
bottom of Figure 8 represent the forward and
backward tracing, respectively. For every
instruction executed, the register values of the
particular instruction will be shown at the right
hand side. In this experiment, the top of the figure
shows an executable file that implements the BEP
packer which has been successfully unpacked. It
was located at the real executable body of the
program and landed at the 00401017 address. The
particular instruction will be highlighted at the
Disassembler section. An analyst can use the
backward tracing component to travel back to
previous instructions to restudy the memory stage
of previous instructions. The bottom of the figure
shows the instruction’s memory stage that has
travelled back to instructions within the BEP packer
loop. As shown at the bottom of Figure 8, nothing
was changed at the Disassembler section and the
offset address, 00401017 maintained highlighted.
However, the eip address at the right hand side has
changed to offset address at 00407060, and the
particular instruction in assembly language was
updated as shown in the Info section.

4.3 Malicious Code

In this section, the malware tracker visualization
is used to analyze malware for its effectiveness test.
A real world malware, named as
W32/NGVCK.dr.gen by McAfee antivirus
software, is chosen as our test creature and its
malicious behavior will be analyzed.

Figure 9 shows the destructive code fragment of
the W32/NGVCK.dr.gen virus, together with
explanations of some instruction codes. The
fragment program explains the attack method that
was implemented by the malware. Throughout the
code, we can conclude that the malware

implemented the appending virus infection
technique [23] targeted at Windows PE executable
files. As illustrated by the instruction code in Figure
9, the virus added a new section header at the end of
the section PE table and place the virus body in that
section by modifying the NumberOfSection field of
the PE header. The virus program was added at the
end of a file, and then turns control over to execute
the virus program before the instructions of the
original program was executed.

Figure 9. Fragment of destructive code of

W32/NGVCK.dr.gen

4.4 Discussion

The challenge of reverse engineering to
understand the real intention of a malware has
increased as many techniques implemented by
malware authors could thwart the analysis process.
In section 4.1, our approach shows that the OEP of
a packed executable file can be spotted easily by
locating the only incoming nodes. The OEP
identification becomes useful when a packed
executable implements an anti-debugging method,
such as the variations of timing checks. Typical
normal step tracing method could not defeat the
anti-debugging technique. Therefore, a breakpoint
can be set at the OEP to allow the targeted program
to only be executed when the execution pointer
pauses at the OEP to begin the analysis process.

During the dynamic analysis process, the forward
and backward component provides a
comprehensive analysis environment for analysts

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 10th June 2013. Vol. 52 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

20

during the analysis process. For every execution,
the particular register and its instructions will be
saved in our database. With the backward function
to be triggered, the user can travel back to
instructions of interest and the particular values of
the register will be updated.

The proposed malware analysis via CFG is based
on the belief that malware is designed to conduct
malicious activities. Therefore, most basic block
codes consist of malicious program. As long as the
targeted malware program stays in the real body of
the executable without any obfuscation technique,
the analysts could easily study the malicious code
by randomly clicking the nodes generated by the
Mini Graph.

5. CONCLUSION

This paper presents the idea and structure of an
interpreter of the visualization debugger for both
static and dynamic debugger analysis. Our approach
enables the monitoring process of distributing tasks
and leads to an interactive parallel execution
debugging process, where an operator monitors the
exploration path of nodes. The proposed static and
dynamic de-compilation techniques incorporates
visualization graph to provide a comprehensive
reverse engineering environment to the security
expert in the malware tracing process. With the
proposed visualization, the irregularities in binary
execution are more intuitively identifiable.
Moreover, the backward component increases the
efficiency of the reverse engineering process by
providing the backtracking capability which enables
efficient transitions between execution points in a
trace in both forward and backward directions.

The current version of the visualization debugger
is only on ring 3 - Application Level. We plan to
enhance our debugger by introducing the ability to
debug not only on ring 3 but also on ring 0 – Kernel
Level. With the enhancement of the capability to
debug up to ring 0, more malware especially kernel
related malicious code including rootkit are allowed
to perform malicious analysis with our visualization
debugger.

REFRENCES:

[1] Economics, C. 2007 Malware Report: Annual
Worldwide Economic Damages from Malware
Exceed $13 Billion. Computer Economics
Report, 2007.

[2] Distler, D. Malware Analysis: An Introduction.
2007.

[3] Sharif, M., et al., Eureka: A Framework for
Enabling Static Malware Analysis, in
Proceedings of the 13th European Symposium
on Research in Computer Security: Computer
Security2008, Springer-Verlag: Málaga, Spain.
p. 481-500.

[4] Eagle, C., The IDA Pro Book: The Unofficial
Guide to the World's Most Popular
Disassembler 2011 San Franscisco: William
Pollock. 672.

[5] Ďurfina, L., et al., Design of a Retargetable
Decompiler for a Static Platform-Independent
Malware Analysis, in Information Security and
Assurance, T.-h. Kim, et al., Editors. 2011,
Springer Berlin Heidelberg. p. 72-86.

[6] Yushuk. Ollydbg debugger and disassembler.
Product Description Page. 2000 [cited 2010 20
Jun]; Available from: http://www.ollydbg.de/.

[7] Developers, T.G. GDB: The GNU Project
Debugger. Available from:
http://sources.redhat.com/gdb/.

[8] Microsoft. Download and Install Debugging
Tools for Windows. 2012; Available from:
http://msdn.microsoft.com/en-
us/windows/hardware/gg463009.aspx.

[9] Russinovich, M. and B. Cogswell. Process
Monitor v3.03. 2012; Available from:
http://technet.microsoft.com/en-
us/sysinternals/bb896645.

[10] Schwarz, B., S. Debray, and G. Andrews,
Disassembly of Executable Code Revisited, in
Proceedings of the Ninth Working Conference
on Reverse Engineering (WCRE'02)2002, IEEE
Computer Society. p. 45.

[11] Cifuentes, C., et al. Preliminary Experiences
with the Use of the UQBT Binary Translation
Framework. in In Proceedings of the Workshop
on Binary Translation. 1999.

[12] Kruegel, C., et al., Static disassembly of
obfuscated binaries, in Proceedings of the 13th
conference on USENIX Security Symposium -
Volume 132004, USENIX Association: San
Diego, CA. p. 18-18.

[13] Xia, Y., K. Fairbanks, and H. Owen, Visual
Analysis of Program Flow Data with Data
Propagation, in Visualization for Computer
Security, J. Goodall, G. Conti, and K.-L. Ma,
Editors. 2008, Springer Berlin Heidelberg. p.
26-35.

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 10th June 2013. Vol. 52 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

21

[14] Madou, M., et al., Hybrid static-dynamic attacks
against software protection mechanisms, in
Proceedings of the 5th ACM workshop on
Digital rights management2005, ACM:
Alexandria, VA, USA. p. 75-82.

[15] Nanda, S., et al., BIRD: binary interpretation
using runtime disassembly in Proceedings of the
International Symposium on Code Generation
and Optimization2006. p. 358-370.

[16] Quist, D.A. and L.M. Liebrock. Visualizing
Compiled Executables for Malware Analysis. in
6th International Workshop on Visualization for
Cyber Security 2009. Atlantic City, NJ, USA.

[17] Wagener, G., R. State, and A. Dulaunoy,
Malware behaviour analysis. Journal in
Computer Virology, 2008. 4(4): p. 279-287.

[18] vmware. Choosing a Business Infrastructure
Virtualization Solution. Available from:
http://www.vmware.com/virtualization/advanta
ges/.

[19] Summerfield, M., Rapid gui programming with
python and qt: the definitive guide to pyqt
programming2007: Prentice Hall Press. 648.

[20] Maebe, J. and K.D. Bosschere. Instrumenting
self-modifying code. in proceedings of the Fifth
International Workshop on Automated
Debugging (AADEBUG 2003). 2003. Ghent,
Belgium.

[21] uDraw(Graph). uDraw(Graph) - The powerful
solution for graph visualization. 2005;
Available from: http://www.informatik.uni-
bremen.de/uDrawGraph/en/index.html.

[22] Roundy, K.A. and B.P. Miller, Hybrid analysis
and control of malware, in Proceedings of the
13th international conference on Recent
advances in intrusion detection2010, Springer-
Verlag: Ottawa, Ontario, Canada. p. 317-338.

[23] Szor, P., The Art of Computer Virus Research
and Defense2005: Addison-Wesley
Professional.

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 10th June 2013. Vol. 52 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

22

Figure 8: Dynamic Analysis via Forward and Backward Tracing

http://www.jatit.org/

	1CHAN LEE YEE, 2MAHAMOD ISMAIL, 3NASHARUDDIN ZAINAL, 4LEE LING CHUAN

