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ABSTRACT 
 

The synchronization problem is investigated for a class of discrete-time complex networks, where the 
networking induced communication constraints between the coupling nodes are considered. By choosing a 
novel Lyapunov functional, sufficient conditions for the synchronization of the discrete-time complex 
networks subject to both coupling delays and packet dropouts are given. The derived criteria are presented 
in the form of linear matrix inequalities (LMIs), which is easy to be solved numerically. Finally, an 
illustrative example is presented to verify the effectiveness of the results. 
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1. INTRODUCTION  
 

Complex networks have received considerable 
attention over the past decades. They are ideal 
mathematical models for various natural and 
engineering systems: cellular networks, social 
systems, the Internet, just to name a few [1]~[16]. 
The scientific interests in complex networks 
include, for example, the clustering characteristic 
(small world effect) and degree distributions, 
[1]~[3]; the stability and synchronization of 
complex networks, [4]~[16] and so on. 

Due to the finite speeds of transmission and 
spreading, traffic congestions, as well as bandwidth 
restriction(for the Internet), information travelling 
through a complex network is often associated with 
time delay as well as packet dropouts. This is 
ubiquitous in biological, physical and engineering 
networks. Time-delay often causes instability of the 
system and thus has been investigated extensively 
in various contexts for complex networks: for 
deterministic systems the reader is referred to [7], 
[14]; for stochastic modeling and analysis please 
refer to [17]~[19]; besides, [20], [21] provide good 
hints for nonlinear systems. Packet dropouts have 
also received much attention in recent years, as they 
are inevitable in imperfect communication networks 
[22]~[25]. They are firstly treated separately from 
time-delays, but more recent models intend to 
combine the two effects together, which is more 
practical. In most studies, the packet dropout 
process is modeled as a Bernoulli process with 

appropriate variations in correspondence to the 
specific systems. 

To the best of the authors’ knowledge, the 
synchronization problem for complex networks 
subject to the communication constraints is still an 
open problem, which motivates the present work. 
The main contributions of the paper are threefold: 
(1) the imperfect coupling communication channels 
are considered for the first time in the 
synchronization context. (2) a stochastic model is 
utilized to describe the incomplete information 
phenomenon, taking both coupling delays and data 
packets dropout into account, and covering the 
aforementioned models as its special cases. (3) the 
stochastic analysis methods, the properties of 
Kronecker product, as well as the free-weight 
matrix techniques are employed to deal with the 
synchronization problem, and criterions in terms of 
linear matrix inequalities (LMIs) are given.  

The rest of this paper is organized as follows. In 
Section 2, the discrete-time complex networks with 
coupling communication constraints induced by the 
imperfect networked channels is introduced, and 
then the problem under consideration is formulated. 
In Section 3, sufficient conditions are presented to 
guarantee the synchronization for the considered 
complex networks. An illustrative example is given 
in Section 4 to demonstrate the feasibility of the 
acquired criterion. Finally, concise conclusions are 
drawn in Section 5. 

Notations: Throughout this paper, ℝn is used to 
denote the n-dimensional Euclidean space, ℝm×n is 
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the set of all 𝑚 × 𝑛 real matrices. The superscript 
‘T’ denotes matrix transposition and ‘*’ denotes the 
transpose of corresponding elements introduced by 
symmetry. 𝑋 > 0  means that 𝑋  is real symmetric 
and positive definite; Moreover, 𝑋 > 𝑌  means 
𝑋 − 𝑌 > 0 . 𝐼  and 0  represent the identity matrix 
and zero matrix with compatible dimensions, 
respectively. Given a matrix 𝐴, denote by ∥ 𝐴 ∥ its 
operator norm, i.e. ∥ 𝐴 ∥= 𝑠𝑢𝑝{|𝐴𝑥| ∶ |𝑥| = 1} =
�𝜆𝑚𝑎𝑥(𝐴𝑇𝐴), with |  | denoting the Euclidean norm 
on ℝn , and ¸ 𝜆𝑚𝑎𝑥(𝑄)  denoting the maximal 
eigenvalue of square matrix 𝑄. (𝛺,ℱ, {ℱ𝑘}𝑘∈𝑁) is a 
complete probability space with a filtration {ℱ𝑘} 
satisfying the usual conditions (i.e. ℱ𝑘 contains all 
the 𝑃 −null sets and it is right continuous). 𝔼{∙} is 
the mathematical expectation of a random variable 
with respect to the given probability space, and 
𝔼{𝜉|𝜒}  denotes the conditional mathematical 
expectation of a random variable 𝜉 ∈ ℱ  with 
respect to the subfield created by 𝜒 (i.e. 𝜎(𝜒)). All 
the matrices, if they are not explicitly specified, are 
assumed to have compatible dimensions. 

2. PROBLEM FORMULATION AND 
PRELIMINARIES 

 

The following discrete-time complex network 
with nonlinearity and multiple time-delays is 
considered 

𝑥𝑚(𝑘 + 1) = 𝐴𝑥𝑚(𝑘) + 𝐵𝑓�𝑥𝑚(𝑘)�
+ 𝐵𝑑𝑔 �𝑥𝑚�𝑘 − 𝑑(𝑘)��

+ ��𝜔𝑚𝛼
(𝑝)𝐼𝑝(𝑘)Γ𝑝𝑥𝛼(𝑘

𝑟

𝑝=0

𝑁

𝛼=1
− 𝜏𝑝(𝑘))        𝑚 = 1,2,⋯ ,𝑁 

(1) 

where 𝑥𝑚(𝑘), 𝑥𝑚�𝑘 − 𝑑(𝑘)�, 𝑥𝛼(𝑘 − 𝜏𝑝(𝑘) ∈ ℝ𝑛 
denote the state vector, delayed state vector, and the 
coupling delayed vector of the mth node of the 
complex networks at time k respectively. 𝐴, 𝐵, 𝐵𝑑  
are all known matrices with compatible dimensions. 
𝑓,𝑔:ℝ𝑛 → ℝ𝑛 are both vector-valued nonlinear 
functions to be given later. 𝑑(𝑘), 𝜏𝑝(𝑘) are 
integers denoting the state time-delay and all the 
possible coupling delays which satisfy: 

𝑑 ≤ 𝑑(𝑘) ≤ 𝑑                       (2) 
𝜏0(𝑘) = 0                              (3) 

𝜏𝑝 ≤ 𝜏𝑝(𝑘) ≤ 𝜏𝑝     𝑝 = 1,2,⋯ , 𝑟     (4) 

where 𝑑, 𝑑, 𝜏𝑝  and 𝜏𝑝  (𝑝 = 1,2,⋯ , 𝑟) are all known 
positive integers. Moreover we define that 𝑑𝑚𝑎𝑥 =

max𝑝( 𝜏𝑝,𝑑). 𝛤𝑝 denotes the inner-coupling 
matrices linking the 𝛼th coupling state variable 
with time-delay 𝜏𝑝(𝑘), 𝑊(𝑝) = (𝜔𝑚𝛼

(𝑝) )𝑁×𝑁 is the 
outer-coupling configuration matrix of the network 
with 𝜔𝑚𝛼,𝑝 ≥ 0(𝑚 ≠ 𝛼), but not all zeros, and the 
coupling configuration matrix 𝑊(𝑝)(𝑝 = 0,1,⋯ , 𝑟) 
is assumed to satisfy the diffusive connections: 

𝜔𝑚𝛼
(𝑝) = 𝜔𝛼𝑚

(𝑝)   ,𝑚 ≠ 𝛼 

�𝜔𝑚𝛼
(𝑝)

𝑁

𝑚=1

= �𝜔𝑚𝛼
(𝑝)

𝑁

𝛼=1

= 0 , 

 𝑚,𝛼 = 1,2,⋯ ,𝑁;  𝑝 = 0,1,⋯ , 𝑟 
𝐼𝑝(𝑘) is assumed to be a random variable satisfying 
certain discrete probabilistic distributions on the 
interval [0,1] which can be acquired from statistical 
tests, mutually unrelated with each other (for 
𝑝 = 0,1,⋯ , 𝑟) with mathematical expectation 𝛼𝑝 
and variance 𝛾𝑝2. 

Assumption 2.1: The nonlinear function 
𝑓(𝑥(𝑘)),𝑔(𝑥(𝑘)):ℝ𝑛 → ℝ𝑛  are assumed to be 
satisfying the following sector nonlinearity 
described as 

[𝑓(𝑥) − 𝑓(𝑦) − 𝐾1(𝑥 − 𝑦)]𝑇[𝑓(𝑥) − 𝑓(𝑦)
− 𝐾2(𝑥 − 𝑦)] ≤ 0 ,∀𝑥,𝑦 ∈ ℝn 

(5) 
[𝑔(𝑥) − 𝑔(𝑦) − 𝐿1(𝑥 − 𝑦)]𝑇[𝑔(𝑥) − 𝑔(𝑦)

− 𝐿2(𝑥 − 𝑦)] ≤ 0 ,∀𝑥,𝑦 ∈ ℝn 
(6) 

both of which satisfy the zero initial condition, i.e. 
𝑓(0) = 0,𝑔(0) = 0, and 𝐾1,𝐾2, 𝐿1, 𝐿2 are all 
known matrices satisfying 𝐾1 − 𝐾2 < 0, 𝐿1 − 𝐿2 <
0. 

Remark 2.1: The model in(1) includes both 
delayed (for 𝑝 = 1,2,⋯ , 𝑟 ) and non-delayed 
coupling (for 𝑝 = 0,), which makes it very general, 
and can cover most of the existing models. 

Remark 2.2: The system dynamics (1) is of much 
significance due to the following reasons: (1) As far 
as the authors know, there has been little work on 
the synchronization for complex networks subject 
to imperfect coupling channels (taking both 
coupling time-delays and packet dropouts into 
account); (2) the sequence of unrelated random 
variables with discrete probabilistic distributions 
used to describe the coupling information implies 
that multiple packets might be transferred between 
the nodes; it is different from the model presented 
in [23] and [24], which takes exclusive Bernoulli 
random variables and allows only one packet at 
time k, hence the model in this paper is more 
realistic. (3) the model in [25] is a special case of 
the model in this paper if we set the assumed 
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sequence of random variables with arbitrary 
discrete probabilistic distributions in this paper 
defined on [0 1]  in this paper to be Bernoulli 
distributions. The assumption in this paper is 
reasonable because in practice the transmitted 
information can be neither completely missing nor 
completely received, but only a part of the initial 
information can be transmitted successfully. In that 
case, the usually assumed Bernoulli distribution 
which only takes the completely successful case 
and the completely missing case in account is not 
quite suitable. Similar ideas can be referred to [26], 
[27], and [28], which focuses on the missing 
measurements without taking multiple time-delays 
into account. 

Firstly, for simplicity denote 

𝑥(𝑘) = 𝑐𝑜𝑙{𝑥1(𝑘), 𝑥2(𝑘),⋯ , 𝑥𝑁(𝑘)} 

𝑓(𝑥(𝑘)) = 𝑐𝑜𝑙{𝑓(𝑥1(𝑘)), 𝑓(𝑥2(𝑘)),⋯ , 𝑓(𝑥𝑁(𝑘))} 

𝑔(𝑥(𝑘)) = 𝑐𝑜𝑙{𝑔(𝑥1(𝑘)),𝑔(𝑥2(𝑘)),⋯ ,𝑔(𝑥𝑁(𝑘))} 

𝛼𝑝 = 𝐸�𝐼𝑝(𝑘)�  , 𝛾𝑝2 = E ��𝐼𝑝(𝑘) − 𝛼𝑝�
2� 

Γ𝑝 = 𝛼𝑝 × Γ𝑝     𝑝 = 0,1,⋯𝑟 

𝑊(𝑝) = (𝜔𝛼
(𝑝))𝑁×𝑁 

𝑊(𝑝)𝑊(𝑞) = 𝑊(𝑝,𝑞) = (𝜔𝑚𝛼
(𝑝,𝑞))𝑁×𝑁  𝑝, 𝑞 = 0,1,⋯𝑟 

By the Kronecker product ‘⨂ ’ of matrix, the 
complex networks dynamics of (1) can be recast 
into the following compact form 

𝑥(𝑘 + 1) = (𝐼⨂𝐴 + I0(𝑘) × 𝑊0⨂Γ0)𝑥(𝑘)
+ (𝐼⨂𝐵)𝑓(𝑥(𝑘))
+ (𝐼⨂𝐵𝑑)𝑔 �𝑥�𝑘 − 𝑑(𝑘)��

+ � I𝑝(𝑘) × �𝑊(𝑝)⨂Γ𝑝�𝑥(𝑘
𝑟

𝑝=1
− 𝜏𝑝(𝑘)) 

(7) 

Moreover, to make the deduction more concise, 
the augmented complex networks can be denoted in 
the following form 

𝑥(𝑘 + 1) = 𝑦(𝑘) + �(I𝑝(𝑘) − 𝛼𝑝)
𝑟

𝑝=0
× �𝑊(𝑝)⨂Γ𝑝�𝑥(𝑘 − 𝜏𝑝(𝑘)) 

(8) 

where 

𝑦(𝑘) = �𝐼⨂𝐴 + 𝑊0⨂Γ0�𝑥(𝑘) + (𝐼⨂𝐵)𝑓(𝑥(𝑘))
+ (𝐼⨂𝐵𝑑)𝑔 �𝑥�𝑘 − 𝑑(𝑘)��

+ ��𝑊(𝑝)⨂Γ𝑝�𝑥(𝑘 − 𝜏𝑝(𝑘))
𝑟

𝑝=1

 

Definition 2.1: [18],[19] The discrete-time stochastic 
complex network (1) is said to be asymptotically 
synchronized in the mean square sense if, for all the 
addressed communication constraints, it holds that 

lim
𝑘→∞

𝐸{|𝑥𝑚(𝑘) − 𝑥𝛼(𝑘)|2} = 0  , 

  1 ≤ 𝑚 < 𝛼 ≤ 𝑁 

(9) 

In this paper, we aim at presenting certain 
sufficient conditions for the stochastic 
synchronization problem between the nodes of a 
class of discrete-time stochastic complex network 
(1) subject to the aforementioned imperfect 
coupling channels. With the stochastic analysis 
method, as well as the free weight matrix technique, 
we construct a novel Lyapunov functional and 
develop an LMI approach to ensure the addressed 
stochastic complex networks to be synchronized in 
the mean square sense. 

3. MAIN RESULTS 
 

Before presenting the main results, we list the 
following useful lemmas. 

Lemma 3.1: [18],[19] Let 𝑈 = �𝛼𝑖𝑗�𝑁×𝑁
 be a 

symmetric matrix satisfying that the sum of entries 
in each row of 𝑈  is zero. 𝑥 = 𝑐𝑜𝑙{𝑥1, 𝑥2,⋯ , 𝑥𝑁} , 
𝑦 = 𝑐𝑜𝑙{𝑦1,𝑦2,⋯ ,𝑦𝑁} , 𝑥𝑖 ,𝑦𝑖 ∈ ℝ𝑛, 𝑖 = 1,2,⋯ ,𝑁.  
𝑃 ∈ ℝ𝑛×𝑛. Then the following equality holds 

𝑥(𝑈⨂𝑃)𝑦 = − � 𝛼𝑖𝑗(𝑥𝑖 − 𝑥𝑗)𝑇𝑃(𝑦𝑖 − 𝑦𝑗)
1≤𝑖<𝑗≤𝑁

 

Lemma 3.2: Let 𝛼 be real scalar and 𝐴,𝐵,𝐶,𝐷 be 
matrices with compatible dimensions. Then the 
following properties of Kronecker product hold 

𝛼(𝐴⨂𝐵) = (𝛼𝐴)⨂𝐵 = 𝐴⨂(𝛼𝐵) 

(𝐴⨂𝐵)𝑇 = 𝐴𝑇⨂𝐵𝑇 

(𝐴⨂𝐵)(𝐶⨂𝐷) = (𝐴𝐶)⨂(𝐵𝐷) 

(𝐴 + 𝐵)⨂(𝐶 + 𝐷) = 𝐴⨂𝐶 + 𝐴⨂𝐷 + 𝐵⨂𝐶 + 𝐵⨂𝐷 

Lemma 3.3: Let 𝐴 ∈ ℝ𝑚×𝑝,𝐵 ∈ ℝ𝑝×𝑛  and = 𝐴𝐵 
. If each column sum of 𝐴 is zero or each row sum 
of 𝐵 is zero, then each column sum or row sum of 𝐶 
is zero. 
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Lemma 3.4: [29] For any random variable 𝜉 ∈ ℱ 
satisfying 𝔼{|𝜉|} < +∞ and 𝜎 −field ℊ ⊂ ℱ, then it 
always holds that 

𝔼�𝔼{𝜉|ℊ}� = 𝔼{𝜉} 

Now, we are ready to present the main results of 
the paper in the following. 

Theorem 3.1: Under assumption (2.1), the 
stochastic complex networks described in (1) can be 
synchronized in the mean square if there exist 
positive matrices 𝑃,𝑄,𝑅𝑝, 𝑝 = 1,2,⋯𝑟 , positive 
real numbers 𝜌1, 𝜌2, such that the following 𝑁(𝑁−1)

2
 

LMIS hold. 

Υ𝑚𝛼 = �
Υ𝑚𝛼,11 Υ𝑚𝛼,12
∗ Υ𝑚𝛼,22

� < 0     (1 ≤ 𝑚 < 𝛼 ≤ 𝑁) 

(10) 

where 

Υ𝑚𝛼,11 =

⎝

⎛

Θ𝑚𝛼,11 Θ𝑚𝛼,12
∗ Θ𝑚𝛼,22

Θ𝑚𝛼,13 Θ𝑚𝛼,14
0 Θ𝑚𝛼,24

∗          ∗
∗          ∗

Θ𝑚𝛼,33 0
∗ Θ𝑚𝛼,44⎠

⎞ 

Θ𝑚𝛼,11 = 𝐴𝑇𝑃𝐴 − 𝑁𝜔𝑚𝛼
(0) �𝐴𝑇𝑃Γ0 + Γ0

𝑇
𝑃𝐴�

− 𝑁𝜔𝑚𝛼
(0,0)Γ0

𝑇
𝑃Γ0

− 𝛾02𝑁𝜔𝑚𝛼
(0,0)Γ0𝑇𝑃Γ0 − 𝑃

+ ��1 + 𝜏𝑝 − 𝜏𝑝� 𝑅𝑝

𝑟

𝑝=1
− 𝜌1(𝐾1𝑇𝐾2 + 𝐾2𝑇𝐾1)
− 𝜌2(𝐿1𝑇𝐿2 + 𝐿2𝑇𝐿1) 

Θ𝑚𝛼,12 = 𝐴𝑇𝑃𝐵 − 𝑁𝜔𝑚𝛼
(0)Γ0

𝑇
𝑃𝐵 + 𝜌1(𝐾1𝑇 + 𝐾2𝑇) 

Θ𝑚𝛼,13 = 𝜌2(𝐿1𝑇 + 𝐿2𝑇) 

Θ𝑚𝛼,14 = 𝐴𝑇𝑃𝐵𝑑 − 𝑁𝜔𝑚𝛼
(0)Γ0

𝑇
𝑃𝐵𝑑  

Θ𝑚𝛼,22 = 𝐵𝑇𝑃𝐵 − 2𝜌1 × 𝐼 

Θ𝑚𝛼,24 = 𝐵𝑇𝑃𝐵𝑑 

Θ𝑚𝛼,33 = �1 + 𝑑 − 𝑑�𝑄 − 2𝜌2 × 𝐼 

Θ𝑚𝛼,44 = 𝐵𝑑𝑇𝑃𝐵𝑑 − 𝑄 

Υ𝑚𝛼,12 = �

Φ𝑚𝛼,11 Φ𝑚𝛼,12
Φ𝑚𝛼,21 Φ𝑚𝛼,22

⋯ Φ𝑚𝛼,1𝑟
⋯ Φ𝑚𝛼,2𝑟

0 0
Φ𝑚𝛼,41  Φ𝑚𝛼,42

⋯ 0
⋯ Φ𝑚𝛼,4𝑟

� 

Φ𝑚𝛼,1𝑝 = −𝑁𝜔𝑚𝛼
(𝑝)𝐴𝑇𝑃Γ𝑝 − 𝑁𝜔𝑚𝛼

(0,𝑝)Γ0
𝑇
𝑃Γ𝑝 

𝑝 = 1,2,⋯ , 𝑟 

Φ𝑚𝛼,2𝑝 = −𝑁𝜔𝑚𝛼
(𝑝)𝐵𝑇𝑃Γ𝑝                       𝑝 = 1,2,⋯ , 𝑟 

Φ𝑚𝛼,4𝑝 = −𝑁𝜔𝑚𝛼
(𝑝)𝐵𝑑𝑇𝑃Γ𝑝                     𝑝 = 1,2,⋯ , 𝑟 

Υ𝑚𝛼,22 = �

Ψ𝑚𝛼,11 Ψ𝑚𝛼,12
∗ Ψ𝑚𝛼,22

⋯ Ψ𝑚𝛼,1𝑟
⋯ Ψ𝑚𝛼,2𝑟

⋮          ⋮
∗          ∗

⋮ ⋮
∗ Ψ𝑚𝛼,𝑟𝑟

� 

Ψ𝑚𝛼,𝑝𝑝 = −𝑅𝑝 − 𝑁𝜔𝑚𝛼
(𝑝,𝑝)Γ𝑝

𝑇
𝑃Γ𝑝 − 𝛾𝑝2𝑁𝜔𝑚𝛼

(𝑝,𝑝)Γ𝑝𝑇𝑃Γ𝑝 

𝑝 = 1,2,⋯ , 𝑟 

Ψ𝑚𝛼,𝑝𝑞 = −𝑁𝜔𝑚𝛼
(𝑝,𝑞)Γ𝑝

𝑇
𝑃Γ𝑞                 1 ≤ 𝑝 < 𝑞 ≤ 𝑟 

Proof: We denote  

𝑥𝑚𝛼(𝑘) = 𝑥𝑚(𝑘) − 𝑥𝛼(𝑘), 

 𝑓𝑚𝛼�𝑥(𝑘)� = 𝑓(𝑥𝑚(𝑘)) − 𝑓(𝑥𝛼(𝑘)), 

𝑔𝑚𝛼�𝑥(𝑘)� = 𝑔(𝑥𝑚(𝑘)) − 𝑔(𝑥𝛼(𝑘)),  

𝑔𝑚𝛼�𝑥(𝑘 − 𝑑(𝑘))� = 𝑔(𝑥𝑚(𝑘 − 𝑑(𝑘))) −
𝑔(𝑥𝛼(𝑘 − 𝑑(𝑘))),  

𝑥𝑚𝛼�𝑘 − 𝜏𝑝(𝑘)� = 𝑥𝑚�𝑘 − 𝜏𝑝(𝑘)� −
𝑥𝛼 �𝑘 − 𝜏𝑝(𝑘)� ,                      𝑝 = 1,2,⋯ , 𝑟. 

Let 𝔛(𝑘) ≜ {𝑥(𝑘), 𝑥(𝑘 − 1),⋯ , 𝑥(𝑘 − 𝑑𝑚𝑎𝑥)} , 
and consider the following Lyapunov candidate for 
the augmented system (7) 

𝑉�𝔛(𝑘)� = �𝑉𝑖(𝔛(k))
5

𝑖=1

 

Where 

𝑉1�𝔛(𝑘)� = 𝑥𝑇(𝑘)(𝑈⊗ 𝑃)𝑥(𝑘) 

𝑉2�𝔛(𝑘)� = � 𝑔𝑇�𝑥(𝑣)�(𝑈⊗ 𝑄)𝑔(𝑥(𝑣))
𝑘−1

𝑣=𝑘−𝑑(𝑘)

 

𝑉3�𝔛(𝑘)� = � � 𝑔𝑇�𝑥(𝑣)�(𝑈⊗𝑄)𝑔(𝑥(𝑣))
𝑘−1

𝑣=𝑘−𝑙

𝑑−1

𝑙=𝑑

 

𝑉4�𝔛(𝑘)� = � � 𝑥𝑇(𝑣)�𝑈 ⊗ 𝑅𝑝�𝑥(𝑣)
𝑘−1

𝑣=𝑘−𝜏𝑝(𝑘)

𝑟

𝑝=1

 

𝑉5�𝔛(𝑘)� = � � � 𝑥𝑇(𝑣)�𝑈 ⊗ 𝑅𝑝�𝑥(𝑣)
𝑘−1

𝑣=𝑘−𝑙

𝜏𝑝−1

𝑙=𝜏𝑝

𝑟

𝑝=1

 

with 𝑃,𝑄,𝑅𝑝, 𝑝 =  1,2,⋯ , 𝑟 being positive definite 
matrices to be determined, and 𝑈 being defined as 
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𝑈 = �
𝑁 − 1 −1
−1 𝑁 − 1

⋯     −1
⋯     −1

⋯        ⋯
−1     −1

⋯ ⋯
⋯ 𝑁 − 1

�      (11) 

By calculating the difference of 𝑉�𝔛(𝑘)� along 
the solutions of the augmented complex networks 
(7) and taking the mathematical expectation 
condition 𝔛(𝑘), we have 

𝔼�Δ𝑉�𝔛(𝑘)�|𝔛(𝑘)� = �𝔼�Δ𝑉𝑖�𝔛(𝑘)�|𝔛(𝑘)�
5

𝑖=1

 

(12) 

Then, one has 

𝔼�Δ𝑉1�𝔛(𝑘)�|𝔛(𝑘)� 

= 𝔼�𝑉1�𝔛(𝑘 + 1)��𝔛(𝑘)� − 𝑉1�𝔛(𝑘)� 

= 𝔼{𝑥𝑇(𝑘 + 1)(𝑈⊗ 𝑃)𝑥(𝑘 + 1)|𝔛(𝑘)}
− 𝑥𝑇(𝑘)(𝑈⊗ 𝑃)𝑥(𝑘) 

= 𝔼��𝑦(𝑘) + ��𝐼𝑝(𝑘) − 𝛼𝑝��𝑊(𝑝) ⊗Γ𝑝�𝑥�𝑘 − 𝜏𝑝�
𝑟

𝑝=0

�

𝑇

(𝑈

⊗𝑃) �𝑦(𝑘)

+ ��𝐼𝑝(𝑘) − 𝛼𝑝��𝑊(𝑝) ⊗Γ𝑝�𝑥�𝑘
𝑟

𝑝=0

− 𝜏𝑝�� |𝔛(𝑘)� − 𝑥𝑇(𝑘)(𝑈⊗ 𝑃)𝑥(𝑘) 

It is worth pointing out that 𝑦(𝑘), 𝐼𝑝(𝑘) − 𝛼𝑝 are 
both measurable with respect to σ(𝔛(𝑘)). Then it 
follows 

𝔼�Δ𝑉1�𝔛(𝑘)�|𝔛(𝑘)� 

= 𝔼 �𝑦𝑇(𝑘)(𝑈⊗ 𝑃)𝑦(𝑘) + �𝛾𝑝2
𝑟

𝑝=0

× �(𝑊(𝑝) ⊗ Γ𝑝)𝑥�𝑘 − 𝜏𝑝��
𝑇(𝑈

⊗ 𝑃)�(𝑊(𝑝) ⊗ Γ𝑝)𝑥�𝑘 − 𝜏𝑝��

− 𝑥𝑇(𝑘)(𝑈⊗ 𝑃)𝑥(𝑘)|𝔛(𝑘)� 

(13) 

It is noted that the former deduction has used the 
fact that 𝐼𝑝(𝑘), 𝑝 =  0,1,⋯ , 𝑟 are mutually 
unrelated with each other. 

𝔼�Δ𝑉2�𝔛(𝑘)�|𝔛(𝑘)� 

= 𝔼�𝑉2�𝔛(𝑘 + 1)��𝔛(𝑘)� − 𝑉2�𝔛(𝑘)� 

= 𝔼{� � − �  
𝑘−1

𝑣=𝑘−𝑑(𝑘)

𝑘

𝑣=𝑘+1−𝑑(𝑘+1)

� 

× 𝑔𝑇�𝑥(𝑣)�(𝑈⊗ 𝑄)𝑔�𝑥(𝑣)�|𝔛(𝑘)} 

= 𝔼{𝑔𝑇�𝑥(𝑘)�(𝑈⊗𝑄)𝑔�𝑥(𝑘)� 

−𝑔𝑇 �𝑥�𝑘 − 𝑑(𝑘)�� (𝑈⊗𝑄)𝑔 �𝑥�𝑘 − 𝑑(𝑘)�� 

+ � 𝑔𝑇�𝑥(𝑣)�(𝑈⊗𝑄)𝑔�𝑥(𝑣)�|
𝑘−𝑑(𝑘)

𝑣=𝑘+1−𝑑(𝑘+1)

𝔛(𝑘)} 

≤ 𝔼{𝑔𝑇�𝑥(𝑘)�(𝑈⊗𝑄)𝑔�𝑥(𝑘)� 

−𝑔𝑇 �𝑥�𝑘 − 𝑑(𝑘)�� (𝑈⊗𝑄)𝑔 �𝑥�𝑘 − 𝑑(𝑘)�� 

+ � 𝑔𝑇�𝑥(𝑣)�(𝑈⊗𝑄)𝑔�𝑥(𝑣)�|

𝑘−𝑑

𝑣=𝑘+1−𝑑

𝔛(𝑘)} 

(14) 

𝔼�Δ𝑉3�𝔛(𝑘)�|𝔛(𝑘)� 

= 𝔼�𝑉3�𝔛(𝑘 + 1)��𝔛(𝑘)� − 𝑉3�𝔛(𝑘)� 

= 𝔼{�� � − �  
𝑘−1

𝑣=𝑘−𝑙

𝑘

𝑣=𝑘+1−𝑙

�
𝑑−1

𝑙=𝑑

 

× 𝑔𝑇�𝑥(𝑣)�(𝑈⊗ 𝑄)𝑔�𝑥(𝑣)�|𝔛(𝑘)} 

= 𝔼{(𝑑 − 𝑑)𝑔𝑇�𝑥(𝑘)�(𝑈⊗ 𝑄)𝑔�𝑥(𝑘)� 

−�𝑔𝑇(𝑘 − 𝑙)(𝑈⊗𝑄)𝑔(𝑘 − 𝑙)|
𝑑−1

𝑙=𝑑

𝔛(𝑘)} 

= 𝔼{(𝑑 − 𝑑)𝑔𝑇�𝑥(𝑘)�(𝑈⊗ 𝑄)𝑔�𝑥(𝑘)� 

− � 𝑔𝑇�𝑥(𝑣)�(𝑈⊗𝑄)𝑔�𝑥(𝑣)�|

𝑘−𝑑

𝑣=𝑘+1−𝑑

𝔛(𝑘)} 

(15) 

Similarly, one has 

𝔼�Δ𝑉4�𝔛(𝑘)�|𝔛(𝑘)� 

= 𝔼�𝑉4�𝔛(𝑘 + 1)��𝔛(𝑘)� − 𝑉4�𝔛(𝑘)� 

≤ 𝔼{�(𝑥𝑇(𝑘)�𝑈 ⊗ 𝑅𝑝�𝑥(𝑘)
𝑟

𝑝=1

               

−𝑥𝑇�𝑘 − 𝜏𝑝(𝑘)��𝑈 ⊗ 𝑅𝑝�𝑥�𝑘 − 𝜏𝑝(𝑘)�) 
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+� � 𝑥𝑇(𝑣)�𝑈 ⊗ 𝑅𝑝�𝑥(𝑣)|

𝑣=𝑘−𝜏𝑝

𝑣=𝑘+1−𝜏𝑝

𝔛(𝑘)
𝑟

𝑝=1

} 

(16) 

𝔼�Δ𝑉5�𝔛(𝑘)�|𝔛(𝑘)� 

= 𝔼�𝑉5�𝔛(𝑘 + 1)��𝔛(𝑘)� − 𝑉5�𝔛(𝑘)� 

= 𝔼{� � (𝑥𝑇(𝑘)�𝑈 ⊗ 𝑅𝑝�𝑥(𝑘)

𝜏𝑝−1

𝑙=𝜏𝑝

𝑟

𝑝=1

 

−𝑥𝑇(𝑘 − 𝑙)�𝑈 ⊗ 𝑅𝑝�𝑥(𝑘 − 𝑙))|𝔛(𝑘)} 

= 𝔼{�(𝜏𝑝 − 𝜏𝑝)𝑥𝑇(𝑘)�𝑈 ⊗ 𝑅𝑝�𝑥(𝑘)
𝑟

𝑝=1

 

−� � 𝑥𝑇(𝑣)�𝑈 ⊗ 𝑅𝑝�𝑥(𝑣)

𝑣=𝑘−𝜏𝑝

𝑣=𝑘+1−𝜏𝑝

𝑟

𝑝=1

|𝔛(𝑘)} 

(17) 

It is easy deduced that 𝑊(𝑝)𝑈 = 𝑈𝑊(𝑝) =
𝑁𝑊(𝑝), hence it follows 

(𝑊(𝑝) ⊗Γ𝑝)𝑇(𝑈⊗ 𝑃)(𝑊(𝑞) ⊗ Γ𝑞)

= 𝑁𝑊(𝑝,𝑞) ⊗ Γ𝑝
𝑇
𝑃Γ𝑞 

𝑝, 𝑞 = 0,1,⋯ , 𝑟 

In view of lemma (3.1), when (13)~(17) are 
substituted into (12), one can have that 

𝔼�Δ𝑉�𝔛(𝑘)�|𝔛(𝑘)� 

= 𝔼�𝑉�𝔛(𝑘 + 1)��𝔛(𝑘)� − 𝑉�𝔛(𝑘)� 

≤ � 𝔼{
1≤𝑚<𝛼≤𝑁

𝑥𝑚𝛼𝑇 (𝑘)[(𝐴𝑇𝑃𝐴

− 𝑁𝜔𝑚𝛼
(0) �𝐴𝑇𝑃Γ0 + Γ0

𝑇
𝑃𝐴� 

−𝑁𝜔𝑚𝛼
(0,0)Γ0

𝑇
𝑃Γ0 

−𝛾02𝑁𝜔𝑚𝛼
(0,0)Γ0

𝑇
𝑃Γ0 − 𝑃 

+��1 + 𝜏𝑝 − 𝜏𝑝�
𝑟

𝑝=1

𝑅𝑝)𝑥𝑚𝛼(𝑘) 

+2(𝐴𝑇𝑃𝐵 − 𝑁𝜔𝑚𝛼
(0)Γ0

𝑇
𝑃𝐵)𝑓𝑚𝛼(𝑥(𝑘)) 

+2(𝐴𝑇𝑃𝐵𝑑 − 𝑁𝜔𝑚𝛼
(0)Γ0

𝑇
𝑃𝐵𝑑)𝑔𝑚𝛼(𝑥(𝑘 − 𝑑(𝑘))) 

+2��−𝑁𝜔𝑚𝛼
(𝑝)𝐴𝑇𝑃Γ𝑝 − 𝑁𝜔𝑚𝛼

(0,𝑝)Γ0
𝑇
𝑃Γ𝑝�

𝑟

𝑝=1

𝑥𝑚𝛼(𝑘

− 𝜏𝑝(𝑘))] 

+𝑓𝑚𝛼𝑇 �𝑥(𝑘)�[𝐵𝑇𝑃𝐵𝑓𝑚𝛼�𝑥(𝑘)�
+ 2𝐵𝑇𝑃𝐵𝑑𝑔𝑚𝛼 �𝑥�𝑘 − 𝑑(𝑘)��

+ 2��−𝑁𝜔𝑚𝛼
(𝑝)𝐵𝑇𝑃Γ𝑝�

𝑟

𝑝=1

𝑥𝑚𝛼(𝑘

− 𝜏𝑝(𝑘))] 

+𝑔𝑚𝛼𝑇 �𝑥(𝑘)�[�1 + 𝑑 − 𝑑�𝑄]𝑔𝑚𝛼�𝑥(𝑘)� 

+𝑔𝑚𝛼𝑇 �𝑥(𝑘 − 𝑑(𝑘))�[�𝐵𝑑𝑇𝑃𝐵𝑑
− 𝑄�𝑔𝑚𝛼 �𝑥�𝑘 − 𝑑(𝑘)��

+ 2��−𝑁𝜔𝑚𝛼
(𝑝)𝐵𝑑𝑇𝑃Γ𝑝�

𝑟

𝑝=1

𝑥𝑚𝛼(𝑘

− 𝜏𝑝(𝑘))] 

+��𝑥𝑚𝛼
𝑇 �𝑘 − 𝜏𝑝(𝑘)�

𝑟

𝑞=1

𝑟

𝑝=1

(−𝑁𝜔𝑚𝛼
(𝑝,𝑞)Γ𝑝

𝑇
𝑃Γ𝑞) 

× 𝑥𝑚𝛼(𝑘 − 𝜏𝑞(𝑘)) 

+�𝑥𝑚𝛼𝑇 �𝑘 − 𝜏𝑝(𝑘)�
𝑟

𝑝=1

�−𝑅𝑝 − 𝛾𝑝2𝑁𝜔𝑚𝛼
(𝑝,𝑝)Γ𝑝

𝑇
𝑃Γ𝑝� 

× 𝑥𝑚𝛼 �𝑘 − 𝜏𝑝(𝑘)� |𝔛(𝑘)} 

(18) 

Owing to assumption (2.1), we have the 
following inequalities 

� 𝑥𝑚(𝑘) − 𝑥𝛼(𝑘)
𝑓(𝑥𝑚(𝑘)) − 𝑓(𝑥𝛼(𝑘))�

𝑇

 

× �−(𝐾1𝑇𝐾2 + 𝐾2𝑇𝐾1) 𝐾1𝑇 + 𝐾2𝑇
𝐾1 + 𝐾2 −2𝐼 � 

× � 𝑥𝑚(𝑘) − 𝑥𝛼(𝑘)
𝑓(𝑥𝑚(𝑘)) − 𝑓(𝑥𝛼(𝑘))� ≥ 0 

(19) 

and 

� 𝑥𝑚(𝑘) − 𝑥𝛼(𝑘)
𝑔(𝑥𝑚(𝑘)) − 𝑔(𝑥𝛼(𝑘))�

𝑇

 

× �−(𝐿1𝑇𝐿2 + 𝐿2𝑇𝐿1) 𝐿1𝑇 + 𝐿2𝑇
𝐿1 + 𝐿2 −2𝐼 � 

× � 𝑥𝑚(𝑘) − 𝑥𝛼(𝑘)
𝑔(𝑥𝑚(𝑘)) − 𝑔(𝑥𝛼(𝑘))� ≥ 0 

(20) 
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Note that(19) and (20) respectively imply 

� 𝑥𝑚𝛼(𝑘)
𝑓𝑚𝛼(𝑥(𝑘))�

𝑇

 

× �−(𝐾1𝑇𝐾2 + 𝐾2𝑇𝐾1) 𝐾1𝑇 + 𝐾2𝑇
𝐾1 + 𝐾2 −2𝐼 � 

× � 𝑥𝑚𝛼(𝑘)
𝑓𝑚𝛼(𝑥(𝑘))� ≥ 0 

(21) 

and 

� 𝑥𝑚𝛼(𝑘)
𝑔𝑚𝛼(𝑥(𝑘))�

𝑇

 

× �−(𝐿1𝑇𝐿2 + 𝐿2𝑇𝐿1) 𝐿1𝑇 + 𝐿2𝑇
𝐿1 + 𝐿2 −2𝐼 � 

× � 𝑥𝑚𝛼(𝑘)
𝑔𝑚𝛼(𝑥(𝑘))� ≥ 0 

(22) 

Then Multiplying (21) and (22) with 𝜌1  and 𝜌2 
and substituting them into (18) yields 

𝔼�Δ𝑉�𝔛(𝑘)�|𝔛(𝑘)� 

= 𝔼�𝑉�𝔛(𝑘 + 1)��𝔛(𝑘)� − 𝑉�𝔛(𝑘)� 

≤ � 𝜉𝑚𝛼𝑇 (𝑘)Υ𝑚𝛼
1≤𝑚<𝛼≤𝑁

𝜉𝑚𝛼(𝑘)           

(23) 

where 𝜉𝑚𝛼(𝑘) is defined as 

𝜉𝑚𝛼(𝑘) = [𝑥𝑚𝛼𝑇 (𝑘), 𝑓𝑚𝛼𝑇 �𝑥(𝑘)�,𝑔𝑚𝛼𝑇 �𝑥(𝑘)�, 

𝑔𝑚𝛼𝑇 �𝑥�𝑘 − 𝑑(𝑘)�� , 𝑥𝑚𝛼𝑇 (𝑘 − 𝜏1(𝑘)), 

𝑥𝑚𝛼𝑇 (𝑘 − 𝜏2(𝑘)),⋯ , 𝑥𝑚𝛼𝑇 (𝑘 − 𝜏𝑟(𝑘))]𝑇 

From lemma (3.4), it follows readily that 

𝔼�𝑉�𝔛(𝑘 + 1)� − 𝑉�𝔛(𝑘)�� 

≤ 𝑐0 � 𝔼{|𝜉𝑚𝛼(𝑘)|2}
1≤𝑚<𝛼≤𝑁

         

(24) 

where 𝑐0 = max1≤𝑚<𝛼≤𝑁{𝜆𝑚𝛼𝑥(𝛶𝑚𝛼)} < 0. Note 
that ‖𝜉𝑚𝛼(𝑘)‖2 ≥ ‖𝑥𝑚𝛼(𝑘)‖2, then it can be 
deduced that 

𝔼�𝑉�𝔛(𝑘 + 1)� − 𝑉�𝔛(𝑘)�� 

≤ 𝑐0 � 𝔼{‖𝑥𝑚𝛼(𝑘)‖2}
1≤𝑚<𝛼≤𝑁

 

(25) 

For any positive integer 𝑛, add both the sides of 
the inequality (25) from 0 to 𝑛, we have 

𝔼�𝑉�𝔛(𝑛 + 1)� − 𝑉�𝔛(0)�� 

≤ 𝑐0� � 𝔼{‖𝑥𝑚𝛼(𝑘)‖2}
1≤𝑚<𝛼≤𝑁

𝑛

𝑘=0

 

(26) 

Hence it follows 

� � 𝔼{‖𝑥𝑚𝛼(𝑘)‖2}
1≤𝑚<𝛼≤𝑁

𝑛

𝑘=0

≤
𝑉�𝔛(0)�
−𝑐0

< +∞ 

(27) 

Let 𝑛 → +∞ , it can be concluded that the 
positive series 

� � 𝔼{‖𝑥𝑚𝛼(𝑘)‖2}
1≤𝑚<𝛼≤𝑁

+∞

𝑘=0

 

is convergent. Hence  

𝑙𝑖𝑚
 𝑘→+∞

� 𝔼{‖𝑥𝑚𝛼(𝑘)‖2}
1≤𝑚<𝛼≤𝑁

= 0 

which obviously implies 

𝑙𝑖𝑚
𝑘→+∞

𝔼{‖𝑥𝑚𝛼(𝑘)‖2} = 𝑙𝑖𝑚
𝑘→+∞

𝔼{|𝑥𝑚(𝑘) − 𝑥𝛼(𝑘)|2} 

= 0              (1 ≤ 𝑚 < α ≤ 𝑁) 

This completes the proof. 

Remark 3.1: The results presented in this work 
are preliminary. For example, we have assumed the 
linear coupling between the nodes and that all the 
communication channels obey the same packet 
dropout distribution. In this sense much work is still 
to be done, for example, channels with completely 
different communication conditions, nodes with 
nonlinear coupling, and so forth. 

Remark 3.2: This paper only talks about the 
synchronization criteria of the synchronization 
problems with the given complex networks subject 
to imperfect networked coupling channels. For the 
time-delays and data dropouts between the coupling 
nodes, how to design the compensation technique 
and adaptive filters and controllers to ensure the 
synchronization of the networks is under 
investigation in our future work. 
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4. NUMERICAL EXAMPLES 
 

In this section, we shall give a numerical example 
to show the effectiveness of the criteria derived in 
this paper. 

Consider a discrete-time complex networks with 
3 nodes which is described by the following 
dynamics 

𝐴 = �0.29 −0.26
0.5 0.23 � 

𝐵 = �0.25 0.75
0.35 0.25� 

𝐵𝑑 = �0.13 0.14
0.44 0.23� 

𝑑(𝑘) = 2 + sin(𝜋2𝑘) is the state time-delay, which 

implies 𝑑 = 3 and 𝑑 = 1. There exist 3 possible 
coupling delayed states, i.e. 𝑟 = 3, and all the 
possible coupling delays are described as 𝜏1(𝑘) =
2 + sin(𝜋2𝑘), 𝜏2(𝑘) = 3 + cos(𝜋2𝑘), 𝜏3(𝑘) = 3 +
2 𝑠𝑖𝑛(𝜋2𝑘), with 𝜏1 = 1, 𝜏1 = 3; 𝜏2 = 2, 𝜏2 = 4; 
𝜏3 = 1, 𝜏3 = 5. 

It is also assumed that 

𝑊0 = �
−2 1
   1 −2

1
1

  1   1 −2
� ,𝑊1 = 𝑊2 = 𝑊3 = 0.5𝑊0 

Γ0 = �0.28 0
0 0.22� , Γ1 = Γ2 = Γ3 = 0.4Γ0 

𝑓�𝑥𝑚(𝑘)� = 𝑔�𝑥𝑚(𝑘)� 

= �
0.2𝑥𝑚

(1)(𝑘) + tanh(0.1𝑥𝑚
(1)(𝑘))

0.3𝑥𝑚
(2)(𝑘) − tanh(0.1𝑥𝑚

(2)(𝑘))
� 

where 𝑥𝑚(𝑘) = �𝑥𝑚
(1)(𝑘), 𝑥𝑚

(2)(𝑘)�
𝑇
. Hence, it is 

easy to verify that 𝑓�𝑥𝑚(𝑘)� and 𝑔�𝑥𝑚(𝑘)� all 
satisfy the sector nonlinearity assumption with 

𝐾1 = 𝐿1 = �0.2 0
0 0.2� ,𝐾2 = 𝐿2 = �0.3 0

0 0.3� 

To describe the multiple packet dropouts 
phenomenon, 𝐼𝑃(𝑘), 𝑝 =  0,1,2,3 is assumed to be 
the following discrete distributions: 

𝑃𝑟𝑜𝑏�𝐼0(𝑘)� = �0.5   𝐼0(𝑘) = 0
0.5   𝐼0(𝑘) = 1 

𝑃𝑟𝑜𝑏 �𝐼𝑝(𝑘)� = �
0.4   𝐼𝑝(𝑘) = 0

0.2   𝐼𝑝(𝑘) = 0.5
0.4   𝐼𝑝(𝑘) = 1

   𝑝 = 1,2,3 

Then by theorem 3.1, using the Matlab LMI tool 
box, we can find a feasible solution with the solved 
parameters listed as follows 

𝑃 = �907.5793 −95.8237
−95.8237 267.2214� 

𝑄 = �253.2414 39.7640
39.7640 163.4829� 

𝑅1 = �44.7353 −6.8574
−6.8574 13.7844� 

𝑅2 = �44.7353 −6.8574
−6.8574 13.7844� 

𝑅3 = �32.7381 −4.6748
−4.6748 9.8146 � 

𝜌1 = 1.2439ℯ + 003, 𝜌2 = 961.0925 

 
Figure 1: The Synchronization Errors Between The 

Nodes (The First Entry Of The State) 
 

 
Figure 2: The Synchronization Errors Between The 

Nodes (The Second Entry Of The State) 
 

It is shown that the investigated complex 
network subjected to communication constraints 
satisfies the conditions of theorem3.1, hence can 
reach asymptotical synchronization in mean square. 
This is clearly demonstrated in Fig.1 and Fig.2. 
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5. CONCLUSIONS 
 

Efforts have been made to investigate the 
synchronization problems of an array of coupled 
discrete-time complex networks subject to 
nonlinearity, mixed time-delays as well as 
communication constraints. By choosing a new 
Lyapunov function, we have derived the criteria 
under which the investigated complex networks can 
reach global synchronization in mean square. A 
numerical example illustrates the effectiveness of 
the results. Future works will focus on, for 
example, channels in completely differently 
adverse communication environments, nodes with 
complex nonlinear coupling, adaptive controllers 
design and so on. 
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