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ABSTRACT 
 

As a core framework in artificial intelligence, standard graphical models generally assume that every state 
of a variable node has effect on other nodes by propagating beliefs to them. However, in many real world 
problems concerning undirected relationships, it is common that certain state of an object cannot possibly 
change other objects' states. Besides, an object only remains in this state when no effect on it successfully 
changes it. This paper defines it as passive state, and presents a framework - Partial Dependent Graphical 
Models (PDGM) for representing undirected relationships involving these states. Through a static 
undirected structure with a varying directed edge system, it analytically captures the behavior of variables 
having passive states. An inference method is developed for reasoning in the model. Experiments and 
examples are provided to show the effectiveness of PDGM. 
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1. INTRODUCTION  
 

Through graphical representation for 
distributions over multidimensional state spaces, 
probabilistic graphical models provide a general 
approach for reasoning under uncertainty [1]. They 
are used as tools for representing quantitative 
structured uncertainties and conditional 
independencies, playing a fundamental role in 
uncertainty reasoning in all kinds of intelligent 
applications. Standard models include Bayesian 
networks (BN), Markov networks (MN) [2], and 
factor graphs [3], for directed, undirected, and 
generalized form of dependencies respectively. 
They represent distributions compactly as 
normalized products of factors. Their graph 
structures encode relationships of conditional 
independence (CI) among different variable nodes. 

 
Generally, any state of a variable in a 

standard graphical model (GM) is treated in the 
same way: it affects its neighbors by assigning 
distributions on their states. The assignment can be 
directly calculated from parameters concerning the 
state in a potential. However, in many real world 
problems, it is common that certain states are 
known that they do not affect other variables. The 
random variables in these states are the same as 
they are absent. While such relationships have been 
explored in BN, which known as Noisy-or models 

[2] and other extensions [4,5], there are little work 
concerning variables having such state in a more 
general dependencies. 

 
This paper explores probabilistic relations 

involving states that have the same influence as the 
absence of variables. It shows that such 
dependencies exist in real world. It reviews why 
those developed models, such as MN, are difficult 
to capture these relations. It then presents a 
probabilistic framework with graphs to represent 
the relationships. Since exact inference is 
computationally hard, it develops a much more 
efficient inference method based on message 
passing for reasoning in the model. 

 
2. BACKGROUND 

 
BN and MN are two basic forms of 

graphical models. A BN is represented by a 
directed acyclic graph. Its joint distribution can be 
factorized as multiplications of every local 
conditional probability: . 
Noisy-OR models [2] are a kind of BN 
incorporating a special failure state. A binary parent 
node in this state implies that it fails to affect its 
child nodes, as if it is absent. Nodes in non-failure 
states affect their child through an OR gate. In case 
no parent succeeds to affect a child, a leak 
probability is assigned to the child [6]. Thus a local 
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relation can still be represented in a conditional 
probability table (CPT). Extensions of this model 
have been developed, allowing interactions such as 
AND or MAX. A MN  is an undirected 
graph with set of vertices  and 
set of undirected edges , where each 

 is a random variable. The joint distribution is 
normalized multiplications of local potentials: 

. Each potential  is a 
function of a set  of the variable nodes in a 
clique, and  is the normalization function. In 
discrete state spaces, a potential is a table which 
assigns a nonnegative number to every state 
combination of variables in the corresponding 
clique. Among various developed GMs, context-
specific independent (CSI) models can explore 
different dependence under different contexts [13-
15]. Edges in graphs can be deleted in specific 
context of certain nodes. CSI in factor graphs can 
be represented by a graphical notation of Gates [16]. 
In stead of cutting edges, it uses a selector variable 
to disable factors. 

 
A fundamental inference mechanism in 

GM is belief propagation (BP) [2] or its equivalent 
form of sum-product algorithm. It can be expressed 
as two phases of message passing. The message a 
variable sent to a local potential is: 

. The message a 
local potential sent to a variable is: 

 
[3,7]. It yields exact results in finite steps if the 
(moral) graph is acyclic, and is an update rule of 
iterated inference algorithm if there are loops. 
Although not guaranteed to converge, theoretical 
[8-10] and empirical [11,12] studies have shown 
the effectiveness of loopy belief propagation (LBP). 

 
3. PROBLEMS WITH EXAMPLES 
 

As an example, suppose the fire states of 
rooms in a building are to be estimated. The only 
observation is whether certain room is on fire or 
not. Each room can be represented by a variable 
with 2 states:  and . Clearly if a room 
is watched on fire, the probability that its 
neighboring rooms are also on fire would rise. 
Furthermore, a room's state is independent of its 
non-adjacent rooms given all of its adjacent rooms' 
states. With these observations of direct 
dependence and CI, it is natural to represent it as a 
GM, and estimate a room's state through marginal 
distribution inference. The problem left is which 
model to use.  

Since forcing fixed directionality between 
rooms is unreasonable, BN is not a proper model 
for it. Is MN proper? Suppose there's a potential 
function between two adjacent rooms, as in Table 1. 
If only these two are considered, when one is in 
state , the other can be set a probability 
( ) to be in the same state. Considering 
symmetry, and making the potential in a canonical 
form, 3 of the 4 entries can be fixed. However, 
setting any number to entry  
would encounter problems. 

Table 1: potential of adjacent rooms. 

 B=Fire B=NoFire 
A=Fire p 1 

A=NoFire 1 q 
 

Taking the real line part of Figure 1 as an 
example, if the entry is set a number , then 
when room  is observed not on fire, by 
computation its neighbor  would have 25% to be 
on fire. Even worse, since  has a non-zero 
probability on fire, 's probability on fire would be 
higher than  as long as . As this goes on, 
the result would be at least 25% of all the other 
rooms are on fire. That is far from facts. If it is set a 
very large number, only leaving a near-zero "leak 
probability" to be on fire as an approximation, then 
when there are rooms observed on fire, all the other 
rooms except their direct neighbors would have 
near-zero probability to be on fire by computation. 
The model would then lose its meaning. Similar 
results would be got if a singlet potential is set as a 
prior on every unobserved node, as the dash line 
part in figure 1. Low prior on  lowers the 
effect of any evidence on fire. Other techniques are 
possibly effective for fitting specific observation 
data in specific structure approximately, such as 
setting  a large number, making some potentials 
asymmetric, or adding extra nodes to the structure. 
But when the observation or the structure differs, 
these techniques are easily ended in failure. The 
experiment in Section 7 clearly shows it. Basically, 
the standard framework of undirected GM neglect 
the fact that  is not a state that can change 
its neighbors' states. Therefore, it is not a proper 
model for this problem, not even an approximation. 
  

 
 

Figure 1: rooms modeled by MN 
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It seems that  is like a CSI state. 
Can CSI models capture its feature? According to 
CSI's definition [15], two sets of variables  and 

 are contextually independent given context 
, where  is also a set of variables and 

, if , for all 
, such that . In the 

above example, the state  makes itself have 
no effect on other nodes. If it is a CSI model, the 
fact that the context  is either  or  would 
make the equation trivial. It always holds without 
capturing the feature of the relation. Furthermore, if 
it is not an evidence, a room in  does not 
mean it is independent of other rooms. It still can be 
affected by them if they are not in . Either 
cutting edges or disable factors would block 
possible effects from them. In addition, a room in 

 would change to  if any possible 
effect is successful to do so. It only remains on 

 when all effects fail to change it. This is 
similar to the failure state in a Noisy-OR model. 
For example, fire in a room can cause an alarm 
beeping. When there is no fire, the beeping state is 
predetermined by a leak probability. If there are 
multiple causes to make the device beeping, each 
cause affects it on their own, which known as the 
Independence of Causal Influence (ICI). When all 
parents of a child node are in their failure states, it 
can be viewed as they sending a belief message 
revealing the child's leak probability. Thus every 
state combination can be incorporated in a CPT, 
making it a BN. Based on it, a child node in failure 
state can also send messages to its parents under the 
assumption of a prior distribution of its parents' 
states. Usually this prior is a uniform. This is totally 
different from the situation of undirected relation. 

 
States like  in "Fire Estimation" 

are common in real world. Epidemic propagation 
modeling normally has state "uninfected". Social 
influence modeling in a social network always 
encounters people "unaffected". Biological system 
modeling usually has molecules or cells that have 
"inactive" state. It's a state like "sleeping", having 
no effect and waiting to be activated. Proper models 
should be established to precisely represent the 
relationship involving these kind of states. 
 
4. PASSIVE STATES 

 
Comparing to standard GM, the major 

difference of modeling comes from the existence of 
the special state. It has no effect on other variables. 

A variable in this state is passive. It leaves the state 
if any effect can activate it. 

Definition 1 Suppose there is a 
probabilistic model on a set of random 
variables , . Each variable 

 has state space , . 
 denotes 's distribution. An effect 

 on  is in the form of a distribution 
on 's states: , where 

. Then the passive state of 

, denoted by , is the 
state that satisfies: 
(1) For any , if its 
distribution can be predetermined by 

 without considering , then 
. Otherwise,  is 

undetermined. 
(2) For multiple effects  
on , 's distribution under  is 
denoted by . For any , 

with probability , effect  fails 

to have effect on , . 

A variable that has a passive state is 

called a passive variable. If it is in 

this state, it is passive. By contrast, 
other states are called active states. If 
a variable is not in passive state, it is 

active . The set of all states other than 
 is denoted by .  denotes that 

every variable in set  is in passive 

state, while  denotes none of them in 

passive state. A variable that only has 

active states is called an active 
variable. We only concern variables that 
have at most one passive state. Multiple 

passive states cannot be distinguished in 

a probabilistic model, and should be 

combined to one state. 

Corollary 1 Suppose  are two 
finite non-empty sets of possibly passive 
random variables, then , when 

: 
  (1) 

where  is a conditional 
distribution without considering . 

Proof: According to definition 1(1), if 

, 
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Corollary 2 For a set of effects  on 
passive variable , nonempty set 

 denotes any distinct subset of 
, 's distribution under these effects can be 

computed as: 
 

 

where . 

Proof: Let . For any 

subset , with probability 

, each effect 

labeled in  is successful to make  in 

an active state, while each effect 

labeled in  fails to activate . By 

definition 1(2), , and 

effects in  only set  in its active 

states. Therefore, with this probability, 

 , and 

. The sum of the product of each 

 with its probability is the first 

case of the equation. It only leaves 

 with probability . Thus 

Corol.2 is proved. 
 
 It can be viewed as the active part of each 
effect affecting  through an OR gate. Specifically, 
if  is binary,  

. Since  is nonempty, it equals to 
. Then this is exactly an OR gate 

on each , and its computation is rather 
efficient. If  has 2 or more active states, every 
possible situation - which effects "succeeds" (in set 

), and others "fails" (in set ), is computed 
separately by their probabilities. Then the overall 
number of different situations is , which 
makes it inefficient when  is large. If  has no 
passive state, by this corollary's computation, its 
each state's distribution is , which is 
consistent to BP in a standard model. With corol.1, 
conditional probability can be computed, and CI 
can be verified. Based on it, the static structure of 
related variables in a GM can be established. 

Consider a probabilistic model on a set of possibly 
passive variables . For three mutually 
disjoint sets , if  

 holds for any possible values, then  and 
 are conditionally independent given . 

Definition 2 Two variables  and  have a 
neighboring relation in a graphical model on a set 
of variables , if there is no , 

 that makes  and  
conditionally independent. The two variables are 
each other's neighbor. 

Two neighbors are connected by a static link. The 
overall static links on  form the model's structure. 
Here we only consider models that any variable in 
it is conditionally independent of other variables 
given its neighbors. 
 
5. PARTIAL DEPENDENCE 

 
Usually, an edge in a GM represents a 

direct dependence that both sides have effect on 
each other. However, in a model that has passive 
variables, a static link does not imply the two 
connected variable nodes can always affect each 
other. According to definition 1, if one is in passive 
state, it cannot change the other's state. In this sense, 
the dependence between them is partial.  

Definition 3 If a neighboring relation involves at 
least one passive random variable, it is called a 
partial dependence (PI).  
 
 Describing PI in a proper form of 
parameters requires thorough analysis. It is known 
that parameters of discrete active variables are in 
the form of potential table. Each entry of the table 
corresponds to a state combination of variables in a 
clique, with a nonnegative real number. An 
example is shown in figure 2(a). The effect of one 
variable's state on the other variable's distribution is 
computed through each entry's proportion to all 
entries corresponding to the state. In a pair-wise 
model, the distribution computing on every entry is 
bi-directional. However, if there is a passive state, it 
has to be unidirectional - from active state to 
passive state, since passive state cannot affect other 
variables. Figure 2(b) and 2(c) show two examples. 
Furthermore, the entry corresponding to all 
variables in their passive states has to be left empty, 
since every side has no effect on others. Figure 2(b) 
is an example. 
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Figure 2: Parameters between different types 

of variables. Entries with "*" are 
unidirectional 

Definition 4 A partial potential (p-pot) on a 
clique , where every variable in  has 
neighboring relation with every other variable, is a 
function table denoted by . For every , 
it maps every combination of active states in 

, to a proportion on 's states, which 
implies:  
  (2) 

An entry of the table is a nonnegative real number 
corresponding to a state combination of every 
variable in the clique. If an entry's correspondent 
state combination includes at least one passive state, 
it is called a partial entry. If there exists an all-
passive state combination, its correspondent entry is 
undefined and left empty. A distribution can only 
be computed under condition of active states. The 
proportion of a partial entry to all entries that have 
the same active states is interpreted as: in this 
proportion, the nodes in those active states fail to 
activate the node in passive state. 
 
 In a PI relation, node  having effect on 
node  does not mean at the same time  having 
effect on . Plus, an effect only possibly holds 
when it comes from active states. Neither standard 
edges nor static links can explicitly represent such a 
relation. Therefore, effect edges are designed as an 
assistant system to exhibit partial dependence. 

Definition 5 An effect edge is a probabilistic 
existed directed edge between two neighboring 
nodes. The probability it exists is the probability 
that its tail node has effect on its head node. It is 
shown if the probability is not zero. 

An effect edge only shows one-side effect in a 
relation. Effect edge system can be cyclic, and 
differs under different observations. The nodes 
observed in passive states have no outgoing effect 
edges. The nodes observed in active states or the 
nodes only have active states have outgoing effect 
edges to each of their unobserved neighbors with 
probability 1, which is exhibited in thick real line in 
a graph. Effect edges from unobserved passive 
variables exist with probability less than 1, which is 
exhibited in thin line if the probability is not 0. The 

example in figure 3 shows the different effect edges 
under different observations of the same static 
structure in figure 3(a). Figure 3(b) shows the effect 
edges when node  is observed in active state , 
and node  in passive state .  has effect on its 
two neighbors with probability 1 , while  has no 
effect on other nodes. Both  and  have effect on 

 with probability less than 1, and vice versa. 
Figure 3(c) shows the effect edges when the 
observation is  in passive state and  in active 
state. To be consistent to standard GM, an effect on 
a variable node through an effect edge, in the form 
of the node's distribution, is called a belief message 
arrived at the node. 
 
 Since the existence of an effect from a 
passive variable has a probability, it is always 
possible that with certain probability, a node 
surrounded by passive nodes is affected by none of 
them. The node has to be estimated a prior 
distribution. This prior distribution may not be 
uniform. It is estimated by specific prior knowledge. 
For example, in "Fire Estimation", the prior on 

 should be 1 or slightly lower if a room is 
not supposed on fire when none of its neighbor is 
considered affecting it. This is a fact for most real 
world rooms. If it is 1, then every node's default 
distribution is their prior, for the non-effect 
property of passive state. There might be a question 
on how a fire is originated in such a model. The 
answer is intervention: the first burning room is 
usually for some reason outside of the model which 
intends to reveal the correlations of the rooms. If it 
is less than 1, that means every node in default has 
a probability in active state to affect their neighbors. 
In this case, when there is no observation, their 
default distribution in the model usually has a lower 
estimation on their passive states than their priors, 
since they are probable to affect each other through 
interaction. 
 

 
 
Figure 3: The static link structure and effect 

edges with  and  are observed 

 
6. PARTIAL DEPENDENT GM 
 

http://www.jatit.org/


Journal of Theoretical and Applied Information Technology 
 10th June 2013. Vol. 52 No.1 

© 2005 - 2013 JATIT & LLS. All rights reserved.  
 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195 

 
105 

 

 A Partial Dependent Graphical Model 
(PDGM) is a graphical representation of a set of 
probabilistically related random variables, each of 
which possibly having a passive state. The nodes of 
the graph correspond to the variables. The static 
links of the graph reveal their direct dependencies. 
Each local structure has a partial potential as its 
parameters. As an assistant system, the effect edges 
varying by different observations explicitly show 
the variable nodes' effects on their neighbors. 
PDGM can induce independencies and factor-
izations, as the standard GM. However, they have 
significant differences. The establishment of 
PDGM is not based on its variables' joint 
distribution, and a fixed joint distribution may not 
reveal relations among its objects. A joint 
probability table for discrete variables set every 
state combination a fixed probability, which means 
a fixed frequency. In many cases, frequency is not 
related to correlation. For example, for buildings in 
London, frequency of fire is quite different during 
peaceful time and during riot time. But the 
correlations of Fire effect between the same 
buildings, which mainly decided by their materials, 
structures, positions, etc are never change. On the 
contrary, a typical example of PDGM is the model 
that every variable's prior distribution is 1 on its 
passive state and 0 on other states. Its joint 
distribution by computation would be 1 on the 
combination of all passive states, and 0 on any 
other state combinations. Although the model 
exactly reveals the relationships of the nodes, its 
joint distribution tells nothing about them. In a 
model where variables have nonzero prior on their 
active states, the joint distribution is not trivial. In 
many cases, while variables' prior distributions are 
different, the relations among them do not change. 
In this sense, PDGM focuses on describing 
probabilistic correlations among its objects. 
 
 Although joint distribution cannot be 
compactly represented in PDGM, since the model 
is established on neighboring relations, there is at 
least one way to exactly compute it. It requires to 
compute each condition for each state combination 
of the variables. Taking the model in figure 3(a) as 
an example, first every state combination is 
considered separately. Then consider whether an 
active state is a result of its prior. And then consider 
whether each variable in active state which not 
activated by its own prior can be affected by one of 
its neighbors. For example, for state combination 

, if only  is activated 
by its prior - , then the 
relations among them is exactly as figure 3 (b) 

shows. By separately computing the probability of 
each 3 possibilities:(1)  are activated by , 
while  is activated by ; (2)  is activated by 

,  is activated by , and  is activated by ; (3) 
 is activated by ,  is activated by , and  is 

activated by , the probability of this specific 
situation can be obtained. Joint distribution can be 
obtained by summing up the probability of all 
possible situations in different state combinations. 
This is a method of exhaustive searching, which is 
inefficient. 
 
6.1 Inference in Pair-wise Models 

The inference is based on belief message 
passing. For two passive nodes  and  linked 
together in a pair-wise model, the p-pot is 
represented as . Suppose  and  
are  and 's distribution respectively without 
considering each other's effect. Let  denote effect 
edge , . Then after 
considering 's effect on , 's distribution can 
be computed by:  
1. In case , which has probability , 's 
effect on  is , where 

. By Corollary 2: 

 

where . 
2. In case , which has probability , 

. 
Altogether,  is: 

 

Note that this result is equivalent to the effect 
 computed by: 

 (3) 

Thus, the "final" effect of any node on its neighbor 
can be obtained. 

 
 When computing 's effect on , the 

effect from  itself has to be excluded. Otherwise 
it would lead to infinite self-enhancement without 
extra information. This is analogous to the sum-
product algorithm - the computation of a belief 
message from a node on an edge excludes the belief 
message arrived at this node from the edge. Thus 
the probability that an effect edge  exists is 
the probability that all except 's effects on  that 
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make  in its active states. For a complete 
inference, consider unobserved node  with  
neighbors: , and  corresponding partial 
potentials .  has an 
effect edge  to each , and each  has  to 

. Suppose 's prior distribution is , 
and let . Suppose each normalized 
belief message from  to  is . 
According to the above analysis, we have: 
- The incoming messages sent to  excluding 

, together with ' prior, on the belief of 
 in its active states is the probability of effect 

edge . It can be computed by corollary 2: 

  (4) 

- With probability ,  has effect 

on . The distribution on its active 

states can be viewed as a message sent to 

: 

(5) 
And the effect on  is: 
  (6) 

Including the part of passive state (with 

probability ), the altogether 

effect on , which also can be viewed as 

a message sent from  to , is 

computed by: 

 (7) 

Thus, each message sent from a node to its 
neighbor can be computed by the messages it 
receives from its neighbors. The equations above 
can be used to update each belief message. Finally, 
the belief of  can be directly computed by all 
messages it receives through corollary 2. 
 
 Note that the number of unknown message 

 are equal to the number of their equations. In 
theory, they can be obtained by solving these 
equations. However, solving high order equations is 
infeasible. Therefore, the following iteration 
algorithm - Belief and Effect Updating (BEU) is 
presented to get approximate result: 

1. Each node observed in active state and each 
active variable establishes an effect edge to each of 
its unobserved neighbors with probability 1; 
2. Each unobserved node establishes an effect edge 
to each of its unobserved neighbors with the 
probability of its summarized prior on all active 
states; 
3. Each node sends out initial belief messages 
according to their observations or priors, to their 
unobserved neighbors through effect edges; 
4. If a node receives a belief message from a 
neighbor, it establishes an effect edge to every other 
unobserved neighbors if the edge has not been 
established before, and updates the probability of 
the edge along with the belief message on it 
according to equation(4), (5) and (7). Repeat this 
process until they converge; 
5. According to the above messages sent to each 
unobserved node, compute each node's belief. 
The algorithm is based on BP. If the static structure 
is a tree, or if the static links among unobserved 
nodes form trees, then each evidence through 
different effect edge to a node on the tree, or each 
prior of a node on a tree can only possibly update 
any belief message on any effect edge at most once, 
which makes BEU to get an exact result in finite 
steps. However, if the unobserved nodes form loops, 
it is not guaranteed to converge, like LBP. 
Specifically, if there is no passive state, by 
equation(4),  for every effect. Then 

. 
Aside from an extra normalization which does not 
change any result, it is the same as LBP in a pair-
wise Markov network. 
 
6.2 Discussion of Non-Pairwise Models 

In the above analysis and computations, a 
p-pot is not required for a node if its corresponding 
neighbor is in passive state. For a node in a clique 
with 3 or more nodes, it requires different p-pots 
when different neighbor in the clique is in passive 
state. A natural way to deal with this problem is 
keeping a complete p-pot table for the clique, and 
reducing it whenever necessary. For p-pot  on 
clique , the variables in a subset  are in 
their passive states with a probability. The reduced 
p-pot  keeps the  entries where , 
without variables in . The nodes in the clique will 
then compute their belief messages by the reduced 
p-pot. An example of reduced p-pots for a 3-node 
clique is shown in figure 4. 
 

http://www.jatit.org/


Journal of Theoretical and Applied Information Technology 
 10th June 2013. Vol. 52 No.1 

© 2005 - 2013 JATIT & LLS. All rights reserved.  
 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195 

 
107 

 

 
 
Figure 4: A p-pot with its reduced forms for a 

3-node clique, 0 is the passive state 
 
 However, reduced p-pots cannot be 
arbitrarily parameterized, otherwise they would not 
be compatible in the complete p-pot. Thus their 
parameters are constrained. If such constraint is not 
reasonable, then a set of p-pots should be 
maintained for a clique. For arbitrary parameters, it 
requires one p-pot for each sub-clique. Each one of 
them only has entries that at most one variable is in 
passive state. An example of arbitrary 
parameterized p-pot set for a 3-node clique is 
shown in figure 5. In this case it can even be 
reduced to one node, putting the node's prior in the 
corresponding p-pot. For an overall computation, 
each possible situation, including which variables 
in a clique are active, and should send messages to 
which p-pot in the p-pot set, is computed separately 
by their probabilities. The computation of  is 
the same as in Equation(5), computing the effect of 
all messages except the one from this clique. The 
computation of  requires different  for 
different cases of variables in their passive states. 
 

 
 
Figure 5: A set of arbitrary parameterized p-

pots 
 
 

 
 

Figure 6: The structure in the experiment 
 
7. EXPERIMENTS AND EXAMPLES 
 
 The following experiment compares 
PDGM with MN. It models "Fire Estimation" on a 
graph in figure 6(a), with each node representing a 
room that might be on fire. The center node  is the 
only room observed, 1 ( ) and 0 ( ) 
each time. Due to the symmetry of the graph, only 
beliefs of two kinds of nodes -  and  are 
required to be estimated. The potential table for 
MN modeling is table 1. The p-pot for PDGM is the 
same table without the parameter . In PDGM 
modeling,  is the prior on active 
state . Figure 6(b), 6(c) and 6(d) are effect 
edges when  is observed in active state, passive 
state with , and passive state with 

 separately. Note that in each 
modeling, exact results can be obtained by solving 
quadratic equations. 

Table 2: Fire estimation by PDGM and MN. 
 P=2 P=0.8 P=0.25 

Z=1 Z=0 Z=1 Z=0 Z=1 Z=0 
PDGM, 

e=0 
A 0.8582 0 0.5486 0 0.2132 0 
B 0.7713 0 0.3945 0 0.0809 0 

PDGM, 
e=0.001 

A 0.8586 0.0050 0.5496 0.0026 0.2143 0.0015 
B 0.7717 0.0050 0.3957 0.0026 0.0822 0.0015 

MN,q=max 
{1,1/p} 

A 0.8638 0.7236 0.3386 0.3386 0.0154 0.0154 
B 0.7603 0.7236 0.3902 0.3902 0.0588 0.0588 

MN,q=max 
{p,1+1/p} 

A 0.7887 0.2113 0.1655 0.0911 0.0099 0.0080 
B 0.6511 0.3489 0.1987 0.1841 0.0386 0.0386 

MN,q= 
3(p+1/p) 

A 0.1111 0.0025 0.0244 0.0044 0.0015 0.0005 
B 0.0588 0.0187 0.0304 0.0266 0.0062 0.0061 

*MN,q=1 
e=0.001 

A 0.0020 0.0010 0.0008 0.0010 0.0002 0.0010 
B 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 

**MN, 
q=1 

 p=2/e p=0.8/e p=0.25/e 
A 1.0000 0.9990 1.0000 0.0235 0.9982 0.0018 
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e=0.001 B 0.9998 0.9990 0.9984 0.0235 0.9816 0.0018 
 
 The result is shown in table 2. They are 
probabilities of  in room  and , by different 
parameters. The higher  means the rooms are less 
fireproof, while the lower  means better. Note that 

 can be less than 1 if the fireproof material is 
rather good. In MN modeling, setting  to be 1 or  
are two normal ways to set it. But  should never be 
less than  to make a fair comparison. In *MN 
and **MN modeling, each unobserved node is set a 
singlet potential as a prior, . By 
general knowledge, when  is on fire, the 
probability of  on fire should be no less than  on 
fire. Better fireproof rooms should have lower 
probability than worse fireproof rooms. When  is 

, there is no reason to estimate high 
probability on  for any room. Table 2 clearly 
shows that in any presented condition, only PDGM 
have reasonable modeling. MN modeling, either 
with or without prior, and no matter what  is set, 
cannot reasonably explain the situation. Note that 
**MN's strategy is setting  a large number 
associated with . It can be a good approximation 
when there is only one observation, either in active 
or passive state, in a tree structure. But when there 
are more than 1 observations, or if the structure has 
loops, it fails to explain it. Only when  and  are 
both very large, which means the relation between 
every pair of nodes is very close to a deterministic 
relation (one room on fire, nearly every other rooms 
are also on fire), then the MN modeling can be 
close to PDGM. 
 
 The following example shows how BEU 
works, with structure in figure 7(b) and parameters 
of trinary nodes in figure 7(a).  of every 
node is set to be . Here, Node 3, 5 are 
observed in state 2 and 1 respectively, and node 8 is 
observed in state 0, as figure 7(b) shows. Figure 7(c) 
is the effect edges under the observation. 
 

 
 
Figure 7: BEU test: parameters and structure 

Table 3: The BEU iterations. 
 1 2 3 4 5 6 

 0.1667 0.2057 0.2189 0.2225 0.2248 0.2249 

 0.2381 0.2396 0.2472 0.2466 0.2465 0.2465 
 0.1848 0.2453 0.2612 0.2712 0.2713 0.2713 
 0.0761 0.1313 0.1366 0.1413 0.1412 0.1412 
 0.1848 0.2541 0.2692 0.2744 0.2745 0.2745 
 0.0761 0.1321 0.1366 0.1402 0.1402 0.1402 
 0.1848 0.2835 0.2835 0.2871 0.2871 0.2871 
 0.0761 0.1699 0.1699 0.1695 0.1695 0.1695 

 0.1667 0.1667 0.1881 0.1881 0.1883 0.1883 
 0.2381 0.2381 0.2430 0.2430 0.2430 0.2430 
 0.1667 0.2209 0.2244 0.2256 0.2256 0.2256 
 0.2381 0.2463 0.2455 0.2457 0.2457 0.2457 
 0 0.0923 0.1229 0.1231 0.1233 0.1233 
 0 0.0468 0.0741 0.0739 0.0740 0.0740 
 0 0.1534 0.1869 0.1889 0.1890 0.1890 
 0 0.0933 0.1175 0.1177 0.1177 0.1177 
 0 0.1899 0.1899 0.1917 0.1917 0.1917 
 0 0.1041 0.1041 0.1045 0.1045 0.1045 

 0 0.1006 0.1006 0.1014 0.1014 0.1014 
 0 0.0585 0.0585 0.0586 0.0586 0.0586 
 0 0.1432 0.1445 0.1451 0.1451 0.1451 
 0 0.1216 0.1215 0.1216 0.1216 0.1216 
 0 0.1843 0.1858 0.1870 0.1870 0.1870 
 0 0.1336 0.1338 0.1342 0.1342 0.1342 

 
 The iteration results are shown in table 3, 
where each  is the belief message on state 

 (1 or 2) that sent on effect edge . Note that 
there is no effect edge sent from or to node 8. Node 
12 has no effect edge to 11, because it has no 
incoming edges other than . With prior of 0 
on active states, it has no effect on node 11. The 
belief messages sent on , , , 

,  and  are never change. Edge 
 is only affected by . Edge  is 

only affected by  and . Thus the belief 
messages they send are fixed in 1 and 2 steps of 
updating respectively. The rest of the edges are 
shown in table 3. They converge after 6 iterations. 
The marginal distributions of the unobserved nodes 
are in table 4. The nodes having more incoming 
effect edges tend to have low probability on their 
passive states, since they have more ways to be 
activated. 

Table 4: Marginal distributions of unobserved nodes. 
node 1 2 0 node 1 2 0 

1 0.5354 0.2577 0.2069 2 0.4792 0.4466 0.0742 
4 0.1667 0.5000 0.3333 6 0.6200 0.3333 0.0467 
7 0.4011 0.4937 0.1052 9 0.5737 0.1812 0.2451 

10 0.6260 0.2548 0.1192 11 0.4561 0.3346 0.2093 
12 0.2978 0.2137 0.4885     

 
 
8. CONCLUSION 
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 The contribution of this paper can be 
viewed as threefold. First, it reminds the existence 
of passive states, and gives a definition in 
probabilistic models. In real world, it is common 
that in an interactive relationship, an object has a 
passive state, in which it cannot change other 
objects' states. Therefore, modeling dependencies 
among these objects is different with normal 
undirected modeling. Corollaries are deduced to 
describe the feature of passive variables. 
 
 Second, this paper presents the Partial 
Dependent Graphical Models, a framework that can 
precisely capture the probabilistic relationships 
among objects that have passive states. It is made 
up of two correlated parts. The undirected structure 
with partial potentials reveals the static relations 
among different variable nodes. The assistant effect 
edge system manifests different interactions among 
variable nodes under certain observations. Aside 
from representing partial dependence, PDGM is 
consistent to standard graphical models. 
 
 Third, an inference method based on 
message passing is provided for reasoning in the 
model, since directly computing joint distribution is 
inefficient. It yields exact results when the 
unobserved nodes in a model form tree structure. If 
there are loops among unobserved nodes, the Belief 
and Effect Updating process is provided for 
obtaining approximate results. Experiments and 
examples show the effectiveness of the model. 
 

 A series of issues are left for future 
research. One is developing efficient method for 
computing joint distribution. Joint probability 
distribution of certain set of nodes may be required 
in some applications. Computing by exhaustive 
possibility searching is extremely time consuming. 
Efficient approximate algorithms are required to be 
developed. Learning parameters in PDGM is 
another issue. Since a partial potential has both 
normal and partial entries as its parameters, and 
computing joint distribution is not easy, developing 
learning algorithms can be a challenge. Other issues 
may include exploring it in chain graph like 
structures, and extending it to dynamic modeling. 
 
ACKNOWLEDGMENT  
This work is supported by the National Natural 
Science Foundation of China (Grant No. 61003181, 
61175116). 

 
 
 

REFRENCES:  
[1] D. Koller and N. Friedman, Probabilistic 

Graphical Models, MIT Press, 2009. 
[2]  J. Pearl, Probabilistic Reasoning in Intelligent 

Systems: Networks of Plausible Inference, 
Morgan and Kaufmann, 1988. 

[3] F. R. Kschischang, B. J. Frey, and H.-A. 
Loeliger, “Factor graphs and the sum product 
algorithm”, IEEE Transactions on Information 
Theory, Vol.  42, No. 2, 2001, pp. 498-519. 

[4] D. Heckerman, “Causal independence for 
knowledge acquisition and inference”, 
Proceedings of Ninth Conference on 
Uncertainty in Artificial Intelligence,  1993. 

[5]  F. J. Diez, “Parameter adjustment in Bayes 
networks. the generalized noisy or gate”, 
Proceedings of Ninth Conference on 
Uncertainty in Artificial Intelligence,  1993. 

[6] M. Henrion, “Some practical issues in 
constructing belief networks”, Proceedings of 
Third Conference on Uncertainty in Artificial 
Intelligence,  1987. 

  [7]  B. J. Frey, “Extending factor graphs so as to 
unify directed and undirected graphical 
models”, Proceedings of Nineteenth Conference 
on Uncertainty in Artificial Intelligence,  2003. 

[8] Y. Weiss, “Correctness of local probability 
propagation in graphical models with loops”, 
Neural Computation, Vol.  12,  2000, pp. 1-41. 

[9]  Y. Weiss and W. T. Freeman, “Correctness of 
belief propagation in gaussian graphical models 
of arbitrary topology”, Neural Computation, 
Vol.  13,  2001, pp. 2173-2200. 

[10] J. Yedidia, W. Freeman, and Y. Weiss, 
“Constructing free-energy approximations and 
generalized belief propagation algorithms”, 
IEEE Transactions on Information Theory, Vol.  
51,  2005, pp. 2282-2312. 

  [11] K. Murphy, Y. Weiss, and M. I. Jordan, “Loopy 
belief propagation for approximate inference: an 
empirical study”, Proceedings of Fifteenth 
Conference on Uncertainty in Artificial 
Intelligence,  1999. 

[12] Y. Weiss, “Comparing the mean field method 
and belief propagation for approximate 
inference in MRFs”, Advanced Mean Field 
Methods, MIT Press, 2001. 

 [13] C. Boutiler, N. Friedman, M. Goldszmidt, and D. 
Koller, “Context-specific independence in 
Bayesian networks”, Proceedings of Twelfth 
Conference on Uncertainty in Artificial 
Intelligence,  1996. 

http://www.jatit.org/


Journal of Theoretical and Applied Information Technology 
 10th June 2013. Vol. 52 No.1 

© 2005 - 2013 JATIT & LLS. All rights reserved.  
 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195 

 
110 

 

[14] D. Geiger and D. Heckerman, “Knowledge 
representation and inference in similarity 
networks and Bayesian multinets”, Artificial 
Intelligence, Vol.  82, No 1-2,  1996, pp. 45-74. 

[15] D. Poole and N. Zhang, “Exploiting contextual 
independence in probabilistic inference”, 
Journal of Artficial Intelligence Research, Vol.  
18,  2003, pp. 263-313. 

[16] T. Minka and J. Winn, “Gates”, Advances in 
Neural Information Processing Systems, 2008. 

 
 

 
 
 

  
 
 
  
 
 
 

 

http://www.jatit.org/

	DONGYU SHI
	3. PROBLEMS WITH EXAMPLES

	Table 1: potential of adjacent rooms.
	6.1 Inference in Pair-wise Models
	6.2 Discussion of Non-Pairwise Models

	Table 2: Fire estimation by PDGM and MN.
	Table 3: The BEU iterations.
	Table 4: Marginal distributions of unobserved nodes.

