
Journal of Theoretical and Applied Information Technology
 10th June 2013. Vol. 52 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

75

 AN EXTENSIVE DATA CACHING FRAMEWORK
APPROACH FOR ENTERPRISE APPLICATION

1NILAYAM KUMAR KAMILA, 2PRASHANTA KUMAR PATRA

1Asst. Consultant, TATA Consultancy Services, Florida, USA
2Prof. & Head, Department of CSE, College of Engg. & Tech, Bhubaneswar, INDIA

E-mail: 1nilayam.kamila@tcs.com, 2hodcomputer@yahoo.co.in

ABSTRACT

There are a number of approaches, which have been developed and are still in process of development, to
regulate and frame the data transfer to/from the servers or storage base. The developers are still facing
number of difficulties in terms of time required in fetching or storing the data in remotely located servers
during the development (coding and unit test) phase. The remotely located server could not be replicated or
placed in local area network due to high security concerns and unavailability of proper infrastructures. We
are presenting a new framework approach which can be utilized to cache the remote data and hence the
development process could be made faster than the usual traditional development process.

Keywords: Caching, Data Caching, Caching Framework, Development through Caching

1. INTRODUCTION

The Data Caching is a key technique to reduce
the response time so as to improve the overall
performance of the software application [1]. This
technique is widely used in many contexts e.g. web
application, database technology, proxy server etc.
With this technique, application users can interact
with the system and in turn the CSI (Customer
Satisfaction Index) could be increased at its desired
level [6].

There are many e-commerce or enterprise level
application sites which are mostly based on data-
driven design, but some of these data-driven
websites can't be developed quickly because of the
development location constraints. The servers are
located in different geographic regions and the
developers are located in different geographic
regions. In this case, the application developers or
designer could implement own and private data-
caching mechanism to ensure that all the
application related data objects are retrieved
appropriately to the application[4]. A better way to
retrieve the application data is to use caching
objects, which cache the data when it is retrieved
from the server. The caching framework discussed
here is a more generalized way to resolve the data
fetching response time issue in development
phase(coding and unit testing), in reality.

There are also a lot of difficulties faced by the
application developers, where they have to develop
the application in a restricted availability of

infrastructure (because of the data security
concerns, cost factors etc.), and hence they need to
depend on the remote systems to get the data. The
application is initially developed in an environment
where the infrastructure was available, and there is
hardly any data fetching response time issue. Later
on, when the same application is handed over to a
set of developers who are in a different geographic
region (due to minimize the cost of development
and maintenance), the data fetching issue comes in
large extent to the picture. Our proposed approach
is an attempt to resolve the issue of the application
developers for the multi-tier architecture based
applications. The solution presented in this paper
refers to a two tier and three tier architecture based
applications. This approach could be extended to n-
tier architecture based application and the
performance will be enhanced in similar alignment.
In this paper we have provided the approach for the
Data Caching framework for online web
application. The same line of approach could be
designed and implemented in the console or
windows based application. The discussion of
different types of implemented data structure model
on this frame work, presented in this paper,
provides a distinctive improvement over the initial
designs.

In Section 2, the related works are discussed.
Section 3 focuses about the existing development
process. The proposed approach is explained with
algorithms, design and data structure models etc. in
Section 4. The data structure model, system design

http://www.jatit.org/
mailto:nilayam.kamila@tcs.com
mailto:hodcomputer@yahoo.co.in

Journal of Theoretical and Applied Information Technology
 10th June 2013. Vol. 52 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

76

and the data flow is shown in section 5, 6 and 7
respectively. The mathematical analysis and
simulation analysis on performance is presented in
section 8 and 9 respectively. The inference and
future scope of this paper is discussed in section 10.

2. THE RELATED WORKS

In recent advancement of the technology, there
are many cache frameworks [7] are evolved in
various scope. Some of the most common and
advanced frameworks are discussed in this section.
The 'SwarmCache' is a distributed cache which
caches the references in a distributed network.
There is another Object Cache based framework,
known as 'ShiftOne', which built on a java library
with several strict object caching policies. It also
confirms to light framework based cache system.
Java Caching System 'JCS' is another distributed
caching system written in java for server-side
applications. This framework is well suited to the
distributive system. 'OSCache' is a caching
framework which has servlet-specific features and
persistent in nature which leads to the data security
concerns. The other type of cache 'Whirlycache' is a
fast, configurable in-memory object cache for Java.
This is primarily designed to cache the object by
querying or calling stored procedure to database,
but the other type of server calls e.g web service
calls, rmi calls etc. are out of scope.

In most of the caching approach, the attempt is
made to implement the frame work in production
environment. The data security concern is least
taken care of. These cache systems are mostly
incompatible with the system where the production
environment needs the real time data at every target
server request.

3. EXISTING DEVELOPMENT PROCESS

We will focus on the ‘Development’ phase of the
Software Development Life Cycle (SDLC) where
‘Implementation’ is the part of the process in which
software developers actually write codes for the
real time application. Unit testing is also playing
an important sub-phase in the software
development process; though this phase comes
under the ‘Development’ phase. In next phase i.e.
testing phase, defects are caught and developers
attempt to fix the errors as soon as possible in order
to avoid the delay in application delivery.

In existing tradition style of development, the
application developer develops the application with
the local environment setup against the remotely
located interface servers e.g. System Integration

Test (SIT), or Development (DEV) Servers. So
once the whole or part of a requirement is
completed, the developers will test the code in local
setup by hitting to the remotely located DEV or SIT
Servers. Each error found in this process, the same
development process will be repeated, until
developer certify the code is ready for the SIT
environment. During unit test, each time hitting to
the remote server will cost more in terms of the
response time and network resources.

Figure 1 depicts about a sample two tier
application model where the client application (web
browser/windows/console based application)
accessing the web/application server and the web or
application server in turns reach to another target
server to fetch the required data for the intended
request. In this model the target server may be
another application server or may be a database
server. Let’s now discuss about another sample
model in three-tier or n-tier architecture to visualize
the data flow in the advanced application.

In figure 2, we have complex data flow model
where the data requested by the user to the web or
application server will again to be requested to
another middle ware server, which again reach to
database or application server to get the exact data.
In this model there is another layer (technically
known as 'tier'), which is involved in the data flow
model of the application. So the more number of
layer present in the application architecture, it will
be more complex, and the developers need to invest
more time to unit test the modification in existing
application or to develop a new application.

4. PROPOSED CACHING FRAMEWORK

4.1 Overview

The data caching framework approach is to
provide the necessary setup so that the application
will be able to fetch the data from the cache object

Figure 2. A sample 3-tier application model

Figure 1. A sample two - tier application model

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 10th June 2013. Vol. 52 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

77

in each time hit to remote servers. The first time hit
would fetch the data from the real time remote
DEV/SIT servers and then it will store in cache,
and in next time onwards, when user fetch the same
request data, it would return the cached data instead
of hitting the expensive target. This framework is a
clean approach to be configured in any tiered based
application architecture and would save the time in
maximum, and thus improves the performance in
application development phase.

4.2 Working Model
The working model is designed in such a way

that, this will work in both development and
production environment. As per the assumption,
this framework must not cache any data in
production environment. There is a configuration
file maintained, which will redirect the request to
the real-time servers at its first hit and then it will
redirect to the Data Cache Interface (DCI) from
second time onwards. Let us discuss about the
framework in detail and then we will fit this
approach in a typical two and three tier application
model.

There are three steps for this proposed framework
model. They are as follows.

i. ConfigCache.xml Configuration
ii. Data Cache Interface - DCI layer
iii. Application layer Modification

4.2.1 ConfigCache.xml Configuration
The ConfigCache.xml is an xml file which

controls the framework at its execution time. This
file contents are as follows.

1. ENVIRONMENT – DEV/SIT/STAGE/PROD
2. CACHE_REQUIRED-WITH_CACHE or

NO_CACHE
3. APPLICATION_URLS
4. Any Caching URL is available to the

application
a. CACHING_URL_LOAD_REQUIRED –

YES/NO
b. CACHING_URL_LISTS

5. DATA_FAILURE_LOAD_RETRY – YES/NO
DATA_FAILURE_LOAD_URL –The Remote
alternate Urls, if any

4.2.2 Data Cache Interface - DCI layer
This Interface plays a vital role in the Data

Caching framework. This is basically a set of class
files packaged in a module and to be referred by the
application layer. The following are three basic
elementary tasks implemented in this DCI layer.

a. loadConfigCache()
b. processReroute()
c. recoverFromFailCacheURL()

Let’s focus each task’s brief functionality with their
algorithmic approach.

The loadConfigCache() task of the DCI layer is
used to load the framework’s control file i.e.
ConfigCache.xml and set the additional application
configuration parameter for the NON-
PRODUCTION environment. If the environment
defined in the ConfigCache.xml file as
PRODUCTION, or the file is not available, or any
of the exception scenario happens, it will unset the
additional configuration parameters.

Algorithm 1. loadConfigCache()
Step 1. retrieveAppInitParameters()
Step 2. If (isLoadCacheRequired)
Step 3. Try
Step 4. loadConfigCacheXML();
Step 5. If (ENVIRONMENT != PROD)
Step 6. setAdditionalAppConfig();
Step 7. Else
Step 8. unsetAdditionalAppConfig();
Step 9. End if.
Step 10. Catch(Exception)
Step 11. unsetAdditionalAppConfig();
Step 12. End Try.
Step 13. Else
Step 14. unsetAdditionalAppConfig();
Step 15. End if.

The unsetAdditionalAppConfig() is to release the
expensive resources and (or) frees unused memory
object to improve the system performance in a
better way.

The processReroute() is another task embedded
in the DCI layer to take the intelligent decision such
as, when to return the data from cache and when
from remote server. In this proposed model, the
first time data load is made from the remote server
and successively from the next hit; it will load the
cached data.

As this approach is meant for the development
phase, so the cached data will fulfill the developer’s
data requirement in coding and unit testing phase.

Each type of remote server request is associated
with an object key, which is used to identify the
first time request vs the old request. This key is
stored in a key-value based library object as key,
and the real object is stored in the respective object
area(Refer section 5). The first time request will be
associated to a new key and will be retrieved from
the remote server, and the successive old request
will be tried to get the object from the object cache.

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 10th June 2013. Vol. 52 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

78

Algorithm 2. processReroute()
Step 1. If(isObjKeyFound())
Step 2. loadFromCache()
Step 3. Else
Step 4. If(isURLCaching())
Step 5. Try
Step 6. loadFromCacheURL();
Step 7. setObjectKey();
Step 8. Catch(Exception)
Step 9. If(isFailureCacheAvailable())
Step 10. recoverFailCacheURL();
Step 11. setObjectKey();
Step 12. Else
Step 13. loadFromAppURL();
Step 14. setObjectKey();
Step 15. End if
Step 16. End Try
Step 17. Else
Step 18. loadFromAppURL();
Step 19. setObjectKey();
Step 20. End if
Step 21. End if

If any failure occurs while retrieving the object

from the cache, then it will try to recover the same
from a second level cache, known as failure
recovery cache interface system. If it still fails, the
interface will retrieve the data from the remote
SIT/DEV server.

Failure Recovery load is an additional
mechanism provided to this framework to establish
a robust data caching system. The failure recovery
URLs made available in the ConfigCache.xml to
make this approach to work in the appropriate
forum. The failure recovery URLs would be the
alternate URLs provided to the application which
are intended to make the system to work even the
primary level of cache system fails.

The framework provides the cache object at
runtime where the data are not cached in any
persistent memory, file system or database. This
excludes the point of the security concerns on data
during the development phase.
4.2.1 Application Layer Modification

In this setup, we need to incorporate the caching
frame work in the application code. This will be
accomplished in the remote line calls where the
developers feel that the respective piece of remote
call consumes maximum time to retrieve the remote
data. This extra piece of code in application will
fetch the real data or cached data depending on the
proposed framework configuration.

The same modified piece of code for the caching
framework could be incorporated according to the
flag set in the application configuration file i.e
web.xml in JAVA web application/services and
web.config in ASP .NET web application/services.
Let’s see, how the application code is to be
modified to establish this framework through the
following algorithm.

Algorithm 3.processApplicationRequest()
Step 1. retriveInitalizedParameter()
Step 2. If(PROD)
Step 3. loadFromAppURL()
Step 4. Else
Step 5. loadConfigCache()
Step 6. If(WITH_CACHE)
Step 7. processReroute()
Step 8. Else
Step 9. loadFromAppURL()
Step 10. End if
Step 11. End if

If the web.xml or web.config file init parameters
e.g. isProd, isLoadCacheRequired, etc. are set to true
or false in order to enable or disable the data
caching framework impacts. These parameters are
to be set appropriately during the application
deployment in the DEV, SIT and PRODUCTION
environment. However, even it is not set in the
configuration file, then a secondary level of
verification is done (refer algorithm - 1), so as not
to load cache data in PRODUCTION environment.
This could be extended to ensure for other lower
environments according to the case to case in
application development phase.

Figure 3 shows the complete working model of

the different layers’ view in its scope. The
application layer will work according to its
modification to adheres the framework in a tightly
coupled way and work with respect to the control

Figure 3. Working Model of Proposed Data Caching

Application/Middleware/Web Server

Data Cache Interface

CacheConfig.xml

Application Layer
Application Code Base
[Web/Windows/Console]

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 10th June 2013. Vol. 52 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

79

file (ConfigCache.xml) key set, which is
intelligently routed and cached in the DCI layer.

5. DATA STRUCTURE MODEL

This framework was initially implemented with a
list based data structure model, where each object
in list contains the url, request object and response
object. This worked without any performance
issues when the number of requests were less. In
list model, it was found that, though the framework
has a better performance over the non-cached
system, but still the searching process takes more
time to get the required response object from the
cache area. So the implementation was promoted to
a key-value pair Hash Map based data structure,
where the key was set as Request Identification
Number (RIN) and the value was set as Object
Response Number (ORN) as shown in figure 4.

The RIN values were sorted and indexed to
search the request. This reduces the searching time
and improves the system performance for
comparatively more number of requests. Later, it is
realized that the performance could be made more
efficient for large number of requests through the
implementation of Tree Map where the search
process will be accomplished through the B-tree
search technique. The Tree Map implementation of
this framework reduces the search time to O(log(n))
from O(n). The further implementation of the more
complex and efficient data structure model e.g. B+
tree, B* tree, AVL tree search technique, to resolve
the searching issues are still under progress.

The other factor which is affecting this
framework is the amount of data to be set in the
request object and the response object. In order to
reduce the time to set the bulk data in run time, the
pattern recognition concept is taken into the picture.
The request and response patterns are now under
the research study for various types of request e.g.
http, soap, xml, iiop etc. The improvement of the
data structure model to resolve the bulk data copy
in request and response object will lead to the
implementation of the pattern recognition and fuzzy
logic concept, which is the future version of this
framework.

6. SYSTEM DESIGN

In this section we will discuss about how and
where we will fit each layer of this framework in
the application. The DCI layer, we can create
dynamic libraries (.dll) in case of .NET based
application or an archived resource (.jar) in case of
a JAVA based application. This DCI layer module
could be put in any common location where all
other deployed module could take the advantage of
this caching framework or may be located in the
private folder of the application in target. Below
figure shows how this framework is established in
two-tier architecture based application.

In figure 5, it is shown that, the framework is
packaged with the class files of Data Cache
Interface - DCI layer and the control file
ConfigCache.xml.

Figure 4. Data Structure Model

RES Object URL REQ
 Object

RIN ORN
 RIN - 1 ORN - 1
 RIN - 2 ORN - 2
 … …
 … …

RES Object URL REQ

 Object

Figure 5. Data Caching Frame on 2-tier application model

DB/Middle ware
Server App/Web Server

Client/Desktop

Data Cache Framework
Data Cache Interface Layer

CacheConfig.xml
META-DATA

WITH_CACHE/NO_CACHE
FAILURE RECOVERY

CacheFailure Server

Figure 6. Data Caching Frame on 3-tier application model

DB/
Middle ware

Server

Cache
Failure
Server - 2

App/Web Server

Cache
Failure
Server - 1

Client/Desktop

DataCacheInteface
Cache Interface Layer

CacheConfig.xml
META-DATA

WITH_CACHE/NO_CACHE
FAILURE RECOVERY

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 10th June 2013. Vol. 52 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

80

Figure 7. Application Data Flow in Cache Framework

No

Yes Yes

No

No

Yes

No

Yes

Start

Server: Process Request

Is PROD Or
Caching Config

file not
available?

Caching
Required ?

Load ConfigCache.xml

Server: Set flag ‘isPROD’,
‘isConfigCacheAvailable’
etc from init parameters.

Is Object
in Cache ?

Server: set Cache Object
in Response and Return

Server: get Remote

Is Object in
Secondary

Cache ?

set Cache Object

Server: Set Remote Object
in Response

End

Server : Process
with NO_CACHE

= [𝛿𝑓 + 𝛿𝑡] + 𝑛[𝛿𝑟 + 𝛿𝑠] + (𝑛 − 1)𝛿𝑙

∆𝑐= 𝛿𝑓 + [𝛿𝑟 + 𝛿𝑠 + 𝛿𝑡] + �[𝛿𝑟 +
𝑛

𝑖=2

𝛿𝑠 + 𝛿𝑙]

= 𝛿𝑓 + [𝛿𝑟 + 𝛿𝑠 + 𝛿𝑡] + (𝑛 − 1)[𝛿𝑟 + 𝛿𝑠 + 𝛿𝑙]

= 𝛿𝑓 + [𝛿𝑟 + 𝛿𝑠 + 𝛿𝑡] + (𝑛 − 1)[𝛿𝑟 + 𝛿𝑠 + 𝛿𝑙]

 = 𝑛[𝛿𝑟 + 𝛿𝑠 + 𝛿𝑡]

 ∆𝑑= �[𝛿𝑟 +
𝑛

𝑖=1

𝛿𝑠 + 𝛿𝑡]

The dynamic library or the archive resource file
will contain only the native or class level codes,
and the ConfigCache.xml resides outside the
package, where the developer change the contents
according to the requirement.
The design of cache failure system is an approach
defined in this framework; which could be
configured to ensure that the system will work even
the primary level caching fails. However the failure
server url(s) could be server application(s) that the
developer could maintain in Web/Middle ware
server or in same system. Hence there is no
additional infrastructure required to implement a
second level cache in this design approach. Figure 6
is an extension of 2-tier application architecture to
show the design of the framework in a 3-tier
application.

7. APPLICATION DATA FLOW

This section will briefly show the readers about
how data flows from remote server and from cache
interface system based on the basis of the keys set
in the control file. The ‘getRemote’ is the call to
remote server to get the response object which will
be set to cache system object through the
‘setCacheObject’ method.

The flow diagram(refer figure 7) depicts the
detailed flow, how the primary cache system and
the secondary cache system works out in the cached
enabled framework, and how the PRODUCTION
environment works as if the system works with
NO_CACHE configuration mechanism.

8. PERFORMANCE ANALYSIS

Here, we will visualize mathematically how this
framework approach is more efficient in
development environment than the traditional
development approach.

Let’s consider following symbols with the
respective description.
𝛿𝑟 be the time required to process the request

object in the server, 𝛿𝑓 be the time required to
process and load the cache config file.

However 𝛿𝑓 is very small amount time, δf →∈ and
∈→ 0 in advanced systems and servers with high
configuration. δs be the time required to set or reset
the response object in the server, δt be the
transmission time for fetching the data from the
remote server and δl be the time required to load
from cache.

So in traditional development approach, the time
required to process n - number of request by the
server is given by

In case of the proposed Data Caching approach,
the time required to process same n-number of
request by the server is given by

The difference between the traditional
development and the proposed caching approach is
given by

∆ = ∆𝑑 − ∆𝑐

= 𝑛[𝛿𝑟 + 𝛿𝑠 + 𝛿𝑡]

− �[𝛿𝑓 + 𝛿𝑡] + 𝑛[𝛿𝑟 + 𝛿𝑠] + (𝑛 − 1)𝛿𝑙�

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 10th June 2013. Vol. 52 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

81

As we have already identified the local
ConfigCache.xml load and process time is very
minimal(δf → 0) for advanced systems and servers.
So; ∆ = (n − 1)[δt − δl]. i.e. ∆≥ 0 as δt >
𝛿l, and n ≥ 1

If we take a close look, this approach will work
where there is a more than one request in the
system. For n = 1;∆ = 0; which shows that the
response time in traditional approach and in data
caching approach is same.

In the system where n > 1;∆ > 0 as δt > 𝛿l
So this approach will perfectly suitable where the
development environment sends more than one
requests and the system will be more efficient when
the number of request increases.

This framework is expected to perform extremely
well in a middle ware service systems e.g. web
services, Enterprise Java Beans applications, MQ
services etc, where the system is accessed by more
users or systems and is receiving more number of
requests.

9. DATA SIMULATION ANALYSIS

A sample simulation of this framework
implemented on a two tiered architecture based
application. Around 50 times hit is taken into
consideration with similar and different type of
requests in both approach, and the first 10 sample
results are as shown below.

Here in the below table(refer Table 1), we can
see the caching framework take a slight more time
in the first hit, this is due to the load the control
files and setting up the environment with the
required flags as explained in the previous sections.

Table 1. Response time for Traditional Vs Proposed data

caching framework
HIT # TRADITIONAL(MSEC) NEW(MSEC) DIFF(∆)

1 33172 35172 -2000
2 31266 31219 47
3 35766 0 35766
4 33759 08 33751
5 32143 31469 674
6 33579 0 33579
7 32918 03 32915
8 35611 35421 190
9 32453 07 32446
10 35746 0 35746

We have hit other external interface system (remote
server) with random set of data with NO_CACHE
traditional system Vs WITH_CACHE framework
system. The system with data caching framework
reduces the response time as in the expected way.

Figure 8 shows the hit sequence Vs the response
time for the both of the approach. The upper zigzag
line shows the traditional approach response time
where as the lower spikes are for the data caching
approach. At the spike, the data caching approach
has hit the remote system with the new data, or the
cache system does not have the data in its cache.

The above picture (figure 9) shows the hits Vs the
difference (∆) which depicts that the data caching
framework is in below 0-level in the first hit, and
the ∆ is always in positive gain. The downwards
spikes provide the information that the application
hit the remote system when the requested data not
found in the cache. Though it sometimes has some
downwards spikes, but still in development phase,
it has the performance gain over the traditional
approach. Figure 10 shows that for every hit, the
data found in cache system. These scenarios

= 𝑛[𝛿𝑡] − [𝛿𝑓 + 𝛿𝑡] − (𝑛 − 1)𝛿𝑙

= (𝑛 − 1)[𝛿𝑡 − 𝛿𝑙] − [𝛿𝑓]

= (𝑛 − 1)[𝛿𝑡] − (𝑛 − 1)𝛿𝑙 − [𝛿𝑓]

Figure 8. Response Time for Traditional and
Data Caching

Figure 9. Performance for random request in
Traditional Vs Data Caching

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 10th June 2013. Vol. 52 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

82

occurred when the entire set of request processed
initially and then the system gets the same request
for successive fashion, and this is a perfect scenario
when we intend to test the application many times
in the development phase.
The first time hit starts with below 0-level, as it
takes a little more time to load the frame in the
environment and there onwards it has a significant
improvement of performance over the proposed
cache framework over the traditional development
approach.

This framework is implemented in List, and then in
Hash map and currently in Tree map. A sample
scenario of 1000 requests is simulated against the
response time in milliseconds.

The above figure (figure 11) shows the gradual
performance improvement of the framework
through the implementation of different data
structure model in different versions. The Tree
Hash Map implementation has the lowest response
time than the List and Hash Map implementation.

10. CONCLUSION

The data caching framework approach proposed in
this paper has a better performance over the

traditional development process. In the above
section, the performance is compared and found
that the code and unit test time could be minimized
significantly for an application in the development
phase. The proposed framework is well suited in
two tier and three tier based applications where
each tier, the proposed framework could be
configured. The data security concerns are taken
care of in this proposed approach as this framework
does not require a persistent storage base e.g. file
system, database etc, for caching the data objects.
As we have seen in the section 3, there is no
additional infrastructure required to establish this
frame work. So this approach could be configured
perfectly where the data server is located remote
location and the application is very slow in its
development phase, when it is expected to be
developed in other geographical location.
This proposed framework could be extended to
implement the more cache layers so that it would
fetch the data from inner level of the cache objects,
if the primary or secondary layer cache fails. In n-
layer cache implementation the feasibility of the
number-n is to be verified against the real data
response time. The cache object indexing,
implementations of advanced cache clustering and
buffering techniques are the other areas of this
proposed frame work in its future scope. Currently
the request-response pattern study to resolve the
bulk data processing issues, and the more advanced
data structure model e.g. B+ tree, B* tree, AVL tree
implementations are in progress which would tune
the search process to provide a better performance.
This framework is currently under study for
designing in wireless sensor network to route the
network packets which save the response time and
the battery consumption.

REFRENCES:

 [1] Q. Ren, and M. H. Dunham, “Semantic Caching

and Query Processing”, Transactions on
Knowledge and Data Engineering , 2003, pp.
192-210.

 [2] Zheng, B., Xu, J., and Lee, D, “Cache
Invalidation and Replacement Strategies for
Location-Dependent Data in Mobile
Environments”, IEEE Transactions on
Computers, 2002, pp. 1141–1153.

[3] Q. Ren, and M. H. Dunham, “Using semantic
caching to manage location dependent data in
mobile computing”, Proceedings of the 6th
annual international conference on Mobile
computing and networking, 2000, pp. 210-221.

Figure 10. Performance for Cached items in
Traditional Vs Data Caching

Figure 11. Performance measure List Vs Hash
Map Vs Hash Tree

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 10th June 2013. Vol. 52 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

83

[4] Q. Ren, and M. H. Dunham, “Using clustering
for effective management of a semantic cache in
mobile computing”, Proceedings of the 1st
ACM International Workshop on Data
Engineering for Wireless and Mobile Access,
1999, pp. 94-101.

[5] A. M Keller, and J Basu, “A predicate-based
caching scheme for client-server database
architectures”, The VLDB Journal, 1996, pp.
35-47.

[6] H. Opfner, S. Wendland and E. Mansour, “Data
Caching On Mobile Devices The Experimental
MyMIDP Caching Framework”,
http://elab.ws/portal/files/publications/icsoft09-
cach.pdf.

[7] A. J. Smith, “Cache Memories”, ACM
Computing Surveys, 1982, pp. 473-530.

[8] P. J. Denning and S. C. Schwartz, “Properties of
the Working-set Model”, Communications of
the ACM, 1972, pp. 191-198.

[9] G. Cao, “Proactive Power-Aware Cache
Management for Mobile Computing Systems”,
IEEE Trans. Computers Vol.5, 2002, pp. 608-
621.

[10] S. Evron, “A Practical Guide to Data Caching
with Zend Server”, White Paper On Zend, 2009,
pp. 1-11

[11] P. Godfrey and J Gryz, “Answering queries by
semantic caches”, Proceedings of the 10th
International Conference, DEXA volume 1677
of LNCS, 2009, pp. 485-498

[12] K. C. K. Lee, H. V. Leong and A. Si, “Semantic
query caching in a mobile environment”,
ACMSIGMOBILEMobile Computing and
Communications Review, 1999, pp. 28-36

[13] G. Liu, A. Marlevi and G. Maguire, “A mobile
virtual-distributed system architecture for
supporting wireless mobile computing and
communications”, Wireless Networks, 1996,
pp. 77-86

[14] J. Peissig, “guidePort – An Information and
Guidance System”, Wireless Protocols for
Network Communication Proceedings, 2004,
pp. 1-17

[15] M. Franceschetti, M. D. Migliore, and P.
Minero, “The degrees of freedom of wireless
networks”, Information theoretic and physical
limits. In Proc. Allerton Conference.2003

[16] U. Niesen, P. Gupta, and D. Shah, “The
Balanced Unicast and Multicast Capacity
Regions of Large Wireless Networks”, IEEE
Transactions on Information Theory vol. 56,
2010, pp. 2249-2271

[17] P. D. R. Vijayakumar and T. Ravichandran,
“Cooperative Caching Protocol for Multimedia
Data in Mobile Ad Hoc Networks”, European
Journal of Scientific Research, 2011, pp. 392-
403

[18] U. Niesen, “Caching in Wireless Networks”,
IEEE Transactions on Information Theory,
2012, pp. 6524-6540.

http://www.jatit.org/

	1NILAYAM KUMAR KAMILA, 2PRASHANTA KUMAR PATRA

