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ABSTRACT 
 

Spectrum sensing techniques are useful to increase spectrum utilization in a cognitive radio network by 
sensing spectrum holes without harmful interference. The collaboration of sensing information among 
cognitive radio nodes can significantly increase the reliability of spectrum sensing. Due to hardware 
limitation, each cognitive radio node has to sense one narrowband channel at a time. Consequently, the 
sensing procedure consumes a lot of time to get the sufficient information. A wideband sensing method is 
used to reduce the time overhead. Each node only senses a small amount of linear combinations of the 
information of all channels, and then transmit this low dimensional detection vector to the fusion center 
where the information is reconstructed. As a result, the time overhead and the communication overhead are 
significantly reduced. Six performance measures have been observed in the system which considers the call 
hold and residence of both licensed users and cognitive radio nodes. The observations show that the 
algorithm has a good performance. 
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1. INTRODUCTION  
 

There is a significant increase in the demand for 
radio spectrum with the emergence of new 
applications and the compelling need for mobile 
services in recent years. This is partly due to the 
increasing interest of consumers in convenient and 
ubiquitous wireless services, and the interest has 
been driving the evolution of wireless networks to 
high speed data networks. However, ever since the 
1920s, in order to avoid the serious interference in 
wireless services, the wireless providers have been 
required to apply an exclusive license from the 
government. Today, it is becoming very difficult to 
find vacant bands to either deploy new services or 
to enhance the existing ones with most of the 
spectrum being already allocated according to 
former U.S. Federal Communications Commission 
chair William Kennard [1]. On the other hand, not 
every channel in every band is in use all the time. In 
an experiment for studying the spectrum occupancy 
between 30MHz and 3GHz in New York City[2], 
the average utilization rate during the measurement 
period was only $13\%$. A large number of vacant 
spectrum holes can be discovered in the spectrum 
which is not used. A variety of technologies have 
been proposed to increase the spectrum utilization. 
As one of these, cognitive radio (CR) has emerged 
as a promising technology to improve the spectrum 

utilization by opportunistic utilizing wireless 
resources without causing harmful interference. In a 
CR network, the unlicensed users continuously 
sense the spectrum environment and transmit the 
data when an appropriate vacant spectrum hole is 
detected. 

The spectrum sensing for detecting spectrum 
holes is the precondition for the implementation of 
CR networks. The existing spectrum sensing 
techniques have to face two main challenges: 
reliable sensing and wideband sensing. The hidden 
terminal problem [3] is the main reason that causes 
the unreliable sensing. Since the signals of licensed 
users are usually undermined by channel shadowing 
and multipath fading between the target under 
detection and CR nodes, it is generally difficult to 
distinguish between a white spectrum and a weak 
signal. An inaccurate detection result may cause 
harmful interference by transmitting the data in a 
band occupied by a licensed user. The wideband 
sensing is hard to be implemented for the main 
reason of hardware limitations. The CR nodes 
usually use a tunable narrowband band pass filter at 
the radio frequency(RF) front-end to sense one 
band at a time due to the costliness of a wideband 
RF front-end [3]. Consequently, it is a lot of time 
delay for detecting all channels. An efficient 
wideband spectrum sensing method can mitigate the 
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requirement of the RF front-end and maximize the 
opportunistic throughput of CR nodes. 

Collaborative spectrum sensing techniques are 
proposed to improve the reliability of spectrum 
sensing. In a CR network, all CR nodes transmit 
their sensing reports to a fusion center, where the 
reports are merged and an accurate sensing result is 
obtained. Different SNR estimations and channel 
fading environments are considered in [4] and [5] to 
improve the reliability of sensing information. C. 
Yunfei [6] studies the optimum number of 
collaborative users to get the tradeoff of the 
reliability and the complexity. The Byzantine 
attacks which come from malicious users and carry 
false sensing data are taken into account in [7]. The 
cooperative sensing techniques with different 
mechanisms are considered in the studies of [8, 9]. 
However, the collaborative spectrum sensing 
method brings a new serious problem. The 
transmissions of reports have brought a lot of 
communication overhead, since all nodes should 
transmit their sensing reports which have large sizes. 
This problem is solved by grouping the CR nodes in 
the conventional method. Each group of nodes 
sense a small amount of narrowband channels and 
transmit a few reports. The performance will be 
reduced. This algorithm is also considered in [10]. 

A wideband sensing method based on subspace 
pursuit is proposed in this study to reduce both the 
time overhead and the communication overhead. 
Each CR node senses all channels simultaneously 
instead of sensing one narrowband at a time, and 
get a linear combination of the information of all 
channels. The information of channels can be 
reconstructed from a small amount of these linear 
combinations under certain conditions. 
Consequently, the sensing procedure can be 
finished in a short time with the wideband sensing 
method, and the size of reports can be significantly 
reduced. The studies of [11-14] exploit a method to 
solve this problem by estimating the information of 
all channels with only a small amount of sensing 
results. The sensing procedure is modeled as a 
partially observed Markov decision process 
(POMDP). Z. Qing [11] proposes this idea and a 
myopic sensing method. S. Ahmad [12] studies the 
optimality of the myopic sensing method and 
proves it under the conditions which are very close 
to practice. X. Wang [13] exploits the impact of the 
rate less code, W. Lingcen [14] modifies the cost 
function of POMDP with the switching time. 

The rest of this paper is organized as follows. In 
section two, the detection procedure of wideband 
sensing based on the energy detection technique is 

given. The reconstruction algorithm for the 
measurement information is given in section three, 
and multi-node collaboration for processing the 
measurements is developed in section four. After 
that, the simulation is presented in section five, and 
the conclusion is drawn in section six. 

2. SYSTEM MODEL 

We consider a CR network with M CR 
nodes that locally monitor a set of N wireless 
channels, and each channel is either occupied by a 
licensed user or idle. The states of channels are set 
as 1(occupied) and 0(idle). To detect the channel 
state, we adopt the energy detection technique 
which doesn't need any prior information of the 
licensed user. Each channel should be detected T 
times in a detection procedure. Consequently, a CR 
node should transmit a N T× c measurement 
matrix to the fusion center which will process M 
measurement matrices in conventional 
collaborative spectrum sensing techniques. The 
time overhead and the communication overhead are 
very large. A novel wideband sensing method 
based on the sparse observations of the 
measurement matrix is developed to overcome this 
problem. 
2.1 Energy Detection 

Considering the scene that the CR node m 
is detecting the channel n, where 1 m M≤ ≤  

and1 n N≤ ≤ , we give a detailed description of 
energy detection and obtain some useful parameters 
to measure the performance. The goal of energy 
detection is to decide between the following two 
hypotheses: 

0, ,

1, , ,

: ( , , ) ( , , )

( , , ) ( , , ) ( , , )

1,2,...

:

,

m n

m n m n

H x t m n v t m n

H x t m n h s t m n v t m n

t T

=
= +

=

       (1) 

where 

0, ,m nH represents the absence of the 

licensed user in channel $n$, 
( , , )x t m n is the signal received by the 

CR node $m$ in channel $n$, 
( , , )v t m n is the additive white Gaussian 

noise(AWGN), 

1, ,m nH represents the presence of a 

licensed user, 
( , , )s t m n is the signal of a licensed user, 

,m nh is the amplitude gain of channel $n$, 

,m nγ is the signal-to-noise radio(SNR). 
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Let ,m nx  

denote [ (1, , ), (2, , ),..., ( , , )]Tx m n x m n x T m n . 

The decision rule is given by 

1, ,

2
,

1

0, ,

( ) | ( ,

 

,

 

) |

m n

T

m n
t

m n

H

T x t m n

H

λ
=
∑x � ¦

            (2) 

where ,( )m nT x  is the test statistic and λ  is the 

test threshold. ,( )m nT x has the following 

distribution according to the work of Urkowitz 
[15]. 

2
0,m,n

, 2
, 1,m,n

under H
( ) ~

(2 ) under H
T

m n
T m n

T
χ
χ γ




x        (3) 

where 2
Tχ  and 2

,(2 )T m nχ γ  denote the central and 

non-central chi-square distributions, respectively, 

each with T degrees of freedom and ,2 m nγ  for the 

non-centrality parameter of the latter distribution. 

The detection probability , ,d m nP  and the 

false alarm probability , ,f m nP  equal 

1,m,n 1, ,{observe H | }m nP H  

and 1,m,n 0, ,{observe H | }m nP H , respectively. 

Then can be given by [16] in the non-fading 

environment where ,m nh  is deterministic. 

, , /2( 2 , )d m n TP Q γ λ=               (4) 

, ,

( / 2, / 2)

( / 2)f m n

T
P

T

λΓ=
Γ

             (5) 

where (.)Γ  and (.,.)Γ  are complete and 

incomplete gamma functions, respectively, and 

(.,.)mQ  is defined as the generalized Marcum Q-

function 
2 2

11
( , ) exp( ) ( )

2

m

m mmb

x x a
Q a b I ax dx

a

∞

−−

+= −∫
    (6) 

where 1(.)mI − is the modified Bessel function. 

In the fading environment where ,m nh  is 

varying due to shadowing or fading, , ,f m nP is 

independent of ,m nγ  since the signal of licensed 

user is absent under0, ,m nH . , ,d m nP  can be derived 

by averaging over fading statistic in this case. 
 

, , /2( 2 , ) ( )d m n Tx
P Q f x dxγγ λ= ∫      (7) 

where ( )f xγ  is the probability density function of 

,m nγ  under fading. 

2.2 Wideband Detection 
Considering the scene that the CR node m 

detects all channels{1,2,..., }N , the node m 

should detect each channel T times and spend total 
N T×  units of time detecting all channels, or 
configure N filters locally to detect all channels T 
times simultaneously in conventional sensing 
techniques. Both approaches are too expensive. 
Frequency selective filters are equipped to detect all 
channels simultaneously instead of detecting a 
channel at a time in this study. Each CR node 
equips L frequency selective filters locally where L 
is much smaller than N, one filter can detect a 
linear combination of the information of all 
channels T times. The detection procedure can also 
be completed by only one filter in L T× units of 
time. 

The detection procedure at each CR node 
can be represented by a L N×  filter coefficient 

matrixΦ . Let N dimensional vectors tmx  and t
mv  

represent the power and noise in channels, they 

equal [ ( , ,1), ( , ,2),..., ( , , )]Tx t m x t m x t m N  

and [ ( , ,1), ( , ,2),..., ( , , )]Tv t m v t m v t m N , 

respectively. The L dimensional compressive 

detection vector ,t mD  can be given by 

( )

1,2,...,

t t
m m

t t t
m m m

t
m

t T

= Φ
= Φ − + Φ
= Φ +

=

D x

x v v

s e

                (8) 

where t
ms  denotes the measurement vector of the 

signal of the licensed usert t
m m−x v , and e  

denotes t
mΦv . If ( , , )s t m n  equals zero, the 

channel n is not occupied by a licensed user. The 
time overhead in the detection procedure is 
polynomial with respect to L T×  which is much 
smaller thanN T× . 
Notation 

Here we instate some notations that are 
used throughout the paper. For any N dimensional 

vectorx , we write || . ||p  for the usual pl  vector 

norm || ||px  which equals

1

1

( )
N

p p
i

n

x
=
∑ , 

where1 p≤ ≤ ∞ , especially, we reserve 0|| ||x  
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as| { , 0} |ii x ≠ . We denote the columns of the 

matrix Φ  by( )j j Jφ ∈ . Further, let ZΦ  and Zx  be 

the submatrix and subvector with column indices 
j Z∈  for any Z J⊆ , respectively. Then, we 

define the pseudo inverse of the full rank matrix Φ  

by †Φ  which is * 1 *( )−Φ Φ Φ . 

Filter Coefficient Matrix Φ  

We can reconstruct tms  from t
mD  if the 

filter coefficient matrix Φ  can ensure that k-sparse 
vectors are able to be distinguished based on the 

observation that tms  is k-sparse. That is, we should 

make sure that Φ  is a linear embedding of the set 
of k-sparse vectors. Here, we say that a vector is k-
sparse when it has k N�  nonzero entries. 
Emmanuel J. Candes and Terence Tao [17] define 

K-restricted isometry constant Kδ  and ,K K ′ -

restricted orthogonality constant ,K Kθ ′  to be the 

smallest quantity such that Φ  obeys 
2 2 2
2 2 2(1 ) || || || ( ) || (1 ) || ||t t t

K mZ Z mZ K mZδ δ− ≤ Φ ≤ +s s s   (9) 

, 2 2| ( ), ( ) | || || || ||t t t t
Z mZ Z mZ K K mZ mZθ′ ′ ′ ′〈Φ Φ 〉 ≤s s s s   (10) 

for all disjoint subsets ,Z Z J′ ⊆  of the 

cardinality at most ,K K ′  and all real 

vectors t
mZs , t

mZ ′s . The numbers Kδ  and ,K Kθ ′  

measure how close the vectors jφ  are to behave 

like an orthogonality system. And, the 

orthogonality constant ,K Kθ ′  can be controlled by 

K Kδ ′+  according to the lemma in [17], that is, 

, , max( , )K K K K K K K Kθ δ θ δ δ′ ′ ′ ′+≤ ≤ +     (11) 

The condition 2 1kδ �  implies that the 

filter coefficient matrix Φ  preserves the geometry 
of the set of k-sparse vectors and performs like the 
orthogonal transformation. 

Then, an important question is to find the 
matrix with a good 2k-restricted isometry constant. 
Gaussian matrix which meets the condition is easy 
to be constructed. We set each entry of Φ  as 
independent and identically distributed Gaussian 
random variable with mean zero and variance1/ L . 
Because a k-sparse vector contains about 

log( / )s N s  bits of information, 

( log( / ))O k N k should be sufficient for the value 

of L. Here, we give two more examples: the 
bernoulli random matrix and the subsampled 

Fourier matrix. Their restricted isometry constants 
obey the following conditions, respectively. 

2 2

log( / )
     k

k N k
whenever Lδ ε

ε
< ≥  

5 1

2 2

log log
     k

k N
whenever L

εδ ε
ε

−

< ≥  

3. RECONSTRUCTION OF MEASUREMENT 
 

It is possible to reconstruct the 

measurement vector tms  from the compressive 

detection vector t
mD  when the filter coefficient 

matrix Φ  stably embeds the set of k-sparse 
vectors. Then, we can use the decision rule of 
energy detection (2) to process the vector 

set{ ,1 }t
m t T≤ ≤s , and obtain the accurate sensing 

information of all channels. The reconstruction 
algorithm is derived from subspace pursuit for 
compressive sensing signal reconstruction [18], it 
consists of five major steps. We first define the 
following parameters. 

t
mD : the compressive detection vector of 

all channels at time t. 
t
ms : the measurement vector of all 

channels at time t. 
t
mZ : the indices corresponding to the k 

largest magnitude elements oft
ms . 

t
mu : the residue of t

mD . 

Because the sequence of 1{ ,..., }T
m ms s  has 

high self-correlation, we can let 0
t
mZ  equal 1t

mZ −  

and let 1
0mZ  equal NULL, this operation can 

greatly reduce the computational overhead. 

With 0
t
mZ , we can calculate the initial value of 

0
t
mu  which equals

0 0

†
t t
m m

t t
m mZ Z

− Φ ΦD D . The 

iterative steps of the reconstruction algorithm are 
given as follows. 

Step 1: the correlation maximization (CM) 
operation is performed to discover the $k$ largest 

magnitude elements of *
1

t
mi−Φ u , and we can 

discover the location of the elements which carry a 
lot of energy. 

Step 2: the indices of elements with the 
higher correct probability can be determined by 

merging 1
t
miZ −  and t

miZ . 
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Step 3: the elements of tms  corresponding 

to the indices are estimated. 
Step 4: the k largest magnitude entries of 

the estimations are chosen to updatet
miZ , and the 

residue t
miu  is calculated. 

Step 5: the stopping criterion is checked to 
determine whether the measurement vector has 
been approximated. 

The pseudo code of the reconstruction 
algorithm is summarized as algorithm 1. 
Algorithm 1  

Input: k, Φ , t
mD  

Initial step:  

0i = , {0}t N
m ←s    

1
0mZ NULL←  or 1

0
t t
m mZ Z −←  

0 0

†
0 t t

m m

t t t
m m mZ Z

← − Φ Φu D D  

Repeat: 1i i← +  

Step 1: *
1Z ( )t t

mi miCM −← Φ u  

Step 2: 1Z Zt t t
mi mi miZ −← ∪  

Step 3: 
Z

†
t
mi

t
c m← Φs D  

Step 4: ( )t
mi cZ CM← s  

†
t t
mi mi

t t t
mi m mZ Z

← − Φ Φu D D  

Step 5: if 2 2|| || || ||t t
mi mi>u u  

1
t t
mi miZ Z −←  

{0}t N
m ←s  †

t t
mi mi

t t
m mZ Z

← Φs D  

quit the iteration  

Output: t
ms  

Analysis of Reconstruction Algorithm 
Correlation Maximization 

The correlation maximization (CM) is the 
core operation throughout the reconstruction 
algorithm, it is performed to discover the indices of 
elements which carry a lot of energy in the 

measurement vectortms , but how does it work for 

this purpose. We first give an intuitive explanation. 

The ultimate goal of { | }j j Jφ ∈  is to behave like 

an orthonormal system for sparse vectors, we can 
naturally set 1 1+ -restricted isometry constant 

1 1δ +  as 0 to approximate an orthonormal system, 

according to (11) and the definition of 1,1 -

restricted orthogonality constant1,1θ , we can get 

1,1 0 θ =  

{ } { } { } { }| ( ), ( ) | 0t t
j m j j m j′ ′〈Φ Φ 〉 ≤s s  

{ } { }  , 0j j′〈Φ Φ 〉 =  

Then, we consider * t
mΦ D  in the noiseless 

environment. 
* *

* * *
1 1 2 2[ , ,...  , ]

 t t
m m

T t
N N mφ φ φ φ φ φ

Φ = Φ Φ
=

D s

s
 

The nonzero elements of tms  which we 

want to discover carry a lot of energy in this ideal 
scenario, consequently, an efficient filter coefficient 
matrix should ensure that the CM operation can 
collect the indices of nonzero elements. 

Then considering the unideal scenario, we 
denote the set of the indices of nonzero elements 

by t
mZ , in the light of the definition of the CM 

operation and the property 1.7 of [17], we can get 

1

* *
2 2

*
2

*
2

2

|| || || ||

|| ||

( ) || ||

(1 ) || |

 

 

 

|

t t
m m

t t
m m

t t
m m

t t
m mZ Z

t
mZ Z

t
min mZ Z

t
k m

D D

λ

δ

Φ ≥ Φ

= Φ Φ

≥ Φ Φ

≥ −

s

s

s

 

where minλ  is the minimum eigenvalue. Here, if we 

assume that the chosen indices set 1
t
mZ  is disjoint 

from t
mZ , according to (10) and lemma 1 of [18], 

we can get 

1 1

* *
2 2

2 2

|| || ||  ||

|| |  |

t t t
m m m

t t
m mZ Z Z

t
k m

D

δ

Φ = Φ Φ

≤

s

s
 

Consequently, we can get the inequality 

that 1 kδ−  is less than 2kδ . Since kδ  is less 

than 2kδ , 2kδ  should be smaller than 1/ 2  to 

ensure that the inequality is false, which means at 
least one nonzero element can be collected. Thus, 

1
t t
m mZ Z∩ ≠ ∅ and the CM operation can work 

for the reconstruction algorithm if 2kδ  is 

in[0,1/ 2]. 
Estimation 

There are 2k indices in Zt
mi  in step 3, at 

least k of them are not the indices of nonzero 
elements. The estimation operation is needed to 
identifying the incorrect indices. We denote the set 

of correct indices by t
mZ . We can define 

Zt t
mi miZ Z∆ = −  with the estimation set of indices 

t
miZ  in step 4. If t

mZ Z∩ ∆ = ∅ , the estimation 

operation identifies the incorrect indices 
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successfully, else, t
mZ Z∩ ∆ ≠ ∅ , that is, some 

correct indices are removed by mistake. According 
to theorem 3 of [18], the reduction of norm 
introduced by this mistake is proportional to 

2 Z
|| ||t t

m mi

t
mZ

s
−

 which can be proved to be small. As 

long as the reduction of the norm is small, a good 

estimation of t
mZ  can be obtained.  

Complexity 

The calculation of *
1

t
mi−Φ u  spends time 

( )O LN  in step 1, and we can discover the k 

largest elements of the N dimensional vector in 
time ( log( ))O N N  with the quick sort algorithm. 

In step 2, we can merge two sets of size k in 
time ( )O k . In step 3, we multiply both sizes of the 

equation with the 2 2k k×  symmetric positive 

definite matrix *

 Z  Zt t
mi mi

Φ Φ , we can get 

* *

 Z  Z  Z
 t t t

mi mi mi

t
c mΦ Φ = Φs D  

The multiplications spend time(2 )O kL , 

and the solution cs  of the equation can be 

calculated with the conjugate gradient method with 

time 2(4 )O k . In step 4, we can discover the k 

largest elements of the 2k dimensional vector with 
time (2 log(2 ))O k k , and calculate the residue 

like step 3 with time ( )O kL . In step 5, we spend 

time (1)O . Thus, the total time complexity of one 

iteration is ( )O LN . According to the convergence 

conclusion theorem 6 of [18], the iteration number 

rn  obeys the following condition. 

log 1.5
min( 1, )

log
 

log
min

r
k k

s k
n

c c

−≤ +
− −

 

where mins and kc  are defined as follows. 

1

2

min | ( , , ) |

|| ||
 n N

min t
m

s t m n
s ≤ ≤=

s
 

3 3
3 3

2 (1 )

( )
 

1
k k

k k
c

δ δ
δ
+=

−
 

Consequently, we can get the total time 
complexity of the reconstruction 

algorithm ( )rO LNn . 

4. COLLABORATION IN FUSION CENTER 

We process the set of the measurement 

vectors { ,1 }t
m t T≤ ≤s  with the decision rule of 

energy detection to obtain the sensing information 

which can show the CR nodes the states of all 
channels. The decision rule can be written as 

1, ,

2
,

1

0, ,

( ) | ( ,

 

,

 

) |

m n

T

m n
t

m n

H

T s t m n

H

λ
=
∑s � ¦

              (12) 

We can get two important performance 
parameters associated with spectrum sensing 
according to equations (4) and (5): the detection 

probability , ,d m nP  and false alarm 

probability , ,f m nP . Due to channel shadowing and 

multipath fading, the sensing information of a CR 
node is usually inaccurate, but the collaboration of 
multi-nodes can significantly improve the 

reliability. Let ,d nQ  and ,f nQ  denote the detection 

probability and false alarm probability of channel n 
after the collaboration, in the conventional 
algorithm, they can be calculated by 

, , ,
1

 1 (1 )
M

d n d m n
m

Q P
=

= − −∏  

, , ,
1

 1 (1 )
M

f n f m n
m

Q P
=

= − −∏  

However, the conventional algorithm is 
not very efficient when the CR nodes are 
experiencing different fading environments, we 
introduce weight factor matrix W to improve its 
performance, where an entity of the matrix denoted 

by ,m nw  is the weight factor of ,m ns . Here, 

,d nQ and ,f nQ  can be gotten by 

, , , ,
1

1 (1 ) 
M

d n m n d m n
m

Q w P
=

= − −∏  

, , , ,
1

1 (1 )
M

f n m n f m n
m

Q w P
=

= − −∏  

An efficient weight factor matrix should 
be adaptive to the different fading environments, 
we can update the matrix with historical records. In 

the initial step 1i = , we set ,m nw  as1/ N , and the 

collaborative algorithm is conventional. After one 
sensing procedure, we can update the weight factor 
matrix by 

, , ,1
,

, , ,
1

 
i i
m n d m ni

m n M
i i
j n d j n

j

w P
w

w P

+

=

=
∑

 

By this update scheme, the CR nodes 
which can make accurate decision have much 
contribution to the final decision, the CR nodes 
which are experiencing deep fading should reduce 
their influence on the final decision. 
5. SIMULATION RESULTS 
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5.1 Performance Measures 
T. Shensheng and B.L. Mark [19,20] have 

made lots of work for the performance analysis of 
spectrum sharing. We can introduce several 
performance measures highly associated with 
spectrum sensing from the work of [19], the 
definitions of these performance measures in the 
simulation environment are also given to get a 
better understanding of the numerical results. 
Probabilities of detection, miss detection and 
false alarm 

The probabilities of detection and false 

alarm have been defined and denoted bydQ , fQ  

in above sections, respectively. Miss detection 

probability mQ  equals1 dQ− . In the simulation, 

they can be given by 
. / ( . . ) dQ No correct No correct No miss= +  

. / ( . . )mQ No miss No correct No miss= +  

. / ( . . )fQ No false No correct No false= +  

where .No correct  is the number of successful 

detections, .No miss is the number of miss 

detections, and .No false  is the number of false 

alarms. 
Blocking probabilities 

The call blocking probability of the 

licensed user denoted by,b LUP , is defined as the 

probability that all channels have been occupied by 
licensed users when a call of licensed user arrives at 

the channels, the arrival call is blocked. ,b LUP can 

be given by 

, . / .b LU LU LUP No block No arrival=  

where . LUNo block  is the number of call blocks of 

licensed users, and . LUNo arrival  is the number 

of call arrivals of licensed users. 
The call blocking probability of the CR 

node, denoted by ,b CRP , is defined as the probability 

that all channels have been occupied by licensed 
users and CR nodes when a call of the CR node 
arrives at the channels, the arrival call is blocked. 

,b CRP can be given by 

, . / .b CR CR CRP No block No arrival=  

where . CRNo block  is the number of call blocks of 

CR nodes, and . CRNo arrival  is the number of 

call arrivals of CR nodes. 
Mean reconnection probability 

The mean reconnection probability of CR 

nodes, denoted by ,r CRP , is defined as the 

probability that a call has been blocked due to the 
overflow of channels and it can reconnect back to 
the system. The reconnection happens if a channel 
becomes idle before the waiting time expires. 

,r CRP can be given by 

, . / .r CR CR CRP No reconnect No block=  

where . CRNo reconnect  is the number of 

reconnections of CR nodes. 
Total channel utilization 

The total channel utilization, denoted 
byη , is defined as the radio of the total occupation 

time of channels to the total simulation time of 
channels. η can be given by 

. .( . )

. 1

No arrival No arrivalmax No arrival
wait residence

No arrival sim

t t

t N
η

=

+= ∑  

where 

simt is the simulation time, 

N is the number of channels, 
.No arrival is the serial number of the 

call arrivals of both licensed users and CR nodes, 
.No arrival

waitt is the waiting time of the 

call .No arrival , 
.No arrival

residencet is the residence time of the 

call .No arrival . 
Mean waiting time of CR calls 

The waiting time of calls of CR nodes 
consists of two parts. The call waits if it is blocked. 
The call also waits if a call of the licensed user 
arrives and chooses the channel occupied by this 
call. For simplifying the description, we don't give 
the special notations for these two parts, they are 
recorded by the simulation program. The mean 

waiting time of the calls, denoted bywaitt , can be 

given by 
.( . )

. 1 ( . )

CRCR

CR

No arrivalmax No arrival
wait

wait
No arrival CR

t
t

max No arrival=

= ∑
 

5.2 Numerical Results 
We consider a cognitive radio network 

within 300 300×  meter square area centered at 
the fusion center, where the arrivals of calls of CR 
nodes and licensed users are assumed to form 

independent Poisson processes with rates 1λ  

and 2λ , respectively. The call holding time of CR 

nodes and licensed users are assumed to be 

exponentially distributed with means 11h−  and 1
2h− , 

respectively. The residence time of CR nodes and 
licensed users in the channels are also assumed to 
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be exponentially distributed with means 1
1r
−  

and 1
2r
− , respectively. For testing our algorithm, 

300 channels under Rayleigh fading model are 
chosen to serve the calls of CR nodes and licensed 
users. In the simulation, the parameters are set as 
follows: 

1λ changes from 1 to 30, 2λ changes from 

1 to 20, 

1h equals 0.5, 2h equals 5, 

1r equals 0.5, 2r equals 0.2. 

The units of 1 2{ , }λ λ , $\{h_1,h_2\}$ and 

1 2{ , }r r  are    /thenumber of calls sec , 1/ sec  

and1/ sec , respectively. 
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Figure 1: Probabilities of detection and false alarm vs. 

2λ for different 1λ  
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Figure 2: Probabilities of detection and false alarm vs. 

2λ at different SNR 

The arrival rate of the calls of licensed 

users 2λ  is used as the horizontal axis of the 

numerical results for the reason that it determines 

the sparsity k of the measurement vector t
ms  which 

has dramatic impact on the performance of our 
algorithm. We first observe the probabilities of the 
detection and the false alarm for different arrival 

rates of CR calls 1λ  in Figure 1. We observe that 

detection probability dQ  decreases as 2λ  

increases, and increases as 1λ  increases. 

Meanwhile, the false alarm probability fQ  

decreases as 2λ  and 1λ  increase. The reasons are 

that increasing 2λ  causes increasing k which 

reduces the accuracy of the reconstruction 

algorithm for t
ms , and the collaboration of CR 

nodes not only increases dQ , but also 

increases fQ . Figure 2 shows dQ  and fQ  at 

different 2λ  for different SNR. We observe that 

dQ  increases with increasing SNR, and fQ  

decreases with increasing SNR. The reason is that 
high SNR can make great contribution to the 
decision of energy detection before the 
collaboration. 
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Figure 3: Call blocking probability vs. 2λ for different 

1λ  

We observe that the call blocking 

probability of licensed users ,b LUP  increases with 

increasing 2λ  and doesn't depend on 1λ  in Figure 

3. Meanwhile, the call blocking probability of CR 

nodes ,b CRP  increases with increasing 2λ  and 1λ . 
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Figure 4: Call blocking probability vs. 2λ at different 

SNR 

The reasons are that the licensed user can select all 
the channels unoccupied by other licensed users 
and doesn't know the existence of CR nodes, a call 
of the licensed user may let a call of a CR node 
leave one channel. On the other hand, the CR node 
has to sense the existence of licensed users. We 

observe that ,b LUP  doesn't depend on SNR in 

Figure 4, and ,b CRP  decreases with increasing SNR. 

The reasons are that fQ  and the miss detection 

probability mQ  decrease as SNR increases 

according to the observation of Figure 2, and ,b CRP  

decreases as fQ  and mQ  decrease. 
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Figure 5: Mean reconnection probability of CR nodes vs. 

2λ  

Figure 5 shows the mean reconnection 

probability of CR nodes ,r CRP . We observe that 

,r CRP  decreases as 2λ  and 1λ  increase. The 

reasons are that the larger 2λ  the more waiting 

time of CR calls expires, the smaller 1λ  the less the 

number of call blocks . CRNo block . We also 

observe that ,r CRP  doesn't depend on SNR for the 

reason that ,r CRP  doesn't depend on fQ  and mQ . 
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Figure 6: Total channel utilization vs. 2λ  

Figure 6 shows the total channel 

utilizationη . We observe that η  increases as 2λ  

and 1λ  increase. However, η decreases when the 

sensing information is not very reliable. A channel 
is wasted when a false alarm event happens. A CR 
node and a licensed user are affected when a miss 
detection event happens, and two channels are 

wasted. Consequently, η decreases when fQ  

increases with increasing1λ , mQ  increases with 

increasing 2λ . We also observe that η  increases as 

SNR increases for the reason that fQ  and mQ  

decrease as SNR increases. 
Figure 7 shows the mean waiting time of 

CR calls waitt . We observe that waitt  increases as 

2λ  and 1λ  increase, and in contrast to Figure 6, 

waitt increases when the sensing information is not 

very reliable, for the reason that false alarm and 
miss detection events increase the number of CR 
nodes waiting for the service. We also observe that 

waitt  decreases as SNR increases for the reason that 

fQ  and mQ  decrease as SNR increases. 
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Figure 7: Mean waiting time of CR calls vs. 2λ  

We observe six performance measures at 
different call arrival rates of licensed users and CR 
nodes and different SNR in the system which 
considers call hold and residence. This simulation 
can give a comprehensive understanding of the 
performance of the collaborative wideband sensing 
algorithm. 
6. CONCLUSION AND FUTURE WORK 

A collaborative wideband sensing 
algorithm is developed to reduce the time overhead 
and the communication overhead of the 
conventional collaborative sensing method. The CR 
nodes detect linear combinations of the information 
of all channels in the algorithm, and then transmit 
the detection vectors to the fusion center where the 
information of the channels is reconstructed and 
merged. The sensing procedure in each CR node 
can be completed in a short time since only a small 
amount of detection vectors are needed to 
reconstruct the sensing information of all channels. 
The sizes of reports are also significantly reduced 
due to the low dimension of detection vectors. Six 
performance measures of the algorithm have been 
evaluated by simulation under the system which 
considers the call hold and residence of licensed 
users and CR nodes. Distributed systems are 
popular in future networks. The distributed 
collaboration of the sensing information can 
significantly improve the performance and 
reliability of the sensing techniques. We will focus 
on this problem in our future study. 
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