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ABSTRACT

Spectrum sensing techniques are useful to increpsetrum utilization in a cognitive radio network b
sensing spectrum holes without harmful interferendee collaboration of sensing information among
cognitive radio nodes can significantly increase teliability of spectrum sensing. Due to hardware
limitation, each cognitive radio node has to semse narrowband channel at a time. Consequently, the
sensing procedure consumes a lot of time to gestffficient information. A wideband sensing methsd
used to reduce the time overhead. Each node onlsesea small amount of linear combinations of the
information of all channels, and then transmit tloiw dimensional detection vector to the fusionteen
where the information is reconstructed. As a reshét time overhead and the communication overbead
significantly reduced. Six performance measure& lmen observed in the system which considersathe ¢
hold and residence of both licensed users and tegniadio nodes. The observations show that the
algorithm has a good performance.

Keywords: collaboration, wideband sensing, sparse vector, subspace pursuit, detection, false alarm

1. INTRODUCTION utilization by opportunistic utilizing wireless
resources without causing harmful interference In
There is a significant increase in the demand faZR network, the unlicensed users continuously
radio spectrum with the emergence of newense the spectrum environment and transmit the
applications and the compelling need for mobilelata when an appropriate vacant spectrum hole is
services in recent years. This is partly due to thadetected.

increasing interest of consumers in convenient andThe spectrum sensing for detecting spectrum
ubiquitous wireless services, and the interest has P 9 9 sp

been driving the evolution of wireless networks t Oles is the precondition for the implementation of

high speed data networks. However, ever since t (B petworks. The existing spectrum sensmg.
. . : : fechniqgues have to face two main challenges:
1920s, in order to avoid the serious interferemce i

. . . . reliable sensing and wideband sensing. The hidden
wireless services, the wireless providers have be

n_ . . :
. . ' erminal problem [3] is the main reason that causes
required to apply an exclusive license from th

o : e e unreliable sensing. Since the signals of liedns
government. Today, it is becoming very difficult to . :
find vacant bands to either deploy new services opers are usually undermined by channel shadowing

to enhance the existing ones with most of th nd multipath fading between the target under

spectrum being already allocated according t etection and CR nodes, itis generally difficalt t
former U.S. Federal Communications Commissio .IStII’IQUISh between a white spectrum and a weak

chair William Kennard [1]. On the other hand noﬁ'gnal' 'A.‘n inaccurate detectior) _result may cause
every channel in every band is in use all the time. armful interference by transmitting the data in a

. . and occupied by a licensed user. The wideband
an experiment for studying the spectrum occupané) L ; .
between 30MHz and 3GHz in New York City[2],§énsmg is hard to be implemented for the main

e . reason of hardware limitations. The CR nodes
the average utilization rate during the measuremen ,
sually use a tunable narrowband band pass filter a

period was only $131%S. A large number of vacarﬁﬁe radio frequency(RF) front-end to sense one

spectrum holes can be discovered in the spectr%nand at a time due to the costliness of a wideband

which is not used._A variety of technologle§_ ha_v%F front-end [3]. Consequently, it is a lot of time
been proposed to increase the spectrum UtI|I2atI0n.Iay for detecting all channels. An efficient

As one of these, cognitive radio (CR) has emergg ideband spectrum sensing method can mitigate the
as a promising technology to improve the spectrum P 9 9
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requirement of the RF front-end and maximize thgiven. The reconstruction algorithm for the
opportunistic throughput of CR nodes. measurement information is given in section three,

Collaborative spectrum sensing techniques arand multi-node collaboration for processing the
P 9 q Measurements is developed in section four. After

prop(_)sed fo improve the reliability of spectrun} at, the simulation is presented in section fad
sensing. In a CR network, all CR nodes transm{Ee ézonclusion is drawn in section six

their sensing reports to a fusion center, where the
reports are merged and an accurate sensing resulei SYSTEM M ODEL
obtained. Different SNR estimations and channel We consider a CR network with M CR

fading environments are considered in [4] and ¢5] tnodes that locally monitor a set of N wireless

improve the reliability of sensing information. C. e .
Yunfei [6] studies the optimum number Ofc_hannels, and ea}ch channel is either occupied by a
collaborative users to get the tradeoff of thélcensed user or idle. The states of channelsetre s

reliability and the complexity. The Byzantineas 1(occupied) and 0O(idle). To detect the channel

attacks which come from malicious users and Ca”state, we adopt the energy detection technique

false sensing data are taken into account in [fg T‘i@ﬁzegojssgrt E(;iﬂ ?rr\gnnggr:gazimgélogetzt:ttg T
cooperative sensing techniques with differenlI! )

mechanisms are considered in the studies of [8, 9]¢ " @ detection procedure. Consequently, a CR
However, the collaborative spectrum sensin@Ode_ should  transmit <’NXT_C measurement
method brings a new serious problem. Thaatrix to the fusion ce_nter Wh|_ch will process M
transmissions of reports have brought a lot dpeasurement matrices In conventional
communication overhead, since all nodes shoufgp!laborative spectrum sensing techniques. The
transmit their sensing reports which have largessiztime overhead and the communication overhead are
This problem is solved by grouping the CR nodes k€'Y large. A novel wideband sensing method
the conventional method. Each group of nodd3@sed on the sparse observations of the
sense a small amount of narrowband channels aftgasurement matrix is developed to overcome this
transmit a few reports. The performance will b@roblem.

reduced. This algorithm is also considered in [10]. 2.1 Energy Detection
Considering the scene that the CR node m

A wideband sensing method based on subspa&e detecting the channel n, whefles m< M

pursuit is proposed in this study to reduce both th . . o
time overhead and the communication overheat'i‘.ndlS ns N_’ we give a-detalled description of
Each CR node senses all channels simultaneouS0eray detection and obtain some useful parameters

instead of sensing one narrowband at a time, a measure the pe.rformance. The goal of energy
get a linear combination of the information of alld€tection is to decide between the following two

channels. The information of channels can bBYPOtheses:

reconstructed from a small amount of these linear Homa XM, n) =v(t,m,n) @
combinations  under  certain  conditions. Hymo XM N) =hy, st mn)+vE,mn)
Consequently, the sensing procedure can be t=1,2,..,T

finished in a short time with the wideband sensingrhere

method, and the size of reports can be signifigantl H,,., represents the absence of the

reduced. The studies of [11-14] exploit a method to .
solve this problem by estimating the information ofceNsed user in channel $n$,

all channels with only a small amount of sensing X(t,m,n) is the signal received by the
results. The sensing procedure is modeled asGR node $m$ in channel $n$,
partially observed Markov decision process v(t,m,n)is the additive white Gaussian

(POMDP). Z. Qing [11] proposes this idea and a .

myopic sensing method. S. Ahmad [12] studies thﬁeOISe(AWGN)’
optimality of the myopic sensing method and Hl,m,n
proves it under the conditions which are very closkcensed user,

represents the presence of a

to practice. X. Wang [_13] exploits the i_mpact oéth s(t,m,n)is the signal of a licensed user,

rate less code, W. Lingcen [14] modifies the cost ) ) )

function of POMDP with the switching time. h,,is the amplitude gain of channel $n$,
The rest of this paper is organized as follows. In Vmnis the signal-to-noise radio(SNR).

section two, the detection procedure of wideband
sensing based on the energy detection technique is

s
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Let Xmn  Where f (X) is the probability density function of
denote [X(L, m,n),x(2,m,n),..XxT mn)] . V. under fading.
The decision rule is given by 2.2 Wideband Detection
Himn Considering the scene that the CR node m

(2) detects all channeld,?2,...,N}, the node m
should detect each channel T times and spend total
N xT units of time detecting all channels, or
configure N filters locally to detect all channdls
times simultaneously in conventional sensing
test threshold. T(an) has the following techniques. Both approaches are too expensive.
' Frequency selective filters are equipped to degkct
channels simultaneously instead of detecting a

.
T(Xp) 0 2 KEMN P} A
t=1
H
where T(X,,) is the test statistic and is the

0,mnn

distribution according to the work of Urkowitz

[15]. ) channel at a time in this study. Each CR node
T(x. )~ Xt underH, . , (3) equips L frequency selective filters locally whére
™\ X (2Y,,) underH, is much smaller than N, one filter can detect a

linear combination of the information of all
where X7 and X7 (2);,,) denote the central and channels T times. The detection procedure can also

non-central chi-square distributions, respectivelybe completed by only one filter ih XT units of

each with T degrees of freedom aBg}’mn for the time.
' The detection procedure at each CR node

non-centrality parameter of the latter distribution . .
yp can be represented by lax N filter coefficient

The detection probabilit and the
P Famn matrix® . Let N dimensional vector¥; and V'

represent the power and noise in channels, they
P{observe H,, , H . ) equal  [X(t,m1),x{t,m,2),..x { mN)j
and P{observe H . . H,., ] . respectively. and [V(t,m1),v({t,m,2),..v{mN N o,
Then can be given by [16] in the non-fading'espectively. The L dimensional compressive

false  alarm  probability P =~ equal

environment Wherehmn is deterministic. detection vec'[OtDLm can be given by
t — t
IDd,m,n = Qle(\/ 2}4«/;) (4) Dm = CDth t t
rmi2,A12) =P(x,, -V, )+ DV, @)
f,mn :r(_l_—'/z) (5) :CDStn'Fe
t=12,...T

where () and I(, ) are complete and

Qn(.,.) is defined as the generallzed Marcum Q3|gnal of the licensed uset. —V' , and €

function g denotes®V' . If s(t,m,n) equals zero, the

+a2 6
Ny @X )X © channel n is not occupied by a licensed user. The

time overhead in the detection procedure is
polynomial with respect td_XT which is much
In the fading environment wherl,, i smaller tharN x T .
varying due to shadowing or fading; js  Notation
ying g &t Here we instate some notations that are
independent of);, | since the signal of licensed used throughout the paper. For any N dimensional

vectorX , we write ||.]| for the usuall . vector
P d I-1h o

where | m_1(.) is the modlfled Bessel function.

user is absent undét can be derive

ompn -
by averaging over fading statistic in this case.

N 1
norm |[x ||, which equals (Z xP)P
Pimn = J‘XQT/Q(\/Z/,\/;) fy (x)dx  (7) n=1

wherel< p<oo , especially, we reservfX |}
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as|{i, x #0}| . We denote the columns of the Fourier matrix. Their restricted isometry constants
obey the following conditions, respectively.

matrix ® by(@2),., - Further, let®, andX, be 5 <o whenever L s KIOG(N 7K)
the submatrix and subvector with column indices 2 - &2

jOZ for anyZ [0 J , respectively. Then, we 5 <s whenever L > klog® N loge™
define the pseudo inverse of the full rank matix 2K - &2

by ® which is(q)*q))‘l P . 3. RECONSTRUCTION OF MEASUREMENT

Filter Coefficient Matrix ®

. . It is possible to reconstruct the
We can reconstrucs,, from D, if the

measurement vectorstm from the compressive
filter coefficient matrix@® can ensure that k-sparse ) ¢ _ o
vectors are able to be distinguished based on thgtection vectorD . when the filter coefficient

observation thas,, is k-sparse. That is, we shouldmatrix @ stably embeds the set of k-sparse
vectors. Then, we can use the decision rule of

.~ ener detection (2) to process the vector
of k-sparse vectors. Here, we say that a vectkr is ?y 2) _ P )
sparse when it hak[] N nonzero entries, sefs,,1<t<T}, and obtain the accurate sensing

Emmanuel J. Candes and Terence Tao [17] defirieformation of all channels. The reconstruction

K-restricted isometry constanf), and K,K' - algorithm is derived from subspace pursuit for
K ' compressive sensing signal reconstruction [18], it

restricted orthogonality constar&'K’K, to be the consists of five major steps. We first define the
following parameters.

make sure thafP is a linear embedding of the set

smallest quantity such th&P obeys
a-o)ls., i<, €, )l @ )4, 3 (9 Dfn: the compressive detection vector of

(D, (Sh), P Sz ) K O IS,z 1, 4 (10) all channels attime t.
i

for all disjoint subsets Z,Z'[0J of the Sn ¢ the measurement vector of all
channels at time t.

cardinality at most K,K' and all real :
Z_ : the indices corresponding to the k

vectorss, , , S, . The numbersd, and & .

largest magnitude elementsSf.
measure how close the vectags are to behave g g ng

t . t
like an orthogonality system. And, the Uy, the residue oD,

orthogonality constanGK’K, can be controlled by Because the sequence{(ﬂ%n,...,s;} has
Oy . according to the lemma in [17], that is, high self-correlation, we can IeZ}  equal Z\*

Ok S Oue SO ¥max@e O ) (1) ang et Z', equal NULL, this operation can

The condition 52kD 1 implies that the greatly reduce the computational overhead.

filter coefficient matrix® preserves the geometry With Z! ', we can calculate the initial value of

of the set of k-sparse vectors and performs lilke th . t oAt
orthogonal transformation. Umo Which equals Dm _q)zgoq)z;oDm . The

~ Then, an important question is to find thejterative steps of the reconstruction algorithm are
matrix with a good 2k-restricted isometry constantgiven as follows.
Gaussian matrix which meets the condition is easy Step 1: the correlation maximization (CM)
to be constructed. We set each entry ®f as operation is performed to discover the $k$ largest
independent and identically distributed Gaussian t

. _ ) magnitude elements oP U, ,
random variable with mean zero and varidhtk . the location of the of s which
Because a k-sparse vector contains abo‘ﬁi{scover e location of the elements which carry a

. . _ ot of energy.
slog(N /s) bits of information, Step 2: the indices of elements with the

O(klog(N /k))should be sufficient for the value higher correct probability can be determined by

of L. Here, we give two more examples: themerging Zrtni_l andz:ni'
bernoulli random matrix and the subsampled

and we can
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Step 3: the elements Gfm corresponding 6.=0
to the indices are estimated. (P, Sy ) Ry Gy NEO
Step 4: the k largest magnitude entries of (D, B, )=0
the estimations are chosen to up(ﬁiﬁa, and the Then, we ConsidefD*Dtm in the noiseless
residueutmi is calculated. environment.
Step 5: the stopping criterion is checked to ®D;, =¥ os,
determine whether the measurement vector has 4@ 60, ... 4a]1 s,

been approximated. . The nonzero elements & which we
The pseudo code of the reconstruction ) m o

algorithm is summarized as algorithm 1. want to discover carry a lot of energy in this idea

Algorithm 1 scenario, consequently, an efficient filter coeéit

matrix should ensure that the CM operation can

. t
Input: k, @, D, collect the indices of nonzero elements.
Initial step: Then considering the unideal scenario, we
i=0 5 o {0} N denote the set of the indices of nonzero elements
¥ m

by Z! . in the light of the definition of the CM

m:?

Zrlno ~ NULL or Z:no - Z;n_l ;
operation and the property 1.7 of [17], we can get

Upo « Df =@, @) D}, 1, Di 1} = [k, D,
Repeati « i+1 AP, P, 5, I}
Step 1:Z;,, —« CM(®'u;,,) 2 A (P, @) IS, 1}
Step2:2%, « 24,02, >(1=8)lIsn I

where A, is the minimum eigenvalue. Here, if we

n

Step 3:S, « CD;_Dtm
Step 4:Z'. — CM(s,)
Uy « D, —®_ &) D

assume that the chosen indices Zﬁﬁ is disjoint

from Zrtn, according to (10) and lemma 1 of [18],

z4 we can get
Ciellegt t o, D! =, d_. s
Step 5:if|[u,, [b> 110 b 1P, D lb =10, @yl
Z'( Z'( < a—2k ”StmlL
mi T Smi- Consequently, we can get the inequality
s, < {op" Stmz;ﬁ - dD% D that 1-9, is less thard, . Since J, is less
quit the iteration than d,, , O, should be smaller thad/2 to
Output: Stm ensure that the inequality is false, which means at
Analysis of Reconstruction Algorithm least one nonzero element can be collected. Thus,
Correlation Maximization Z:nl N Zrtn #Z [ and the CM operation can work

The correlation maximization (CM) is the . . . .
core operation throughout the reconstruction®” the reconstruction  algorithm 13y is
algorithm, it is performed to discover the indicds in[0,1/ 2].
elements which carry a lot of energy in thecgtiimation

measurement vectstpn, but how does it work for There are 2k indices iZ' . in step 3, at
mi ’

this purpose. We first giv.e an intuitive explanatio |aast k of them are not the indices of nonzero
The ultimate goal of @ | j U J} is to behave like elements. The estimation operation is needed to
an orthonormal system for sparse vectors, we cafentifying the incorrect indices. We denote the se
naturally set1+1 -restricted isometry constant of correct indices byZ; . We can define

o)

1., @s O to approximate an orthonormal systemaz = 7' —Z'  with the estimation set of indices

according to (11) and the definition d1 - 7' in step 4. IZ8 nAZ =0 , the estimation
mi " m 1

restricted orthogonality constaft;, we can get operation identifies the incorrect indices
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which can show the CR nodes the states of all

successfully, elseZ. n AZ # 1, that is, some o _
channels. The decision rule can be written as

correct indices are removed by mistake. According H
to theorem 3 of [18], the reduction of norm : e (12)
introduced by this mistake is proportional to T(s,,)0 D st,mn)f | A
t . t=1
”S*“Z%-Z‘mi |L which can be proved to be small. As Homs
long as the reduction of the norm is small, a good We can get two important performance

parameters associated with spectrum sensing
according to equations (4) and (5): the detection

probability Pimn and false alarm

estimation onrtn can be obtained.
Complexity

The calculation ofCD*u:ni_1 spends time o _
I(probab|lltfo’m’n. Due to channel shadowing and

O(LN) in step 1, and we can discover the , _ o _
. . .multipath fading, the sensing information of a CR
largest elements of the N dimensional vector in . ; :
node is usually inaccurate, but the collaboratiébn o

time O(N log(N)) with the quick sort algorithm. \uiti-nodes  can significantly improve  the

In step 2, we can merge two sets of size K ifgjapility. Let Q, , andQ; , denote the detection

timeO(K). In step 3, we multiply both sizes o theprobability and false alarm probability of channel

equation with the2kx 2k symmetric positive after the collaboration, in the conventional

definite matrixCD*z ®_, , we can get algorithm, they can be calculated by
‘mi mi M
* =@, D, =1-[]@-P
CDermq)ermsc _qJZ:mDm Qd,n I ( d,m,n)
o _ -
The multiplications spend tin@(2kL), 0. =1-[7a-p . )
and the solutionS, of the equation can be -

However, the conventional algorithm is

calculated with the conjugate gradient method with, . very efficient when the CR nodes are

time O(4k?) . In step 4, we can discover the kexperiencing different fading environments, we
largest elements of the 2k dimensional vector witfitroduce weight factor matrix W to improve its
time O(2k log(2k)), and calculate the residue performance, where an entity of the matrix denoted

like step 3 with timé(KL). In step 5, we spend by W, is the weight factor of,, . Here,
timeO(1) . Thus, the total time complexity of one Qunand Q; , can be gotten by

. . . . M
|terat|oQ isO(LN). According to th_e convergence Qupn =1 [ Wern @=Fyn)
conclusion theorem 6 of [18], the iteration number m=
M
N, obeys the following condition. Qrp =1 [ Wi @ P 1)
n, smin(_logs'“'n +1, L5 ) An efficient weight factor matrix should
—logc, -logg, be adaptive to the different fading environments,
where §,,and C, are defined as follows. we can update the matrix with historical records. |
_min,._, |st.mn)]| the initial sted =1, we setw,, = asl/N, and the
" IS, Ib collaborative algorithm is conventional. After one
_ 20, (1+0y,) sensing procedure, we can update the weight factor
T (1-0%)° matrix by
Consequently, we can get the total time Wt = WP
complexity of the reconstruction mn i W P
algorithmO(LNn, ). . R
4. COLLABORATION IN FUSION CENTER By this update scheme, the CR nodes

which can make accurate decision have much
We process the set of the measurememjontribution to the final decision, the CR nodes

vectors{stm,lst <T} with the decision rule of which are experiencing deep fading should reduce

. . . ._their influence on the final decision.
energy detection to obtain the sensing mformauog SIMULATION RESULTS

s
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5.1 Performance M easur es probability that a call has been blocked due to the

T. Shensheng and B.L. Mark [19,20] haveoverflow of channels and it can reconnect back to
made lots of work for the performance analysis othe system. The reconnection happens if a channel
spectrum sharing. We can introduce severdlecomes idle before the waiting time expires.
performance measures highly associated Wit _can be given by
spectrum sensing from the work of [19], the r.eR
definitions of these performance measures in the
simulation environment are also given to get &here N(_)_reconne(;tcR is the number of
better u_n_d_erstandmg of the nu_merlcal re_zsults. reconnections of CR nodes.

Probabilities of detection, miss detection and Total channel utilization

faIseaIarTmh babiliti f detecti d fal The total channel utilization, denoted
€ probabi '_ 1es of detection an asebyl], is defined as the radio of the total occupation
alarm have been defined and denote(pr Qf time of channels to the total simulation time of

in above sections, respectively. Miss detectiochannels/] can be given by

P, cr = No.reconnect., / Noblock

probability Q. equalsl—Q, . In the simulation, . _ e roatia 4 ploae
they can be given by No.arrival =1 tsuN
Q, = No.correct / (No.correct + No.miss) where
Qn = Nomiss/ (Nocorrect + Nomiss) t,,, is the simulation time,
Q; = No.false/ (No.correct + No.false) N is the number of channels,
where No.correct is the number of successful No.arrival is the serial number of the

detections, NO.mMisSS is the number of miss call arrivals of both licensed users and CR nodes,

detections, and\No.false is the number of false tho@™ s the waiting time of the
g'la"E_S- il callNo.arrival ,
ocking probabilities Noarrival . .
The call blocking probability of the liesgence 1S the residence time of the

licensed user denoted By, , is defined as the callNoarrival .
aiting time of CR calls
The waiting time of calls of CR nodes
] ) consists of two parts. The call waits if it is bted.

the channels, the arrival call is blockdg, , can  The call also waits if a call of the licensed user
be given by arrives and chooses the channel occupied by this

R,. = Noblock,,, / Noarrival call. For simplifying the description, we don't giv
the special notations for these two parts, they are
recorded by the simulation program. The mean

licensed users, antNo.arrival,, is the number waiting time of the calls, denoted by, , can be

probability that all channels have been occupied b'yl eanw
licensed users when a call of licensed user aratves

where No.block, ;, is the number of call blocks of

of call arrivals of licensed users. given by

The call blocking probability of the CR mex(No.arrivalce) goarivalcn

. . - t . = wali

node, denoted bI%]CR, is defined as the probability " Neames max(Noarrival )
that all channels have been occupied by licenséu2 Numerical Results N _
users and CR nodes when a call of the CR node We consider a cognitive radio network
arrives at the channels, the arrival call is blatke within 300x 30C meter square area centered at
R crcan be given by the fusion center, where the arrivals of calls & C

nodes and licensed users are assumed to form

P .~ = Noblock.. / No.arrival
bR er i independent Poisson processes with rats

where No.block , is the number of call blocks of . S
and/iz, respectively. The call holding time of CR

CR nodes, and\lo.arrlvaICR is the number of nodes and licensed users are assumed to be

call arrivals of CR nodes. . I . -1 -1
M ean reconnection probability exponentially distributed with meary ™ andh,”,

The mean reconnection probability of CRrespectively. The residence time of CR nodes and
nodes, denoted bPr,CR is defined as the licensed users in the channels are also assumed to

s
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be exponentially distributed with meanlsl_l numerical results for the reason that it determines

the sparsity k of the measurement vecshrwhich

has dramatic impact on the performance of our

300 channels under Rayleigh fading model argyqithm. we first observe the probabilities o th
chosen to serve the calls of CR nodes and licensggiaction and the false alarm for different arrival

users. In the simulation, the parameters are set as o
follows: rates of CR callsd, in Figure 1. We observe that

and rz'l, respectively. For testing our algorithm,

/]lchanges from 1 to SMZ changes from detection probability Qd decreases a5/12

110 20, increases, and increases ad, increases.

hlequals 0'5'hZ equals 5, Meanwhile, the false alarm probabilityQ,

I equals 0.5\, equals 0.2.

The units o{A, A} . ${h_1,h_24$ and that increasingA, causes increasing k which
{r,r} arethenumberof calls/sec, 1/seC  |equces the accuracy of the reconstruction

decreases ad, and /A, increase. The reasons are

H . t .
andl/sec, respectively. algorithm fors_, and the collaboration of CR
. T35 nodes not only increase€), , but also

£ oo — A=15 []
e ig%g | increased, . Figure 2 showsQ, and Q, at
2 & A=
& osa 1 different /]2 for different SNR. We observe that
00 : o » » Q, increases with increasing SNR, ar@,
‘ decreases with increasing SNR. The reason is that
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