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ABSTRACT 
 

Several methods are employed in multi-agent learning and organization problem such as temporal 
difference (TD(λ)), genetic algorithms, and learning classifier systems. The main disadvantage of these 
methods is that they perform badly when the data is not fully observable. In this paper, we first introduce 
explain learning systems in artificial intelligence(AI) and Self-organization systems. Then, we study the 
structure of self-organization of the intelligent agents, Finally, we design the decision-theoretic intelligent 
agent system, feedback control and adaptive control. 
Keywords: Artificial Intelligence; Self-organization System, Decision-theoretic Intelligent, Feedback 

Control, Adaptive Control 
 
1. LEARNING SYSTEMS IN ARTIFICIAL 

INTELLIGENCE 
 
There are two approaches to model a learning 

system in the AI literature. A learning system is 
modeled as either supervised or unsupervised. The 
first approach is called supervised learning in which 
the learning system has a world model. The 
learning system makes its decisions according to 
the world model. Some type of feedback from the 
environment is required to change the world model. 
This is also called a goal-driven learning system or 
a deliberative learning system. Figure 1(a) 
illustrates a goal driven learning system. 

 
Figure 1 (A) Supervised Learning Model.   

 
Figure 1 (B) Unsupervised Learning Model. 
 

The second approach is described as supervised 
learning in which the learning system explores the 
environment and takes actions to change it. This 
type of learning is also called a data-driven or a 
reactive learning system because the learning 
system depends on only data, and it does not have a 
model of the world. Figure 1(b) illustrates an 
unsupervised/data-driven learning system model. 
There has been some research on a method that 
tries to combine the two learning models. The 
methods were combined often in ad-hoc ways and 
usually with limited success. This work will 
propose an approach that combines both types of 
learning models. We will call the proposed learning 
model the bi-directional learning model. These two 
approaches are used consecutively in some learning 
systems, but they are not usually used 
simultaneously.  

 
Figure 2. Bi-Directional Learning System Model. 

 
Figure 2 illustrates the bi-directional learning 

model. After specifying what type of learning 
algorithm is needed for the self-organization 
problem, we need to explain the idea behind the 
self-organizing mechanism. 
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2. SELF-ORGANIZATION  SYSTEMS 
 
The main idea of a self-organizing mechanism is 

to control a society of autonomous agents through 
structurization and organization. The task of 
adapting the structure of a group or a society of 
artificial agents to the environment is considered an 
optimization problem by characterizing a search 
space and an objective function to be optimized. 
The objective function denotes the current system's 
performance while a multi-dimensional search 
space describes the system's set of possible 
configurations. 

The search space dimensions can be derived 
from principles of a multi-agent system application: 
structural principles, communication principles, and 
agent architecture principles. 

Structural principles are, for example, the 
number of agents in the group, the number of 
specialists for a certain task, the organizational 
form of the group, migration (i.e.distribution of 
agents over the net), and so on. Communication 
principles can be expressed through the 
introduction of communication channels between 
subunits or even between agents belonging to a 
common subunit. Agent architecture principles are 
explicit resource distributions among the various 
agent modules. A unified approach is provided by 
the paper. 

Self-organization of multi-agent systems is 
commonly achieved by using some combination of 
rule-based systems, Q-learning, Temporal 
Difference TD (λ), and evolution-based algorithms. 
Traditional Genetic algorithms (GAs) are well 
suited for off-line search, where search time is not 
important. Unfortunately, the domains where multi-
agent systems are in use are generally highly 
dynamic since the environment may change 
anytime. In addition, a traditional GA needs to 
process many individuals. This might require 
storing the configuration of tens of complete agent 
societies, which is intractable. That is why the 
evolution-based algorithms have to be modified 
greatly for on-line use. Thus, the performance of a 
GA is inefficient in multi-agent systems. 

Temporal difference and Q-learning methods are 
also commonly employed to solve multi-agent 
learning and organization problems. Temporal 
difference methods require learning the value 
function for a fixed policy. Thus, they must be 
combined with other reinforcement learning 
methods that can use the value function to make 
policy improvements. 

Temporal difference methods work in the 
following way. Let ( )V s


 denote the current 

estimated value of state s under a fixed policy Π . 
When a sample , , ,s a t r  is received by performing 
action α  in state s  at time t  with the reward r , the 
simplest TD-method (known as TD (0)) will update 
the estimated value to be 

(1 ) ( ) ( ( ))V s r V tα α β− + +
 

  (1) 

Here α  is the learning rate ( 0 1α≤ ≤ ), governing 
to what extent the new sample replaces the current 
estimate. The symbol β  is the discount factor. This 
is the basis of TD (λ), where a parameter λ  
captures the degree to which past states are 
influenced by the current sample. 

Q-learning is a straightforward and elegant 
method for combining value function learning (as 
in TD-methods) with policy learning. A Q-value, Q 
( ,s a ), is assumed for each state-action pair ,s a . 
The Q-value provides an estimate of the value of 
performing action α  at state s . An agent updates 
its estimate Q ( ,s a )based on sample , , ,s a t r using 
the formula: 

}{(1 ) ( , ) ( (max ( , ) ))
d

Q s r Q sα α α β α′− + +     (2) 

Temporal difference and Q-learning methods are 
successful in multi-agent learning under the 
assumption of full observability. Full observability 
means that all states of the environment can be 
observed completely. If the environment is not fully 
observable or we have incomplete data, these 
methods easily fail to converge. Since an agent can 
adopt the best policy given its current knowledge, 
Q-learning is only guaranteed to converge to the 
optimal Q-function (and implicitly an optimal 
policy) if each state in the environment is sampled 
sufficiently. 

Learning classifier systems [Holland, 1986] also 
have been employed to solve multi-agent learning 
and self-organization problems. The learning 
classifier system (LCS) is a rule-based, message-
passing, machine learning paradigm designed to 
process environmental stimuli, much like the input-
to-output mapping provided by a neural network. 
The LCS provides learning through genetic and 
evolutionary adaptation to changing task 
environments. The operation of the LCS is centered 
around a list of rules or classifiers. These rules are 
essentially a set of “if-then” statements, where the 
“if” part of a rule is called condition, and the “then” 
part is called an action. 

Learning classifier systems are genetic-
algorithm-based machine learning mechanisms for 
developing action policies to optimize 
environmental feedback. Sen and Sekaran insist 
that learning classifier systems perform very 
competitively with the Q-learning algorithm, and 
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are able to generate good solutions to both a 
resource sharing and a robot navigation problem. 
They also claim that learning classifier systems can 
be used effectively to achieve near-optimal 
solutions more quickly than the Q-learning 
algorithm does. Even though some claim that 
learning classifier systems perform better than the 
Q-learning algorithm, these systems tend to have 
some deficiencies in decision-making because they 
are rule-based systems. Partial observability 
(incomplete data) is hard to handle for learning 
classifier systems too. Main problem with the LCS 
is the "bucket-brigade", which cannot converge. 

Evolution-based algorithms are not efficient 
enough because they are not able to perform well 
on-line. Q-learning algorithms perform well online, 
but they are not able to handle the partial 
observability of the environment. Even though 
some claim that learning classifier systems perform 
better than Q-learning algorithms, they are not able 
to perform well with incomplete data. They also 
have some conceptual and computational 
difficulties to overcome. 

Last, but not least, the methods described above 
are not completely bi-directional learning models 
although there is some bi-directionality in them. 
The importance of bi-directional learning comes 
from its potential to combine the supervised 
learning and unsupervised learning and facilitates 
them at the same time. The present research 
attempts to provide a new approach that overcomes 
the difficulties described above paragraphs. The 
new approach is based on Bayesian networks, 
directed acyclic graphs (DAG) that are constructed 
by a set of variables coupled with a set of directed 
edges between variables. 
 
3. THE STRUCTURE OF AN INTELLIGENT 

AGENT  
 
An agent is defined as an entity that can be 

viewed as perceiving environment through sensors 
and acting upon that environment through effectors. 
Therefore, an agent should have sensors and 
actuators to interact with the environment. On the 
other hand, an intelligent agent is an agent that 
reasons with the sensory information and creates 
optimal actions to satisfy a goal. Therefore, a 
reasoning system and a decision support system are 
necessary elements of an intelligent agent. Bayesian 
networks and influence diagrams can be considered 
as reasoning systems and decision support systems 
respectively. 

Communication between the agents is also 
necessary to establish organizational behaviors in a 
multi-agent self-organizing system. Therefore, an 
intelligent agent should have sensors, actuators for 
actions, a Bayesian network, an influence diagram 
and a communication system. 

An intelligent agent has five levels: sensors, 
belief, preferences, capabilities and actions. In this 
design, Shohams' agent oriented programming 
paradigm is followed. According to this paradigm, 
the mental state of agents can be represented in 
terms of their belief, capabilities, and preferences. 
The belief level consists of a Bayesian network 
( AV  or EV ) and its nodes represent agent's 
possibly uncertain beliefs about the world. The 
nodes in AV  represent variables related to the other 
agents in the system. The nodes in EV  represent 
the variables related to the agent itself. The 
preference level is represented as a utility node 
( AU  and EU ) that expresses the desirability of a 
world state.  The capability level is represented by 
decision nodes ( DAV  and DEV ) that contain 
alternative courses of  action, which the agent can 
execute to interact with the world. This is also 
called belief, desire, and intention (BDI) 
architecture in the literature. 

Each agent models other agents as an influence 
diagram by modeling other agents' variables( AV ), 
utility function( AU ), and decision nodes ( DAV ). 
Duryadi and Gmytrasiewicz stated that other 
agents' models could be learned using influence 
diagrams. As a modeling representation tool, the 
influence diagram is able to express an agent's 
belief, capabilities and preferences, which are 
required if we want to predict the agent's behavior. 
Duryadi and Gmytrasiewicz established the 
learning of other agents' behaviors in the following 
way: Given an initial model of an agent and a 
history of its observed behavior, new models can be 
constructed by refining the parameters of the 
influence diagram in the initial model. The details 
of the learning method can be seen. 

Agents also need a model of the environment.  
Bayesian networks can model the environment 
efficiently. The nodes in EV  model the 
environment and provide beliefs about the 
environment. Then, these beliefs are dragged into 
the utility node EU .The utility node EU  
represents the agent's own preference that is defined 
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by the goal of the multi-agent organization system. 
The utility EU  is a function of the belief about the 
environment ( EV ), the expected actions of the 
other agents ( 2A ), its possibly course of actions 
( 1A ). Figure 3 presents the proposed intelligent 
agent model. 

 
Figure3. The Structure Of An Intelligent Agent 

 
After establishing the world model and the utility 

function, the agent needs to take an optimal action 
according to the principle of maximum expected 
utility (PMEU). The PMEU lets the agents choose 
the best action from its set of action ( 1A ), given 
the belief about the environment ( EV ), and other 
agents' expected behavior ( 2A ). Formally, it can 
be expressed as 

{ }
1

1 2max max , ,
i

E Ea
U f V A A=       (3) 

Where { }1 2, , ,E nV X X X=  , the variables 
iX  are the nodes of the Bayesian network EV , 
{ }1 11 12 1, , , kA a a a=   is the action set of the 

agent, { }2 21 22 2, , , iA a a a=   is the expected 
action set of the other agents. Therefore, an agent 
takes its actions after evaluating the environment 
and the other agents. This property will help to 
obtain self-organization ability of the system. Each 
agent first check to see if other agents are 
performing task before it takes its actions to 
perform the task. 
 
4.  MULTI-AGENT SELF-ORGANIZING 

SYSTEM SCHEME 
 
This section will examine the learning problem 

when we have more than one agent. The agent 
described in the previous section is specifically 
designed for multi-agent systems. In a multi-agent 
environment, coordination requires an agent to 
recognize the current status and to model the 
actions of the other agents to decide on its own next 

behavior. That's why agents model other agents as 
well as the environment. A computational difficulty 
may arise if the number of agents is large in the 
system because agents model the internal structure 
of other agents in their network. The Bayesian 
network in the agent may become so large that the 
calculation of the conditional probabilities might 
become difficult. The agents are independent but 
they take their actions by considering the other 
agents. Thus, agents take their actions together in 
coordination. Formally speaking, the agent's utility 
function EU  depends on the expected actions of 
other agents ( 1A ), see Equation (3). 

We can explain this ability with an example. 
Suppose we have two dogs and a sheep, as in the 
sheepdog problem. Dogs are our agents and their 
goal is to put the sheep into a barn. Dogs will 
explore the environment and they will model the 
environment. In this case, the environment contains 
another dog, a sheep, and a barn.  First, the dogs 
will probably locate the sheep. Then, they will 
make movements to direct the sheep into the barn.  
If the dogs do not consider (model) each other, they 
might not be able to put the sheep into the barn 
since one's action might hinder the other's action. 
Thus, they need to cooperate and make movements 
together. If each dog learns the model of the other 
dog, then they can make movements together to put 
the sheep into the barn. If there is no coordination, 
both dogs will probably go behind the sheep and 
direct it into the barn. If there is coordination 
between the dogs, while one of them goes behind 
the sheep, the other may move back and forth so 
that the sheep will not escape as shown in Figure 4. 

 

Figure4. Multi -Agent Behavior Without 
Coordination (A) And With Coordination (B) 

 
A multi-agent self-organization system with two 

agents can be seen in Figure 5. The multi-agent 
system is designed by using the agents, shown in 
Figure 3. 

In summary, agents will fire actions to change 
the environment as well as to organize themselves. 
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Self-organization will happen eventually because 
each agent takes its actions considering other 
agents' behaviors in the environment. This property 
will make our system a multi-agent self-organizing 
system. In the proposed learning system, an agent 
learns the environment using the sensory data, and 
modifying its world model (Bayesian Network) 
accordingly. Then, an agent calculates the expected 
state of the environment using the world model and 
creates actions to change the environment. Thus, 
the learning structure is bi-directional because the 
agent interacts with nature and the world model in 
both directions. 

 
Figure5. Multi-Agent Self-Organizing Scheme With Two 

Agents 
 

5. THE DECISION-THEORETIC 
INTELLIGENT SYSTEM 

The decision-theoretic intelligent agent system 
has adaptive learning ability with feedback from the 
environment. The agent starts with a limited 
knowledge of the plant (environment), then it 
explores (samples) the plant to learn the plant's 
parameters. After it learns about the plant, it takes 
its actions accordingly. The agent first estimates the 
plant's behavior using the previous observation, and 
then takes its action according to the estimation. 
The plant, then responds to the agent's action with 
an output. The output of the plant in this stage is 
used as feedback to update the plant parameters in 
the predictor (BN).  Figure 6 shows the decision 
theoretic-intelligent agent learning system in a 
block diagram. 

In Figure 6, ( )I X  represents the initial state of 
the plant, ˆ( )E X  is the expected value of the state, 

( )E y  is the expected value of the plant output, 

and GOALy  is the desired plant (system) output. The 
symbol 1q−  represents one unit delay. The 
controller (ID) applies controls to the plant to 
provide a certain plant output because the controller 
creates the control according to the error between 
the expected value of the plant output and the 
reference.  The reference is the desired output to be 
provided by the plant. The observer (BN) models 
the plant by using the plant's input/outputs. After a 
control is applied to the plant, the plant output is 
used in the next step to update the plant model. 
Thus, there is a time delay between the control and 
the output of the plant. The controller creates the 
control using a priori knowledge about the plant 
(environment). 

 

 
Figure6. System Block Representation Of The Intelligent 

Agent System 
The decision theoretic intelligent agent system 

(DTAS) has potential use in feedback control and 
adaptive control because it uses the plant's output as 
a feedback and modifies the controller and the 
observer accordingly.   
 
5.1 Feedback Control 

In the literature, there are two main types of 
feedback control, namely output feedback and state 
feedback. Output feedback is performed by a path 
(loop) from the output back to the controller as 
shown in Figure 7. 

 
Figure7. Output Feedback Control 

 

The equations for the system in Figure 6 can 
be given as: 

ˆ GOALe y y= −     (4) 
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( )u f e=        (5) 
( )y g u=       (6) 

Now, let us compare the system equations in the 
feedback control system and the decision-theoretic 
intelligent agent system. In the DTAS, the output of 
the plant, y , also depends on the control input, u . 
Let us compare the control signal u  in both 
systems. 

( ) ( )DTAS FEEDBACKu h e u f e= ⇔ =     (7) 
If we choose the functions h  and f  to be equal, 

then the controllers will give the same control u  
with the same error e . Let us compare the errors in 
both systems. In the DTAS, the error is the 
difference between the desired output and the 
expected value of the plant output provided by the 
predictor. This is very similar to the feedback 
control system but the expected value of the plant 
output replaces the measured plant output. These 
two values are equivalent only if the predictor 
estimates the output of the plant well enough. In the 
DTAS, it is shown that the predictor estimates the 
plant output well enough when there is sufficient 
data from the plant's input/output. Therefore, the 
expected value in the DTAS is equivalent to the 
measured value of the plant output in a feedback 
control system. The following equations summarize 
the discussion. 

( )GOALe y E y= −   (8) 
ˆ( )E y y≅                (9) 

ˆGOALe y y= −         (10) 
From Equations (8), (9), and (10), we may 

conclude that the DTAS exhibits feedback control 
properties. 

Another type of feedback control is state 
feedback control. In state feedback control, the state 
variables are sensed and fed back to the input 
through appropriate gains. If there is direct access 
to the state variables, the state variables can be 
easily measured and fed back to the input. If there 
is no direct access to the state variables, then an 
observer may be employed to perform the 
estimation of the state variables. Figure 8 illustrates 
a state feedback control system with an observer. 

The block denoted by FE  is the plant. The 
estimator predicts the state variables of the plant. 
The estimated state variables are fed to the input 
with a gain K . Then, the control signal becomes 
the following: 

ˆu r KX= +   (11) 

 
Figure8. A Control System With The State Feedback 
 

Thus, the control is a function of estimated state 
variables and the reference input. Let us compare 
the controls in both systems. In the DTAS, the 
control is defined as  

( )u f e=        (12) 
where ˆGOALe y y= − .The term ŷ  represents 

the estimated output of the plant. The term ŷ  is a 
function of the estimated state variables because it 
is calculated by the utility function of the system. 
Therefore, we can represent ŷ  with the following 
equation. 

ˆ ˆŷ CX=   (13) 
where the vector X̂  is the estimated state vector 

and the matrix Ĉ  is the transformation matrix 
between the states and the output. Thus, the control 
can be rewritten as follows: 

ˆ( )GOALu f y y= −              (14) 
ˆ ˆ( ) ( )GOALu X f y CX= −    (15) 

Let us assume that the function f is a linear 
function with the following form. 

( )f x A x= ⋅       (16) 
ˆ ˆˆ ˆ( )GOAL GOALu A y CX A y A CX= ⋅ − = ⋅ − ⋅ (17) 

Let ˆK A C= − ⋅ ，and GOALr A y= ⋅ , then the 
control becomes  

ˆu r K X= + ⋅   (18) 
As seen in Equation (18), the control signal in 

the DTAS can be interpreted as the control signal in 
the state feedback control. This concludes the 
analysis of how the DTAS corresponds to a 
feedback control system. It can be concluded that 
the DTAS will have the inherent advantages of 
feedback control. The following section 
investigates the adaptive control capabilities of the 
DTAS. 
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5.2 Adaptive Control  

The term adaptive control covers a set of 
methods that provide a systematic approach for 
automatic adjustment of the controllers in real time, 
in order to achieve or to maintain a desired level of 
performance of the control system when the 
parameters of the plant dynamic model are 
unknown and/or change in time. A block diagram 
presenting a basic configuration of an adaptive 
control system is shown in Figure9. 

 
Figure9. A Basic Adaptive Control System 

 
The following definition provides an adaptive 

control system given in Figure 6. An adaptive 
control system calculates a certain performance 
index (IP) of the control system using the measured 
inputs, the states, the outputs, and the known 
disturbances. From the comparison of the 
performance index and a set of given ones, the 
adaptation mechanism modifies  the parameters  of 
the  adjustable controller and/or generates an 
auxiliary control signal in order to maintain the 
performance index of the control system close to 
the set of given ones (i.e., within the set of 
acceptable ones). 

An adaptive control system will monitor the 
performance of the system in the presence of 
parameter disturbances in addition to a feedback 
controller with adjustable parameters acting as a 
supplementary loop upon the adjustable parameters 
of the controller. 

There are three types of adaptive control schemes 
in the literature: open loop adaptive control, direct 
adaptive control, and indirect adaptive control. In 
open loop adaptive control, the adaptation 
mechanism is a simple look-up table stored in the 
computer that gives the controller parameters for a 

given set of environment measurements. In the 
literature, this is also called gain-scheduling. 

Direct adaptive control is based on the 
observation that the difference between the output 
of the plant and the output of the reference model 
(called plant-model error) is a measure of the 
difference between the real and the desired 
performance. The reference model is a realization 
of the system with desired performance. This 
information is used by the adaptation mechanism 
(called parameter adaptation) to directly adjust the 
parameters of the controller in real-time in order to 
force (asymptotically) the plant model-error to zero. 
This scheme corresponds to the use of Model 
Reference Adaptive Systems (MRAS) for the 
purpose of a general concept called Model 
Reference Adaptive System (MRAS) for the 
purpose of control. The indirect adaptive control 
was originally introduced by Kalman. 

In an indirect adaptive control system, shown in 
Figure 10, the basic idea is that a suitable controller 
can be designed on line if a model of the plant is 
estimated on line from the available input-output 
measurements. The scheme is called indirect 
because the adaptation of the controller parameters 
is performed in two stages: 

1 .On-line estimation of the plant parameters 
(e.g. Bayesian network construction) 

2. On-line computation of the controller 
parameters based on the current estimated plant 
model (e.g. Influence Diagrams-making decisions) 

 
Figure10. Indirect Adaptive Control System 

 
The main goal is to create an adjustable predictor 

for the plant output and compare the predicted 
output with the measured output. The error between 
the plant output and the predicted output (called 
prediction error or plant-model error) is used by a 
parameter adaptation algorithm which at each 
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sampling instant will adjust the parameters of the 
adjustable predictor in order to minimize the 
prediction error in the sense of a certain criterion. 

There are two options given to effectively 
implement an indirect adaptive control strategy. 
The choice is related to a certain extent to the ratio 
between the computation time and the sampling 
period. 

Strategy 1:①Sample the plant output;②Update 
the plant model parameters; ③ Compute the 
controller parameters based on the new plant model 
parameter estimates;④Compute the control signal;
⑤Apply the control signal;⑥Wait for the next 
sample. 

In this strategy, there is a delay between ( )u t  
and ( )y t . This delay should be smaller than the 
sampling period. 

Strategy 2:①Sample the plant output;②Compute 
the control signal based on the controller 
parameters computed during the previous sampling 
periods;③Apply the control signal;④Update the 
plant model parameters;⑤Compute the controller 
parameters based on the new plant model parameter 
estimates;⑥Wait for the next sample. 

In the second strategy, the delay between ( )u t  
and ( )y t  is smaller than in the previous case. In 
this strategy, a priori parameter estimation is 
performed since we apply the control without 
updating the plant parameters. 

In the above paragraphs, a general definition of 
an adaptive control system is provided. A greater 
importance is given to indirect adaptive control 
systems because the decision-theoretic agent 
system (DTAS) has the properties of an indirect 
adaptive control system. The DTAS has the same 
steps as the indirect adaptive control system. 
Additionally, the learning strategy in DTAS is very 
similar to the second strategy of the indirect 
adaptive control system. 

The first step, the on-line estimation of the plant 
model parameters, is performed by structuring a 
Bayesian network and calculating its parameters in 
the DTAS. The online Bayesian network learning is 
performed to model the plant. The second step, the 
online computation of the controller parameters, is 
performed by a decision system (influence 
diagrams). 

As shown in Figure 5, there are two adaptation 
mechanisms in the indirect adaptive control. The 

first adaptation mechanism corresponds to the 
online Bayesian network learning in the DTAS. 
The second adaptation mechanism corresponds to 
the utility node in the influence diagram part of the 
decision-theoretic intelligent agent because it 
determines which action will be fired in the 
decision node.  The adjustable predictor 
corresponds to the Bayesian network in the DTAS. 
Finally, the adjustable controller corresponds to the 
decision nodes in the influence diagram in the 
DTAS. 

Now, the indirect adaptive control system can be 
redrawn by using the decision-theoretic intelligent 
agent components, shown in Figure11. 

 
Figure11. Indirect Adaptive Control Representation Of 

The DTAS 
Consequently, the online Bayesian learning 

determines the plant model structure and parameter 
estimation; and, the influence diagram determines 
the controller parameters. Therefore, it can be 
concluded that the decision-theoretic intelligent 
agent system implements an indirect adaptive 
control system. 
 
6 .  CONCLUSIONS 

 
Self-organization of the intelligent agents is 

accomplished because each agent models other 
agents by observing their behavior. Agents have 
belief, not only about environment, but also about 
other agents. To study the proposed intelligent 
agent's learning and self-organizing abilities, in this 
paper, we explain the structure of an agent, which is 
designed by a Bayesian network and an influence 
diagram, and then examine a multi-agent 
organization system and the bi-directional learning 
feature of the proposed multi-agent self-organizing 
system. We present the system representation of the 
decision-theoretic intelligent agent design. The 
decision-theoretic intelligent agent system has 
adaptive learning ability with feedback from the 
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environment. The agent starts with a limited 
knowledge of the plant (environment), then it 
explores (samples) the plant to learn the plant's 
parameters. After it learns about the plant, it takes 
its actions accordingly. 
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