
Journal of Theoretical and Applied Information Technology 
 10th May 2013. Vol. 51 No.1 

© 2005 - 2013 JATIT & LLS. All rights reserved.  
 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195 

 
32 

 

HIGH-DIMENSIONAL HIERARCHICAL OLAP : A PREFIX–
INDEX HIERARCHICAL CUBING APPROACH 

 
1KONGFA HU, 2ZHE SHENG, 3LING CHEN 

1 Prof., Department of Computer Science and Engineering, Yangzhou University, 225009,China 
2 Master , Department of Computer Science and Engineering, Yangzhou University, 225009,China 

3 Prof., Department of Computer Science and Engineering, Yangzhou University, 225009,China 
E-mail: kfhu05@126.com  

 
 

ABSTRACT 
 

The pre-computation of data cubes is critical for improving the response time of OLAP(online analytical 
processing) systems and accelerating data mining tasks in large data warehouses. However, as the sizes of 
data warehouses grow, the time it takes to perform this pre-computation becomes a significant performance 
bottleneck. In a high dimensional OLAP, it might not be practical to build all these cuboids and their 
indices. In this paper, we propose a multi-dimensional hierarchical cubing algorithm, Prefix-index 
hierarchical cubing, based on an extension of the previous minimal cubing approach. This method 
partitions the high dimensional data cube into low dimensional cube segments. Such an approach permits a 
significant reduction of CPU and I/O overhead. Experimental results show that the proposed method is 
significantly more efficient than other existing cubing methods. 

Keywords: Data cube, High dimensional OLAP, Prefix-Indexing cubing 
 
1. INTRODUCTION  
 

OLAP refers to the technologies that allow users 
to efficiently retrieve data from the data warehouse 
for decision support purposes [1]. A lot of research 
has been done in order to improve the OLAP query 
performance and to provide fast response times for 
queries on large data warehouses. A key issue to 
speed up the OLAP query processing is efficient 
indexing and materialization of data cubes [2,3,4]. 
Recently, many data cubing algorithms, such as 
BUC [5], H-cubing [6], quotient cubing [7], and 
star-cubing [8], have been proposed. 

A key challenge for efficient data cubing is that, 
in large data warehouse applications, data usually 
has a high dimensionality (e.g. more than 100 
dimensions) and each dimension has multiple 
hierarchy levels. Since data cube grows 
exponentially with the number of dimensions and 
number of hierarchy levels, it is generally too costly 
in both computation time and storage space to 
materialize a full high-dimensional data 
cube.Although some new algorithms, such as 
condensed cube [9], dwarf cube[10], or star cubes 
[8], can delay the explosion, they do not solve the 
fundamental problem[11]. The minimal cubing 
approach by Li and Han [11] can alleviate this 
problem, but it does not consider the dimension 
hierarchies and cannot efficiently handle OLAP 

queries. In this paper, we develop an efficient 
cubing algorithm that supports dimension 
hierarchies for high-dimensional data cubes and 
answers OLAP queries efficiently.  

The proposed cubing algorithm has the following 
salient features. 1) It supports not only high-
dimensional data cubes but also hierarchical data 
cubes with multiple levels in a dimension. 2) The 
decomposition of the data cube space leads to 
significant reduction of processing and I/O 
overhead for many queries by restricting the 
number of cube segments to be processed for both 
the fact table and bitmap indices. 3) The prefix 
bitmap index is designed to support efficient OLAP 
by allowing fast look-up of relevant tuples. 4) The 
proposed cubing algorithm supports parallel I/O, 
parallel processing, and load balancing among disks 
and processors.  

2. SHELL CUBE SEGMENTATION 
 

To illustrate the method ,a tiny warehouse, Table 
1, is used as a running example.  

For a cube of d dimensions, it will create 2d 
cuboids. If we consider the dimension hierarchies of 
each dimension, the cube will create 

1

( 1)
d

i
i

h
=

+∏  

cuboids (where ih  is the number of hierarchy 
levels of dimension Di). For example, the cube in 
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Table 1 has three dimensions: DimProduct, 
DimRegion and DimTime. The DimProduct 
dimension has three hierarchies as 
(Class,Item,Product), the DimRegion dimension has 
three hierarchies as (Country,Province,City),and the 
DimTime dimension has three hierarchies as 
(Year,Month,Day). Therefore, this cube with three 
dimensions will generate in total 

1

( 1) (3 1) (3 1)*(3 1) 64
d

i
i

h
=

+ = + ∗ + + =∏  cuboids such 

as 
{(Product,City,Day),(Product,City,Month),(Product
,City,Year), (Product,City,All) ,..., (All,All,All)}. 
But in a high-dimensional warehouse, there is a 
substantial I/O overhead for accessing a fully 
materialized data cube. 

Table 1.  A  Sample Warehouse 

Class Item Product Country Province City Year Month Day Count SaleNum
1 Class1 Item1 Exploder China Jiangsu Nanjing 2010 1 1 1 20
2 Class1 Item1 Exploder China Jiangsu Nanjing 2010 1 2 1 60
3 Class1 Item1 Exploder China Jiangsu Yangzhou 2010 1 2 1 40
4 Class1 Item1 Exploder China Jiangsu Yangzhou 2010 1 3 1 20
... ... ... ... ... ... ... ... ... ... ... ...

367 Class1 Item1 Exploder China Jiangsu Nanjing 2011 1 2 1 60
... ... ... ... ... ... ... ... ... ... ... ...

Measure TID DimProduct DimRegion DimTime

A partial solution which has been implemented in 
some commercial data warehouses is to compute a 
thin shell cube. For example, one might compute all 
the cuboids with 3 dimensions or less in a 30-
dimension data cube. There are two disadvantages 
of this approach. First, it still needs to compute 

1
30

2
30

3
30 CCC ++ = 4525 cuboids if there is no 

hierarchies and it needs to compute 

2h*(
1
30

2
30

3
30 CCC ++ )=23*4525=36200 cuboids 

when each dimension has h=3 levels dimension 
hierarchies. Second, it does not support OLAP in a 
large portion of the high-dimensional cube space. 

In this paper, we propose an orthogonal way to 
partition the cube space. We partition all the 
dimensions of a cube into subsets called the cube 
segments. For example, for a warehouse of 30 
dimensions, D1, D2,...,D30, we first partition the 30 
dimensions into 10 Cube segments of size 3: 
(D1,D2,D3), (D4,D5,D6),...,(D28,D29,D30). For each 
cube segment, we compute its full data cube. For 
example, in Cube segment(D1,D2,D3),we compute 
the eight 
cuboids:{(D1,D2,D3),(D1,D2,All),(D1,All,D3),(All,
D2,D3), 
(D1,All,All),(All,D2,All),(All,All,D3),(All,All,All)}
. If we consider that each dimension of the 3-D 
cube (D1,D2,D3) has three hierarchy levels as 
D1( 1 1 1

1 2 3, ,L L L ),D2( 2 2 2
1 2 3, ,L L L ), D3( 3 3 3

1 2 3, ,L L L ), we will 
compute 64 cuboids:{( 1 2 3

3 3 3, ,L L L ), ( 1 2 3
3 3 2, ,L L L ) 

,...,(All,All,All)}. 

The benefit of this model can be seen by a simple 
calculation. For a cube of 30 dimensions without 
hierarchy, if we partition it into 10 segments, each 
with 3 dimensions, each segment will have 8 

cuboids and there are only 8×10 = 80 cuboids to be 
computed. If each dimension has three hierarchy 
levels, then each segment will have 64 cuboids as 
shown above, and there are in total 64×10 = 640 
cuboids to be computed. Comparing this to the 
36200 cuboids needed by the shell cube technique, 
the savings in cubing time and space are significant.  

Lemma 1. Given a warehouse of T tuples and d 
dimensions, the entire shell Cube segment will 
create 

1
* /

f
i
f

i
C d f

=
  ∑ =( 2 /f d f∗    ) cuboids and 

needs O(T*
1

* /
f

i
f

i
C d f

=
  ∑ )=O(T* ( 2 /f d f∗    )) 

storage space, while the partial cube will create 

∑
=

f

i

i
dC

1 cuboids and needs O(T* 
∑
=

f

i

i
dC

1 ) storage 
space, and the full cube will create 2d cuboids and 
needs O(|T|*2d) storage space. 

Rational. In the shell Cube segment method, the 
cube  partition into /d f    cube segments. For each 

cube segment will create 1
fC  cuboids of 1-

dimension, 2
fC  cuboids of 2-dimension,..., f

fC  
cuboids of f-dimension and one cuboid(All,All, 
...,All). Thus each cube segments will create 

( 1 2 1f
f f fC C C+ + + + ) =

1

f
i
f

i
C

=
∑  cuboids. So the 

entire shell Cube segment will create 

1
* /

f
i
f

i
C d f

=
  ∑ =( 2 /f d f∗    ) cuboids and needs 

O(T*
1

* /
f

i
f

i
C d f

=
  ∑ )= O(T*( 2 /f d f∗    )) space. 
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In partial cube, we select f dimensions from the d 
dimensions to create the partial cube . It will create 

1
dC  cuboids of 1-dimension, 

2
dC  cuboids of 2-

dimension,...,
f

dC  cuboids of f-dimension. Thus the f 

partial cube will create 
f

ddd CCC +++ 21
= ∑

=

f

i

i
dC

1  

cuboids and needs O(T*∑=
f

i

i
dC

1 ) storage space. 

In full cube, for each dimension D, the dimension 
of its aggregate cuboids is D or All. For every 
dimension {D1,...,Dd}, the dimension of its 
aggregate cuboids is chosen form the 2-values 
{Di,All}. So for the entire full cube, it will create 

1

2
d

i=
∏ =2d cuboids and needs O(|T|*2d) storage space. 

Lemma 2. If we consider each dimension has h 
hierarchies, our prefix-index cubing method will 
create 

1

( 1)* /
f

i
i

h d f
=

+   ∏ =( ( 1) /fh d f+ ∗    ) 

cuboids, while the minimal cubing method of Li’s 
and Han’s will create 

1 1
( )* /

i

i

hf
i j
f h

i j
C C d f

= =
  ∑ ∑  

=( ( )2 * /f h d f+    ) cuboids. 

Rational.  In prefix-index cubing method, each 
dimension Di has hi hierarchies, the dimension 
hierarchies of its aggregate cuboids is chosen form 

the (hi+1)-values {
i
h

ii LLL ,,, 21  ,All}. So it will 

create 
1

( 1)* /
f

i
i

h d f
=

+   ∏ =(  fdh f /)1( ∗+ ) cuboids. 

In the minimal cubing method, the cube  partition 
into  fd /  cube segments. For each cube segments 

will create 
∑
=

f

i

i
fC

1  cuboids for the f dimensions cube 
segments. For each dimensions of these cube 

segments have hi hierarchies  and create 
∑
=

i

i

h

j

j
hC

1  
dimensional  hierarchy cuboids. So the entire 
minimal cubing will create 

1 1
( )* /

i

i

hf
i j
f h

i j
C C d f

= =
  ∑ ∑  

=( ( )2 * /f h d f+    ) cuboids. 

3. PREFIX BITMAP INDEXING 
 

As we will see, our multi-dimensional 
fragmentation permits eliminating some bitmaps, 
thus improving storage and access overhead. We 
propose this novel hierarchical encoding on each 

dimension table. The encoding is implemented 
through the assignment of a special surrogate key 
on each dimension table tuple, called dimension 
hierarchical encoding.We can create the 
DimRegion,DimTime and DimProduct dimension 
hierarchy encoding shown in Table 2,Table3 and 
Table4. 

Table 2. Dimtime Dimension Hierarchy Encoding 
TimeID Year Month Day BTimeID 

 yyy mmmm ddddd yyymmmmddddd 
1 2010 Jan 1 001000100001 
2 2010 Jan 2 001000100010 
3 2010 Jan 3 001000100011 
... ... ... ... ... 

 
Table 3. The Dimregion Dimension Hierarchy Encoding 

RegionI
D Country Provinc

e City BRegionID 

 uuuuuuu vvvvv cccc uuuuuuuvvvvvcccc 
1 China Jiangsu Nanjing 0000001000010001 
2 China Jiangsu Yangzhou 0000001000010010 
... ... ... ... ... 

 
Table 4. The Dimproduct Dimension Hierarchy Encoding 

ProductID Class Item Product BProductID 
 gggg aaaaa ppppppp ggggaaaaappppppp 

1 Class1 Item1 Exploder 00100001000000  
2 Class1 Item1 Detonator 00100001000001  
... ... ... ... ... 

 
Lemma 3. Our prefix-index cubing method needs 

O(T* ( 1) /fh d f+ ∗    )* 2log m   /8) storage space, 
while the minimal cubing method of Li’s and Han’s 
needs O(T*( ( )2 * /f h d f+    )* 10log m   ) storage 
space. 

Rational.  In prefix-index cubing method , the 
member of each dimension needs  m2log  bits 
dimension hierarchical encoding. So the storage 
space of prefix-index cubing method needs 

O(T*(  fdh f /)1( ∗+ )*  m2log /8) bytes. In the 
minimal cubing method , the member of each 

dimension needs  m10log  integer indices. So the 
storage space of the minimal cubing needs 
O(T*( ( )2 * /f h d f+    )

10log m   *) bytes. 

By using dimension hierarchical encoding, we 
can register a list of tuples IDs (tids) associated 
with the dimension members for each dimension. 
For example, the TID list associated with the 
DimProduct , DimRegion and DimTime dimension 
are shown in Table 5, Table 6 and Table 7 in turn. 
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To compute a data cube for this database with the 
measure avg() (obtained by sum()/count()), we need 
to have a tid-list for each cell: {tid1,..., tidn}. 
Because each tid is uniquely associated with a 
particular set of measure values, all future 
computations just need to fetch the measure values 
associated with the tuples in the list. In other words, 
by keeping an array of the ID-measures in memory 
for online processing, one can handle any complex 
measure computation.Table 8 shows what exactly 
should be kept, which is substantially smaller than 
the database itself. 

Table 5. Dimproduct Dimension TID 
BProductID TID List 

0001000010000001 1-2-3-4-367 
... ... 

 
Table 6. Dimregion Dimension TID 

BRegionID TID List 
0000001000010001 1-2-367 
0000001000010010 3-4 

... ... 
 

Table 7. Dimtime Dimension TID 
BTimeID TID List 

001000100001 1 
001000100010 2-3 
001000100011 4 

... ... 
 

Table 8. TID- Measure Array Of Table 2 
tid Count SaleNum 
1 1 20 
2 1 60 
3 1 40 
4 1 20 
... ... ... 

 
4. PARALLEL HIERARCHICAL 

AGGREGATION ALGORITHM  
 
4.1  Parallel Construction of Shell Cube 

Segments  
The data cube can be distributed across a set of 

parallel computers by parallel constructing the Cube 
segments. Therefore, for the end-user and other 
potential applications, we consider this data cube as 
one large virtual cube, which is distributed across a 
set of parallel computers, which manage the 
creation, updates and querying of the associated 
cube portions. To develop appropriate scheduling  

mechanisms for these management tasks, we 
consider that the virtual cube is split into several 
smaller parts, called Cube segments. But a Cube 
segment could furthermore also be split into smaller 
segments and so on, till we achieve the level of 
chunks. They can then be assigned to parallel 
computers, having sequential or parallel computing 
power, which are responsible for their management. 
The algorithm for shell prefix cube segment parallel 
computation can be summarized as follows. 

Algorithm 1 (Parallel computation of cube 
segments) 

Input: A base cuboid BC of n dimensions:(D1; ... 
;Dn). 

Output: (1) A set of Cube segment partitions 
{P1;..., Pk} and their corresponding (local)  Cube 
segments {CS1; ... ; CSk}, where Pi represents 
some set of dimension(s) and P1  ...  Pk are all 
the n dimensions, and (2) an ID measure array if the 
measure is not tuple-count such as {sum, avg}. 

{ partition the set of dimensions :(D1; ... ;Dn) into a set 
of k Cube segments {P1;..., Pk}; 

scan base cuboid BC once and do the following with 
parallel processing 

{ insert each <tid, measure> into ID-measure 
array; 

for each attribute value ai of each dimension Di 
build an dimension hierarchy encoding index 

entry: <B: TID  list>;} 
parallel processing all segment partition Pi as 

follows 
build a local  Cube segments CSi by intersecting 

their corresponding tid-lists and computing their 
measures;} 
We can parallel construct the high dimensional 

cube with the Cube segments parallel construction. 
The system architecture of these shell Cube 
segment parallel construction is shown in Figure 1. 

The Cube Constructor reads one tuple after the 
other, passes over the items to the index warehouse, 
retrieves its global index and then passes the (raw) 
measure and its associated global index to the data 
cube structure. The Querying Cube operator is 
some kind of highly sophisticated, recursively 
nested loops for aggregation of measures. Because 
the number of computational operations of nested 
aggregation depends on the size of the dimensions 
and thereby on the order in which dimensions are 
aggregated, the engine uses a kind of query plan 
optimization to select dimensions in a “good” way.  
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Fig. 1. The System Architecture of Parallel Construction of Shell Cube Segments 

 
 

4.2  Efficient OLAP query handling 
Based on the bitmap indexing, we can efficiently 

retrieve the matching hierarchy levels of each 
dimension, evaluate the set of query ranges for each 
dimension, and improve the efficiency of OLAP 
queries. A key property of our encoding is that it is 
a prefix indexing scheme that allows one to quickly 
retrieve a path prefix for each dimension. 

The path prefix of the member 
i
kd  of the 

hierarchy level 
i
jL

 is defined as 

DMPrefixpath(DTree,
i
kd )= 

1
ij=∪

DMPrefixpath(DTree,Parent(
j

kd ))={ 

Ancestor(
i
kd )}, where  Ancestor(

i
kd ) is the all 

ancestors of the member 
i
kd  according to its 

dimension hierarchy tree. The encoding prefix of 

the member 
i
kd  is defined as Bprefix(B

i
kd ,

i
mL 1− )= 

B
i
kd >>∑ =

j

ml (Bit
i
lL ), where m={1, ...,j}.  

By using encoding prefix, we can register the 
dimension hierarchy encoding and its TID list for 
every dimension hierarchy for each dimension. For 
example, the dimension hierarchy encoding and its 
TID list associated with the dimension hierarchies 
Month and Province are shown in Table 9, and so 
on. 

For each fragment, we compute the complete 
data cube by intersecting the TID-lists in the 
dimension and its hierarchies in a bottom-up 
depths-first order in the cuboid lattice (as seen in 
[8]). For example, to compute the cell 

{0001000010000001, 0000001000010001, 
0010001}, we intersect the TID lists of BProductID 
=0001000010000001, BRegionID 
=0000001000010001, and Bprefix(BTimeID,Month)= 
0010001 to get a new list of {1,2}. The algorithm 
of efficient OLAP query  can be summarized as 
follows. 

 
Table 9. Month hierarchy encoding Prefix AND its 

TID 
BTimeID Bprefix(BTimeID,Month) TID List 

001000100001 0010001 1-2-3-4 
001000100010   
001000100011   

... ... ... 
010000100001 0100001 367 

... ... ... 
Algorithm 2 (OLAP Query)  
Input: A set of precomputed shell Cube 

Segments for partitions {P1,..., Pk}; an TID 
measure array; and a OLAP query 
Q<a1,...,an,M>.(The ai is attribute for the dimension 
A i and M is the measure of the query.) 

Output: The computed measure 

{ ascertain all Cube Segment CSi according as 
the each dimension attribute of the query 
Q<a1,...,an,M>; 

for each CSi 

 { compare the CSi with query 
Q<a1,...,an,M> using the Lattice and find 
the all dimension Di of CSi∩{a1,...,an} 
with parallel processing; 

compute the TID List of the all BCi  cells 
of CSi∩{a1,...,an} in Di and its aggregate 
Cuboids; 

Cube Segment 1 
 D1 D2 D3 

D1D2 D2D3 D1D3 

D1D2D3 P1 

Cube Segment m 
 D3m-2 D3m-1 D3m 

D3m-2D3m-1 

D3m-2D3m-1D3m 

D3m-1D3m D3m-2D3m 

Pm 

Warehouse Cube  
Constructor Cube Index  Cube 

Operator  
OLAP 
Query 

Connection handling 

… 
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intersect the TID List of th BCi  and 
compute the query result set RQ{TID 
List}; 

compute the aggregate with each TID of 
the TID-measure array from the set 
RQ{TID List};}} 

This method uses the small dimension 
hierarchical encoding and their prefix path, so it can 
rapidly retrieve the matching dimension member 
hierarchical encoding and evaluate the set of query 
ranges for each dimension. It rapidly aggregated the 
clustered fact data that is clusteringly stored by the 
dimension hierarchical encoding, so that it can 
drastically reduce the multi-table join effort and so 
much as could remove completely one or more join 
operations. As a result, the algorithm can greatly 
reduce the disk I/Os and highly improve the 
efficiency of OLAP queries. 

5. PERFORMANCE STUDY 
 

There are two major costs associated with our 
proposed method: (1) the cost of storing the shell 
fragment prefix-index cubes and their intelligent 
dimension hierarchical encoding, and (2) the cost of 
retrieving dimension hierarchical encoding and 
computing the queries online. In this section, we 
perform a thorough analysis of these costs. In our 
experimentation we generated a large number of 
synthetic data sets which in terms of the following 
parameters: d— number of dimensions, ih — 
number of hierarchy levels of dimension Di, m— 
maximum number of distinct members of the 
hierarchy i

jL , T—number of tuples , f — size of 
the shell cube segment.All experiments were 
conducted on an Intel Pentium IV 2.8 GHz system 
with 512MB main memory , running Microsoft 
Windows-XP Server.  

The performance results of prefix-index cubing 
and the minimal cubing of Li’s and Han’s[11] are 
reported from Fig. 2 to Fig. 5. Fig. 2 shows the 
storage size of the two methods on the cube had 
T=106 tuples and h =1 level hierarchy and with 
shell fragment size f=3 , and the storage size of the 
two methods on the cube had h=3 levels hierarchies 
is shown in the Fig. 3. Fig. 4 shows the average I/O 
page access for online query of the two methods on 
the cube had different levels of hierarchy and with 
shell fragment size f=3 and T=106 tuples. Fig. 5 
shows the average I/Os of prefix-index cubing 
method with different dimensions . 
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Fig. 2. Storage size of shell segment with h=1 
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Fig. 3. Storage size of shell segment with h=3 
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Fig. 4. Average I/Os with f=3 and d=10 
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Fig. 5. Average I/Os with f=3 of prefix-index cubing 

6. CONCLUSION 
 

Data cube has been playing an essential role in 
fast OLAP in many multi-dimensional data 
warehouses. The pre-computation of data cubes is 
critical to improving the response time of OLAP 
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systems and accelerating data mining tasks in large 
data warehouses. But in a high-dimensional 
hierarchical OLAP, it might not be practical to 
build all these cuboids and their indices In this 
paper, we propose a multi-dimensional hierarchical 
cubing algorithm, Prefix-index hierarchical cubing. 
It partitions a high dimensional cube into a set of 
disjoint low dimensional cubes. OLAP queries are 
computed online by dynamically constructing the 
cuboids from these cube segments. The analytical 
and experimental results show that proposed Prefix-
index hierarchical cubing algorithm is significantly 
more efficient in time and space than the other 
leading cubing methods. 
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