
Journal of Theoretical and Applied Information Technology
 10th May 2013. Vol. 51 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

32

HIGH-DIMENSIONAL HIERARCHICAL OLAP : A PREFIX–
INDEX HIERARCHICAL CUBING APPROACH

1KONGFA HU, 2ZHE SHENG, 3LING CHEN

1 Prof., Department of Computer Science and Engineering, Yangzhou University, 225009,China
2 Master , Department of Computer Science and Engineering, Yangzhou University, 225009,China

3 Prof., Department of Computer Science and Engineering, Yangzhou University, 225009,China
E-mail: kfhu05@126.com

ABSTRACT

The pre-computation of data cubes is critical for improving the response time of OLAP(online analytical
processing) systems and accelerating data mining tasks in large data warehouses. However, as the sizes of
data warehouses grow, the time it takes to perform this pre-computation becomes a significant performance
bottleneck. In a high dimensional OLAP, it might not be practical to build all these cuboids and their
indices. In this paper, we propose a multi-dimensional hierarchical cubing algorithm, Prefix-index
hierarchical cubing, based on an extension of the previous minimal cubing approach. This method
partitions the high dimensional data cube into low dimensional cube segments. Such an approach permits a
significant reduction of CPU and I/O overhead. Experimental results show that the proposed method is
significantly more efficient than other existing cubing methods.

Keywords: Data cube, High dimensional OLAP, Prefix-Indexing cubing

1. INTRODUCTION

OLAP refers to the technologies that allow users
to efficiently retrieve data from the data warehouse
for decision support purposes [1]. A lot of research
has been done in order to improve the OLAP query
performance and to provide fast response times for
queries on large data warehouses. A key issue to
speed up the OLAP query processing is efficient
indexing and materialization of data cubes [2,3,4].
Recently, many data cubing algorithms, such as
BUC [5], H-cubing [6], quotient cubing [7], and
star-cubing [8], have been proposed.

A key challenge for efficient data cubing is that,
in large data warehouse applications, data usually
has a high dimensionality (e.g. more than 100
dimensions) and each dimension has multiple
hierarchy levels. Since data cube grows
exponentially with the number of dimensions and
number of hierarchy levels, it is generally too costly
in both computation time and storage space to
materialize a full high-dimensional data
cube.Although some new algorithms, such as
condensed cube [9], dwarf cube[10], or star cubes
[8], can delay the explosion, they do not solve the
fundamental problem[11]. The minimal cubing
approach by Li and Han [11] can alleviate this
problem, but it does not consider the dimension
hierarchies and cannot efficiently handle OLAP

queries. In this paper, we develop an efficient
cubing algorithm that supports dimension
hierarchies for high-dimensional data cubes and
answers OLAP queries efficiently.

The proposed cubing algorithm has the following
salient features. 1) It supports not only high-
dimensional data cubes but also hierarchical data
cubes with multiple levels in a dimension. 2) The
decomposition of the data cube space leads to
significant reduction of processing and I/O
overhead for many queries by restricting the
number of cube segments to be processed for both
the fact table and bitmap indices. 3) The prefix
bitmap index is designed to support efficient OLAP
by allowing fast look-up of relevant tuples. 4) The
proposed cubing algorithm supports parallel I/O,
parallel processing, and load balancing among disks
and processors.

2. SHELL CUBE SEGMENTATION

To illustrate the method ,a tiny warehouse, Table
1, is used as a running example.

For a cube of d dimensions, it will create 2d
cuboids. If we consider the dimension hierarchies of
each dimension, the cube will create

1

(1)
d

i
i

h
=

+∏

cuboids (where ih is the number of hierarchy
levels of dimension Di). For example, the cube in

http://www.jatit.org/
mailto:kfhu05@126.com

Journal of Theoretical and Applied Information Technology
 10th May 2013. Vol. 51 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

33

Table 1 has three dimensions: DimProduct,
DimRegion and DimTime. The DimProduct
dimension has three hierarchies as
(Class,Item,Product), the DimRegion dimension has
three hierarchies as (Country,Province,City),and the
DimTime dimension has three hierarchies as
(Year,Month,Day). Therefore, this cube with three
dimensions will generate in total

1

(1) (3 1) (3 1)*(3 1) 64
d

i
i

h
=

+ = + ∗ + + =∏ cuboids such

as
{(Product,City,Day),(Product,City,Month),(Product
,City,Year), (Product,City,All) ,..., (All,All,All)}.
But in a high-dimensional warehouse, there is a
substantial I/O overhead for accessing a fully
materialized data cube.

Table 1. A Sample Warehouse

Class Item Product Country Province City Year Month Day Count SaleNum
1 Class1 Item1 Exploder China Jiangsu Nanjing 2010 1 1 1 20
2 Class1 Item1 Exploder China Jiangsu Nanjing 2010 1 2 1 60
3 Class1 Item1 Exploder China Jiangsu Yangzhou 2010 1 2 1 40
4 Class1 Item1 Exploder China Jiangsu Yangzhou 2010 1 3 1 20
...

367 Class1 Item1 Exploder China Jiangsu Nanjing 2011 1 2 1 60
...

Measure TID DimProduct DimRegion DimTime

A partial solution which has been implemented in
some commercial data warehouses is to compute a
thin shell cube. For example, one might compute all
the cuboids with 3 dimensions or less in a 30-
dimension data cube. There are two disadvantages
of this approach. First, it still needs to compute

1
30

2
30

3
30 CCC ++ = 4525 cuboids if there is no

hierarchies and it needs to compute

2h*(
1
30

2
30

3
30 CCC ++)=23*4525=36200 cuboids

when each dimension has h=3 levels dimension
hierarchies. Second, it does not support OLAP in a
large portion of the high-dimensional cube space.

In this paper, we propose an orthogonal way to
partition the cube space. We partition all the
dimensions of a cube into subsets called the cube
segments. For example, for a warehouse of 30
dimensions, D1, D2,...,D30, we first partition the 30
dimensions into 10 Cube segments of size 3:
(D1,D2,D3), (D4,D5,D6),...,(D28,D29,D30). For each
cube segment, we compute its full data cube. For
example, in Cube segment(D1,D2,D3),we compute
the eight
cuboids:{(D1,D2,D3),(D1,D2,All),(D1,All,D3),(All,
D2,D3),
(D1,All,All),(All,D2,All),(All,All,D3),(All,All,All)}
. If we consider that each dimension of the 3-D
cube (D1,D2,D3) has three hierarchy levels as
D1(1 1 1

1 2 3, ,L L L),D2(2 2 2
1 2 3, ,L L L), D3(3 3 3

1 2 3, ,L L L), we will
compute 64 cuboids:{(1 2 3

3 3 3, ,L L L), (1 2 3
3 3 2, ,L L L)

,...,(All,All,All)}.

The benefit of this model can be seen by a simple
calculation. For a cube of 30 dimensions without
hierarchy, if we partition it into 10 segments, each
with 3 dimensions, each segment will have 8

cuboids and there are only 8×10 = 80 cuboids to be
computed. If each dimension has three hierarchy
levels, then each segment will have 64 cuboids as
shown above, and there are in total 64×10 = 640
cuboids to be computed. Comparing this to the
36200 cuboids needed by the shell cube technique,
the savings in cubing time and space are significant.

Lemma 1. Given a warehouse of T tuples and d
dimensions, the entire shell Cube segment will
create

1
* /

f
i
f

i
C d f

=
  ∑ =(2 /f d f∗   ) cuboids and

needs O(T*
1

* /
f

i
f

i
C d f

=
  ∑)=O(T* (2 /f d f∗   ))

storage space, while the partial cube will create

∑
=

f

i

i
dC

1 cuboids and needs O(T*
∑
=

f

i

i
dC

1) storage
space, and the full cube will create 2d cuboids and
needs O(|T|*2d) storage space.

Rational. In the shell Cube segment method, the
cube partition into /d f   cube segments. For each

cube segment will create 1
fC cuboids of 1-

dimension, 2
fC cuboids of 2-dimension,..., f

fC
cuboids of f-dimension and one cuboid(All,All,
...,All). Thus each cube segments will create

(1 2 1f
f f fC C C+ + + +) =

1

f
i
f

i
C

=
∑ cuboids. So the

entire shell Cube segment will create

1
* /

f
i
f

i
C d f

=
  ∑ =(2 /f d f∗   ) cuboids and needs

O(T*
1

* /
f

i
f

i
C d f

=
  ∑)= O(T*(2 /f d f∗   )) space.

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 10th May 2013. Vol. 51 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

34

In partial cube, we select f dimensions from the d
dimensions to create the partial cube . It will create

1
dC cuboids of 1-dimension,

2
dC cuboids of 2-

dimension,...,
f

dC cuboids of f-dimension. Thus the f

partial cube will create
f

ddd CCC +++ 21
= ∑

=

f

i

i
dC

1

cuboids and needs O(T*∑=
f

i

i
dC

1) storage space.

In full cube, for each dimension D, the dimension
of its aggregate cuboids is D or All. For every
dimension {D1,...,Dd}, the dimension of its
aggregate cuboids is chosen form the 2-values
{Di,All}. So for the entire full cube, it will create

1

2
d

i=
∏ =2d cuboids and needs O(|T|*2d) storage space.

Lemma 2. If we consider each dimension has h
hierarchies, our prefix-index cubing method will
create

1

(1)* /
f

i
i

h d f
=

+   ∏ =((1) /fh d f+ ∗   )

cuboids, while the minimal cubing method of Li’s
and Han’s will create

1 1
()* /

i

i

hf
i j
f h

i j
C C d f

= =
  ∑ ∑

=(()2 * /f h d f+   ) cuboids.

Rational. In prefix-index cubing method, each
dimension Di has hi hierarchies, the dimension
hierarchies of its aggregate cuboids is chosen form

the (hi+1)-values {
i
h

ii LLL ,,, 21  ,All}. So it will

create
1

(1)* /
f

i
i

h d f
=

+   ∏ =( fdh f /)1(∗+) cuboids.

In the minimal cubing method, the cube partition
into  fd / cube segments. For each cube segments

will create
∑
=

f

i

i
fC

1 cuboids for the f dimensions cube
segments. For each dimensions of these cube

segments have hi hierarchies and create
∑
=

i

i

h

j

j
hC

1
dimensional hierarchy cuboids. So the entire
minimal cubing will create

1 1
()* /

i

i

hf
i j
f h

i j
C C d f

= =
  ∑ ∑

=(()2 * /f h d f+   ) cuboids.

3. PREFIX BITMAP INDEXING

As we will see, our multi-dimensional
fragmentation permits eliminating some bitmaps,
thus improving storage and access overhead. We
propose this novel hierarchical encoding on each

dimension table. The encoding is implemented
through the assignment of a special surrogate key
on each dimension table tuple, called dimension
hierarchical encoding.We can create the
DimRegion,DimTime and DimProduct dimension
hierarchy encoding shown in Table 2,Table3 and
Table4.

Table 2. Dimtime Dimension Hierarchy Encoding
TimeID Year Month Day BTimeID

 yyy mmmm ddddd yyymmmmddddd
1 2010 Jan 1 001000100001
2 2010 Jan 2 001000100010
3 2010 Jan 3 001000100011
...

Table 3. The Dimregion Dimension Hierarchy Encoding

RegionI
D Country Provinc

e City BRegionID

 uuuuuuu vvvvv cccc uuuuuuuvvvvvcccc
1 China Jiangsu Nanjing 0000001000010001
2 China Jiangsu Yangzhou 0000001000010010
...

Table 4. The Dimproduct Dimension Hierarchy Encoding

ProductID Class Item Product BProductID
 gggg aaaaa ppppppp ggggaaaaappppppp

1 Class1 Item1 Exploder 00100001000000
2 Class1 Item1 Detonator 00100001000001
...

Lemma 3. Our prefix-index cubing method needs

O(T* (1) /fh d f+ ∗   )* 2log m   /8) storage space,
while the minimal cubing method of Li’s and Han’s
needs O(T*(()2 * /f h d f+   )* 10log m  ) storage
space.

Rational. In prefix-index cubing method , the
member of each dimension needs  m2log bits
dimension hierarchical encoding. So the storage
space of prefix-index cubing method needs

O(T*( fdh f /)1(∗+)*  m2log /8) bytes. In the
minimal cubing method , the member of each

dimension needs  m10log integer indices. So the
storage space of the minimal cubing needs
O(T*(()2 * /f h d f+   )

10log m   *) bytes.

By using dimension hierarchical encoding, we
can register a list of tuples IDs (tids) associated
with the dimension members for each dimension.
For example, the TID list associated with the
DimProduct , DimRegion and DimTime dimension
are shown in Table 5, Table 6 and Table 7 in turn.

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 10th May 2013. Vol. 51 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

35

To compute a data cube for this database with the
measure avg() (obtained by sum()/count()), we need
to have a tid-list for each cell: {tid1,..., tidn}.
Because each tid is uniquely associated with a
particular set of measure values, all future
computations just need to fetch the measure values
associated with the tuples in the list. In other words,
by keeping an array of the ID-measures in memory
for online processing, one can handle any complex
measure computation.Table 8 shows what exactly
should be kept, which is substantially smaller than
the database itself.

Table 5. Dimproduct Dimension TID
BProductID TID List

0001000010000001 1-2-3-4-367
... ...

Table 6. Dimregion Dimension TID

BRegionID TID List
0000001000010001 1-2-367
0000001000010010 3-4

... ...

Table 7. Dimtime Dimension TID
BTimeID TID List

001000100001 1
001000100010 2-3
001000100011 4

... ...

Table 8. TID- Measure Array Of Table 2
tid Count SaleNum
1 1 20
2 1 60
3 1 40
4 1 20
...

4. PARALLEL HIERARCHICAL

AGGREGATION ALGORITHM

4.1 Parallel Construction of Shell Cube

Segments
The data cube can be distributed across a set of

parallel computers by parallel constructing the Cube
segments. Therefore, for the end-user and other
potential applications, we consider this data cube as
one large virtual cube, which is distributed across a
set of parallel computers, which manage the
creation, updates and querying of the associated
cube portions. To develop appropriate scheduling

mechanisms for these management tasks, we
consider that the virtual cube is split into several
smaller parts, called Cube segments. But a Cube
segment could furthermore also be split into smaller
segments and so on, till we achieve the level of
chunks. They can then be assigned to parallel
computers, having sequential or parallel computing
power, which are responsible for their management.
The algorithm for shell prefix cube segment parallel
computation can be summarized as follows.

Algorithm 1 (Parallel computation of cube
segments)

Input: A base cuboid BC of n dimensions:(D1; ...
;Dn).

Output: (1) A set of Cube segment partitions
{P1;..., Pk} and their corresponding (local) Cube
segments {CS1; ... ; CSk}, where Pi represents
some set of dimension(s) and P1  ... Pk are all
the n dimensions, and (2) an ID measure array if the
measure is not tuple-count such as {sum, avg}.

{ partition the set of dimensions :(D1; ... ;Dn) into a set
of k Cube segments {P1;..., Pk};

scan base cuboid BC once and do the following with
parallel processing

{ insert each <tid, measure> into ID-measure
array;

for each attribute value ai of each dimension Di
build an dimension hierarchy encoding index

entry: <B: TID list>;}
parallel processing all segment partition Pi as

follows
build a local Cube segments CSi by intersecting

their corresponding tid-lists and computing their
measures;}
We can parallel construct the high dimensional

cube with the Cube segments parallel construction.
The system architecture of these shell Cube
segment parallel construction is shown in Figure 1.

The Cube Constructor reads one tuple after the
other, passes over the items to the index warehouse,
retrieves its global index and then passes the (raw)
measure and its associated global index to the data
cube structure. The Querying Cube operator is
some kind of highly sophisticated, recursively
nested loops for aggregation of measures. Because
the number of computational operations of nested
aggregation depends on the size of the dimensions
and thereby on the order in which dimensions are
aggregated, the engine uses a kind of query plan
optimization to select dimensions in a “good” way.

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 10th May 2013. Vol. 51 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

36

Fig. 1. The System Architecture of Parallel Construction of Shell Cube Segments

4.2 Efficient OLAP query handling
Based on the bitmap indexing, we can efficiently

retrieve the matching hierarchy levels of each
dimension, evaluate the set of query ranges for each
dimension, and improve the efficiency of OLAP
queries. A key property of our encoding is that it is
a prefix indexing scheme that allows one to quickly
retrieve a path prefix for each dimension.

The path prefix of the member
i
kd of the

hierarchy level
i
jL

 is defined as

DMPrefixpath(DTree,
i
kd)=

1
ij=∪

DMPrefixpath(DTree,Parent(
j

kd))={

Ancestor(
i
kd)}, where Ancestor(

i
kd) is the all

ancestors of the member
i
kd according to its

dimension hierarchy tree. The encoding prefix of

the member
i
kd is defined as Bprefix(B

i
kd ,

i
mL 1−)=

B
i
kd >>∑ =

j

ml (Bit
i
lL), where m={1, ...,j}.

By using encoding prefix, we can register the
dimension hierarchy encoding and its TID list for
every dimension hierarchy for each dimension. For
example, the dimension hierarchy encoding and its
TID list associated with the dimension hierarchies
Month and Province are shown in Table 9, and so
on.

For each fragment, we compute the complete
data cube by intersecting the TID-lists in the
dimension and its hierarchies in a bottom-up
depths-first order in the cuboid lattice (as seen in
[8]). For example, to compute the cell

{0001000010000001, 0000001000010001,
0010001}, we intersect the TID lists of BProductID
=0001000010000001, BRegionID
=0000001000010001, and Bprefix(BTimeID,Month)=
0010001 to get a new list of {1,2}. The algorithm
of efficient OLAP query can be summarized as
follows.

Table 9. Month hierarchy encoding Prefix AND its

TID
BTimeID Bprefix(BTimeID,Month) TID List

001000100001 0010001 1-2-3-4
001000100010
001000100011

...
010000100001 0100001 367

...
Algorithm 2 (OLAP Query)
Input: A set of precomputed shell Cube

Segments for partitions {P1,..., Pk}; an TID
measure array; and a OLAP query
Q<a1,...,an,M>.(The ai is attribute for the dimension
A i and M is the measure of the query.)

Output: The computed measure

{ ascertain all Cube Segment CSi according as
the each dimension attribute of the query
Q<a1,...,an,M>;

for each CSi

 { compare the CSi with query
Q<a1,...,an,M> using the Lattice and find
the all dimension Di of CSi∩{a1,...,an}
with parallel processing;

compute the TID List of the all BCi cells
of CSi∩{a1,...,an} in Di and its aggregate
Cuboids;

Cube Segment 1
 D1 D2 D3

D1D2 D2D3 D1D3

D1D2D3 P1

Cube Segment m
 D3m-2 D3m-1 D3m

D3m-2D3m-1

D3m-2D3m-1D3m

D3m-1D3m D3m-2D3m

Pm

Warehouse Cube
Constructor Cube Index Cube

Operator
OLAP
Query

Connection handling

…

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 10th May 2013. Vol. 51 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

37

intersect the TID List of th BCi and
compute the query result set RQ{TID
List};

compute the aggregate with each TID of
the TID-measure array from the set
RQ{TID List};}}

This method uses the small dimension
hierarchical encoding and their prefix path, so it can
rapidly retrieve the matching dimension member
hierarchical encoding and evaluate the set of query
ranges for each dimension. It rapidly aggregated the
clustered fact data that is clusteringly stored by the
dimension hierarchical encoding, so that it can
drastically reduce the multi-table join effort and so
much as could remove completely one or more join
operations. As a result, the algorithm can greatly
reduce the disk I/Os and highly improve the
efficiency of OLAP queries.

5. PERFORMANCE STUDY

There are two major costs associated with our
proposed method: (1) the cost of storing the shell
fragment prefix-index cubes and their intelligent
dimension hierarchical encoding, and (2) the cost of
retrieving dimension hierarchical encoding and
computing the queries online. In this section, we
perform a thorough analysis of these costs. In our
experimentation we generated a large number of
synthetic data sets which in terms of the following
parameters: d— number of dimensions, ih —
number of hierarchy levels of dimension Di, m—
maximum number of distinct members of the
hierarchy i

jL , T—number of tuples , f — size of
the shell cube segment.All experiments were
conducted on an Intel Pentium IV 2.8 GHz system
with 512MB main memory , running Microsoft
Windows-XP Server.

The performance results of prefix-index cubing
and the minimal cubing of Li’s and Han’s[11] are
reported from Fig. 2 to Fig. 5. Fig. 2 shows the
storage size of the two methods on the cube had
T=106 tuples and h =1 level hierarchy and with
shell fragment size f=3 , and the storage size of the
two methods on the cube had h=3 levels hierarchies
is shown in the Fig. 3. Fig. 4 shows the average I/O
page access for online query of the two methods on
the cube had different levels of hierarchy and with
shell fragment size f=3 and T=106 tuples. Fig. 5
shows the average I/Os of prefix-index cubing
method with different dimensions .

0
100
200
300
400
500

10 20 30 40
number of dimensions

sto
ra

ge
 si

ze
(M

B) Minimal Cubing
Prefix-index Cubing

Fig. 2. Storage size of shell segment with h=1

0
500

1000
1500
2000
2500
3000

10 20 30
number of dimensions

sto
ra

ge
 si

ze
(M

B) Minimal Cubing
Prefix-index Cubing

Fig. 3. Storage size of shell segment with h=3

0
500

1000
1500
2000
2500
3000

1 2 3 4
level of dimension hierarchies

I/O
(p

ag
e

ac
ce

ss
) Minimal Cubing

Prefix-index Cubing

Fig. 4. Average I/Os with f=3 and d=10

0
500

1000
1500
2000
2500
3000

1 2 3 4
level of dimension hierarchies

I/O
(p

ag
e

ac
ce

ss
) D=10

D=20

Fig. 5. Average I/Os with f=3 of prefix-index cubing

6. CONCLUSION

Data cube has been playing an essential role in
fast OLAP in many multi-dimensional data
warehouses. The pre-computation of data cubes is
critical to improving the response time of OLAP

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 10th May 2013. Vol. 51 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

38

systems and accelerating data mining tasks in large
data warehouses. But in a high-dimensional
hierarchical OLAP, it might not be practical to
build all these cuboids and their indices In this
paper, we propose a multi-dimensional hierarchical
cubing algorithm, Prefix-index hierarchical cubing.
It partitions a high dimensional cube into a set of
disjoint low dimensional cubes. OLAP queries are
computed online by dynamically constructing the
cuboids from these cube segments. The analytical
and experimental results show that proposed Prefix-
index hierarchical cubing algorithm is significantly
more efficient in time and space than the other
leading cubing methods.

ACKNOWLEDGEMENTS

The research in the paper is supported by the
National Natural Science Foundation of China
under Grant No. 61070047, 61003180; the “Six
Talent Peaks Program” of Jiangsu Province of
China; the “333 Project” of Jiangsu Province of
China.

REFERENCES

[1] S. Chauduri, and U. Dayal, “An overview of

data warehousing and OLAP technology”,
SIGMOD Record, Vol. 26, No. 1,1997,pp. 65-
74.

[2] K. Wu, E. J. Otoo, and A. Shoshani, “A
performance comparison of bitmap indexes”,
Proceedings of the 10th International
Conference on Information and Knowledge
Management, ACM Press ,New York, NY,
2001, pp.559-561.

[3] H. Mistry, P. Roy, and S. Sudarshan,
“Materialized view selection and maintenance
using multi-query optimization”, Proceedings of
the 2001 ACM SIGMOD, ACM Press ,New
York, NY, 2001, pp. 307-318.

[4] J. Gray, S. Chaudhuri, A. Bosworth , A.
Layman, D. Reichart, M. Venkatrao, F. Pellow,
and H. Pirahesh. “Datacube: A relational
aggregation operator generalizing group-by,
cross-tab and subtotals”, Data Mining and
Knowledge Discovery, 1997, pp. 29-54.

[5] K. Beyer, and R. Ramakrishnan, “Bottom-up
computation of sparse and iceberg cubes”,
Proceedings of the 1999 ACM SIGMOD, ACM
Press ,New York, NY,1999, pp. 359-370.

[6] J. Han, J. Pei, G. Dong, and K. Wang, “Efficient
computation of iceberg cubes with complex
measures”, Proceedings of the 2001 ACM

SIGMOD , ACM Press ,New York, NY, 2001,
pp.1-12.

[7] L. V. S. Lakshmanan, J. Pei, and J, Han,
“Quotient cubes: how to summarize the
semantics of a data cube”, Proceedings of 28th
International Conference on Very Large Data
Bases, Morgan Kaufmann, San Fransisco, 2002,
pp. 778-789.

[8] D. Xin, J. Han , X. Li, and B. W Wah, “Star-
cubing:computing iceberg cubes by top-down
and bottom-up integration”, Proceedings of
29th International Conference on Very Large
Data Bases ,Morgan Kaufmann, San Fransisco,
2003, pp. 476-487.

[9] L. V. S. Lakshmanan, J. Pei, and Y. Zhao, “QC-
trees: An efficient summary structure for
semantic OLAP”, Proceedings of the 2003
ACM SIGMOD ,ACM Press ,New York, NY,
2003, pp. 64-75.

[10] Y. Sismanis, A. Deligiannakis, Y. Kotidis, and
N. Roussopoulos, “Hierarchical dwarfs for the
rollup cube”, Proceedings of 30th International
Conference on Very Large Data Bases, Morgan
Kaufmann, San Fransisco, 2004, pp. 540-551.

[11] X. Li, J. Han, and H. Gonzalez, “High-
dimensional OLAP: A minimal cubing
approach”, Proceedings of 30th International
Conference on Very Large Data Bases . Morgan
Kaufmann, San Fransisco, 2004, pp. 528-539.

http://www.jatit.org/

	4.1 Parallel Construction of Shell Cube Segments
	4.2 Efficient OLAP query handling

