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ABSTRACT 
 

An improved particle swarm optimization algorithm, which combines the idea of simulated annealing 
algorithm and opposition-based learning strategy, is presented for NP-hard protein structure prediction 
based on AB model. Flying grain is used to control the neighborhood structure of particle, so particle can 
search the global optimum in solution space more finely. An opposition-based learning is used to keep the 
diversity of swarm and improve the algorithm’s ability to escape from local optima. Furthermore, the 
Metropolis criterion of simulated annealing algorithm is used to balance the exploitation and exploration 
ability. Simulation results show that those strategies can improve the performance of the proposed 
algorithm effectively. 
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1. INTRODUCTION  
 

Protein structure prediction (PSP) problem is 
regarded as one of the oldest, most important, yet a 
highly challenging problem both for the biology 
and for the computational communities[1]. Solution 
of this problem would have an enormous impact on 
medicine and the pharmaceutical industry, since 
successful tertiary structure prediction, given only 
the amino acid sequence information, would allow 
the computational screening of potential drug 
targets. The main difficult of this problem is the 
computing complexity for finding the configuration 
with minimum energy. PSP methods must explore 
the space of possible protein structures which is 
astronomically large. Several models, such as 
hydrophobic/polar (HP) model[2] and off-lattice toy 
(AB) model[3], were proposed to simplify the 
structure of proteins. Despite the simplicity of HP 
model and AB model, both of them are NP-hard 
problem. Several heuristics algorithm have been 
successfully applied to AB model, such as 
simulated annealing (SA) algorithm[4], hybrid 
evolutionary algorithm[5], genetic annealing 
algorithm[6], quantum clonal selection algorithm[7], 
particle swarm optimization (PSO) algorithm[8-11]  
and differential evolution (DE) algorithm[12] etc. 

PSO algorithm is a stochastic population based 
optimization algorithm, first published by Kennedy 

and Eberhart in 1995[13, 14]. In PSO, each particle of 
the population has a position and a velocity, 
according to which it moves in the search space. 
Moreover, each particle has a memory, 
remembering the best position of the search space it 
has ever visited. Particles fly through hyper-
dimensional search space, with each particle being 
attracted towards the best solution found by the 
particle’s neighborhood and the best solution found 
by itself. For multi-dimensional function problem, 
classical PSO algorithm updates all dimensions’ 
data. This strategy may deteriorate PSO’s 
intensification ability because different dimensions 
may interfere with each other. In order to tackle the 
dimensions interference problem and to improve 
algorithm’s intensification ability, Zhong et al. 
proposed a novel PSO algorithm with iterative 
improvement strategy (PSOIIS) which updates and 
evaluates velocity and position dimension-by-
dimension[15]. Because different problem has 
different features, evaluating solution dimension-
by-dimension and greedy accepting strategy may 
drive particle into local optima quickly. In order to 
deal with this problem, this paper proposes an 
improved PSO algorithm, which is inspired by the 
idea of SA algorithm and Opposition-based 
Learning (OBL) strategy. In the proposed algorithm, 
flying grain (FG) is defined to control the 
neighborhood structure of particle, Metropolis 
criterion of SA algorithm is used to decide whether 
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to accept new velocity and position, and OBL is 
used to enhance the chance to escape from local 
optima. We analyze the performance of our 
algorithm on 2D PSP based on AB model. 

The remainder of this paper is organized as 
follows: Section 2 provides a short description of 
PSP problem based on 2D AB model and PSO 
algorithm. Section 3 presents our proposed PSO 
algorithm with Metropolis criterion and OBL 
strategy. Section 4 gives the experimental approach 
and results of experiments carried on a Fibonacci 
sequence and four real protein sequences. Finally, 
section 5 summaries the study. 

2. PRELIMINARIES 
 
2.1 Protein Structure Prediction Problem 

Although a protein is formed by a combination of 
20 possible standard amino acids, AB model 
incorporates only two “amino acids”, to be denoted 
by A and B, in place of the 20 that occur naturally. 
In 2D AB model, A represents hydrophobic amino 
acids and B represents hydrophilic amino acids. 
They are linked together by rigid unit-length 
(distance = 1) bonds to form linear unoriented 
polymers that reside in two dimensions. For any 
protein structure composed by N-monomers 
represented with the AB model, N-2 bend angles 
will be needed. These angles are defined in the 
range πθπ ≤≤− i . Figure 1 is the representation 
of a hypothetical protein composed by nine amino 
acids, each one bonded to the next in the chain. 

 

 

 

 

 

 

 

 

 

Figure 1:  Generic Representation Of A Hypothetic 9-
mers Protein Structure With Its Bended Angles 

The energy function for a protein structure with N 
monomers (N-mers) is given by equation (1):  
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This energy function postulates that two kinds of 
interactions compose the intermolecular potential 
energy for each molecule: Backbones bend 
potentials (V1) and non-bonded interactions (V2). 
The former is independent of the A, B sequence, 
while the latter vary with that sequence and will 
receive a contribution from each pair of residues 
not directly attached by a backbone bond. 

The backbone potential (V1) has a simple 
trigonometric form as follows: 

( ) )cos1(411 iiV θθ −⋅=                        (2) 

The residue pair interactions (V2) which only 
operate between unlinked residues possess a 
species-dependent Lennard-Jones form as follows: 
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where dij is the distance between residues i and j, 
and the discrete variables iξ  denote residue species 
as follows: 
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Therefore the coefficient ( )jiC ξξ ,  is +1 for an 
AA pair, +1/2 for a BB pair, and -1/2 for an AB pair. 
Consequently the first of these pairs may be 
regarded as strongly attracting, the second as 
weakly attracting, and the third as weakly repelling. 
This diversity mimics in a simple way that of real 
amino-acid residues, which vary in size, polarity, 
and degree of hydrophobicity. 

2.2 Particle Swarm Optimization Algorithm 
There are two variants of the PSO algorithm. One 

has a global neighbourhood, and the other has a 
local neighbourhood. In the global variant, each 
particle moves towards its best previous position 
and towards the best particle in the whole swarm. In 
the local variant, each particle moves towards its 
best previous position and towards the best particle 
in its specified neighbourhood. Suppose that the 
search space is N-dimensional, then the ith particle 
of the swarm can be represented by an N-
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dimensional vector, X i = (xi1, xi2, ..., xiN). The 
velocity of this particle, which represents the 
position change of this particle, can be represented 
by another N-dimensional vector V i = (vi1, vi2, ..., 
viN). The best previously visited position of the ith 
particle is denoted as P i = (pi1, pi2, …, piN). For the 
global variant, the best previously visited position 
of the swarm is G = (g1, g2, ..., gN), and let the 
superscripts denote the iteration number, then each 
particle is manipulated according to the following 
two equations: 
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where j =1, 2, ..., N; i =1, 2, ..., M, and M is the size 
of the swarm; w is called inertia weight, which is 
used to control the impact of the previous history of 
velocities on the current velocity, thus to influence 
the trade-off between global and local exploration 
abilities of the particle; c1, c2 are two positive 
constants, called cognitive and social parameter 
respectively; r1, r2 are random numbers, uniformly 
distributed in [0, 1]; and t =1, 2, ..., determines the 
iteration number. Equation (7) is used to calculate 
the particle’s new velocity according to its previous 
velocity and the distances of its current position 
from its own best previously visited position and 
the global best experience. Then the particle flies 
toward a new position according to equation (8). 
Parameter w, c1 and c2 control particle’s learning 
from its previous velocity, its history best position 
and the best position of its neighbors respectively. 

3. IMPROVED PSO ALGORITHM 
 

3.1 Flying Grain and Metropolis Criterion 
We define flying grain (FG) as the number of 

dimensions which particle updates using equation 
(7) and (8).  In a classical PSO algorithm, FG is 
equal to the dimension of problem. In PSOIIS 
algorithm, the FG is equal to 1.  After a particle has 
updated its velocity and position, classical PSO 
algorithm will accept the new velocity and position 
blindly, it means that the new values will be 
accepted always, regardless of whether they are 
better or worse than their original values.  In PSOIIS  
algorithm, greedy strategy is used to decide whether 
to accept the new values or not. It means only those 
better new values will be accepted. Greedy strategy 
may decrease the explorability, opposite velocity is 

introduced in PSOIIS to keep the diversity of swarm. 
Aims to get better balance between explorability 
and exploitability, we try to find a suitable FG for 
PSP problem based on AB model. And we use the 
Metropolis criterion of SA algorithm to decide 
whether to accept the new velocity and position or 
not. It means that particle will accept better 
solutions unconditionally, and it will accept those 
worse solutions with a probability. Suppose the 
energy difference between new solution and old 
solution is ∆E and the current temperature is t，the 
accepting probability is equal to )/(- tE∆exp . 

3.2 Opposition Rotation Based Learning 
Even though the Metropolis criteria, which 

allows particle to accept worse solutions, can 
enhance the explorability of PSO algorithm, flying 
to particle’s best position and the global best 
position may move all particle to local optima 
easily and decrease the diversity of swarm quickly. 
Aims to overcome this shortage and consider that 
for PSP problem, each data x represents an angle θ 
in the range [-π, π], we propose a novel OBL 
strategy, named as opposition-rotation-based 
learning (ORBL). Suppose the current position is x 
and personal best position is p, particle will use 
velocity equation to calculate angular velocity 
c1r1(θp-θ); and then it will rotate to p in counter-
clockwise direction as showed in figure 2 (a).  In 
fact, x can rotate to p in two different directions, 
clockwise or counter-clockwise. Inspired by this, 
we define an opposite rotation as rotation in 
clockwise direction as showed in figure 2 (b). 
Similarly, suppose the global best position is g, 
beside the angular velocity c2r2(θg-θ) in counter-
clockwise direction, we can define another opposite 
rotation which rotates to g in clockwise direction as 
showed in figure 2 (c) and (d). 

The combination of ± c1r1(θp-θ) and ± c2r2(θg-θ) 
will produce four values. ORBL strategy will take 
into account those four values at the same time. 
Unlike in classical OBL strategy, where greedy 
strategy is used to decide which value is to be 
selected, ORBL uses a random strategy. Which 
means ORBL will select a value randomly from the 
four values. For PSP problem, this strategy can 
balance intensification and diversification ability of 
PSO algorithm better. To use ORBL strategy in 
PSO algorithm, we can use a different strategy to 
produce random r1 and r2. Unlike in classical PSO 
algorithm, where r1 and r2 are random numbers 
uniformly distributed in [0, 1], in ORBL, they are 
random numbers uniformly distributed in [-1, 1]. 
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Figure 2: Rotation And Opposition Rotation 
 

3.3 Pseudo Code of Improved PSO Algorithm 
Algorithm 1 is the pseudo code of our improved 

PSO algorithm. Where x, v, and pb are all 2-
dimensional arrays. The x represents positions of all 
particles, x[i] represents the position of ith particle, 
and x[i][j] represents the jth dimensional position of 
ith particle. Similarly, the v represents velocities of 
all particles, v[i] represents the velocity of ith 
particle, and v[i][j] represents the jth dimensional 
velocity of ith particle. The pb represents best 
previously visited positions of swarm, pb[i] 
represents the best previously visited position of ith 
particle, and pb[i][j] represents the jth dimensional 
value of best previously visited position of ith 
particle. Variable gb is a 1-dimensional array, 
which represents the best previously visited 
position of swarm. Function Energy is used to 
calculate the energy of a structure specified by the 
position of particle. For cooling scheme of 
Metropolis criteria, we use the most often used 
exponential annealing. 
Algorithm 1 Improved PSO algorithm 
1. Initialize parameters w, c1, c2, fg and t0; 
2. For each particle i = 1 to M 
3.     Generate position x[i] and velocity v[i] randomly; 
4.     pb[i] = x[i]; //personal best position 
5. End for 
6. gb = findBest( x ); //global best position 
7. t = t0; //initial temperature 
8. While ( End condition is not met ) 
9.      For each particle i = 1 to M  
10.        For each dimension j =1 to N   
11．         k = j; 

12.            nx = x[i]; //new candidate position 
13.            For f = 1 to  FG  //flying grain 
14.                generate r1 and r2 between [-1, 1] randomly; 
15.                calculate the kth dimension velocity v[i][k]; 
16.                calculate the kth dimension position nx[i][k]; 
17.                 k = (k+1) % N; 
18.            End For  
19.            ∆E  = Energy(nx[i]) – Energy (x[i]); 
20.           If ( ∆E < 0 OR random() < exp( -∆E / t ) ) Then 
21.                x[i] = nx[i]; 
22.            End if 
23.        End For 
24.        If ( x[i] is better than pb[i] )  Then pb[i] = x[i]; 
25.        If ( x[i] is better than gb ) Then  gb = x[i]; 
26.    End for  
27.    t = at //cooling scheme 
28. End while 
29. Return gb 

4. EXPERIMENTS AND RESULTS 
 

4.1 Analysis on Fibonacci Sequence 
We analyze the proposed PSO algorithm using a 

benchmark Fibonacci sequence with 13 residues as 
showed in table 1. In this table, there are also 
results obtained by other authors using different 
methods. Emin is the minimum energy obtained by 
the conformational space annealing algorithm[16] 
and annealing contour Monte Carlo algorithm[17]. 
ELAGAA is obtained by a genetic-annealing 
algorithm with local adjustment mechanism[6]. ESeq 
and EDE-RI is obtained by sequential and parallel 
DE with ring-island (RI) topology[12]. In order to 
find the suitable FG and cooling coefficient a, we 
fix other parameters as follows: w=0.7, c1=c2=2.0, 
t0=1 and M=10. The maximum iteration times is 
3000, so the total function evaluation times is 
3000*10*N, which is same as in literature [8] and 
far less than in literature [12]. In the simulation, we 
change a from 0.990 to 1.000 at increments of 
0.001 and change FG from 1 to 4 at increments of 1. 
For each combination of a and FG, we run PSO 
algorithm 30 times. Table 2 and table 3 are the 
average energy and best energy of the simulation 
results. In table 2 and table 3, each row means 
different cooling coefficient and each column 
means different flying grain. Those results show 
that: (1) Comparing different FG, our algorithm has 
best performance when FG is equal to 2. As showed 
in second column of table 2 and table 3, among the 
10 different a, our algorithm has best performance 
in 7 cases in terms of average solution and best 
solution respectively, and it found the best known 
solution in 4 cases; (2) Comparing different a, our 
algorithm has best performance in terms of average 
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solution when a is equal to 0.997, and has best 
performance in terms of best solution when a is 
equal to 0.996. Among 4 different FG, our 
algorithm found the best known solution in 3 cases 
when a is equal to 0.996. 

Table 1: Benchmark Fibonacci Sequence Of Length 13 
Sequence Emin ELAGAA ESeq EDE-RI 

ABBABBABABBAB -3.2941 -3.2940 3.1990 -3.2924 

Table 2: Average Solution Under Different Cooling 
Coefficient And Different Flying Grain 

a FG = 1 FG = 2 FG = 3 FG = 4 

0.990 -2.5813 -3.0588 -3.0506 -2.9350 

0.991 -2.5852 -2.9318 -3.0363 -2.9589 

0.992 -2.7322 -3.0619 -3.0554 -2.9984 

0.993 -2.8013 -3.0953 -3.1359 -3.0494 

0.994 -2.8069 -3.1654 -3.1293 -3.0623 

0.995 -2.8785 -3.1955 -3.1184 -3.0711 

0.996 -3.0268 -3.1967 -3.1892 -3.1416 

0.997 -3.1051 -3.2048 -3.2041 -3.1621 

0.998 -3.1535 -3.1995 -3.1969 -3.1545 

0.999 -3.0498 -3.1318 -3.1323 -3.0930 

Table 3: Best Solution Under Different Cooling 
Coefficient And Different Flying Grain 

 a FG = 1 FG = 2 FG = 3 FG = 4 

0.990 -3.1774 -3.1983 -3.2575 -3.1987 

0.991 -3.1666 -3.2941 -3.1990 -3.2234 

0.992 -3.1810 -3.2938 -3.2235 -3.1989 

0.993 -3.1881 -3.2758 -3.2938 -3.1990 

0.994 -3.2877 -3.2941 -3.1990 -3.1990 

0.995 -3.2941 -3.2941 -3.2941 -3.1990 

0.996 -3.2940 -3.2941 -3.2941 -3.2941 

0.997 -3.2939 -3.2938 -3.2939 -3.2935 

0.998 -3.2880 -3.2921 -3.2911 -3.1968 

0.999 -3.2091 -3.2441 -3.2352 -3.2430 

In order to analyze the effect of Metropolis 
criterion and ORBL, we compare the performance 
of PSO algorithm with or without those strategies. 
According to the results of table 2 and table 3, we 
set FG=2 and a=0.996. Table 4 is the simulation 
results of those PSO algorithms. In table 4, PSO is 
the basic PSO algorithm where FG is equal to N. 
PSOSA is PSO algorithm with Metropolis criterion 
of SA only, PSOORBL is PSO algorithm with ORBL 
strategy only, and PSOSA+ORBL is PSO algorithm 
with Metropolis criterion and ORBL strategies both. 
In those tables, ALIG is average last improving 
generation, which means algorithm will never find 
better solution after that. Those results show that: (1) 
although the bigger ALIG means PSO algorithm is 

not easily trapped into local optima, both average 
solution and best solution are not good enough. The 
blind accept strategy and the interference between 
different dimensions may deteriorate the 
intensification ability of PSO algorithm; (2) When 
Metropolis criterion or ORBL strategy is used 
independently, the performance is not good enough 
also. The small ALIG means PSOSA and PSOORBL 
algorithm are easily trapped into local optimum. 
When both Metropolis criterion and ORBL strategy 
are used, PSOSA+ORBL algorithm has best 
performance. 

Table 4: Performance Comparison Of PSO With 
Different Strategies 

Algorithm Average Best Worst ALIG 

PSO -2.0030 -2.7519 -1.4047 2789 

PSOSA -2.0053 -2.9023 -1.3439 1333 

PSOORBL -2.3052 -3.1633 1.7157 1854 

PSOSA+ORBL -3.1967 -3.2941 -2.4928 2935 

Figure 3 is the iteration process of average 
energy of algorithm PSO, PSOSA, PSOORBL and 
PSOSA+ORBL. Figure 3 shows that: (1) although 
basic PSO has persistent optimizing ability, but the 
convergence speed is slow; (2) PSOORBL has good 
convergence speed, but it will lose optimizing 
ability quickly. PSOSA+ORBL has good persistent 
optimizing ability; (3) although PSOSA+ORBL is far 
better than PSOSA and PSOORBL, its optimizing 
speed becomes very slow in the late stage. 

 
Figure 3:  Iteration Process Of Average Energy With 

Different Strategies 

4.2 Performances on Real Protein Sequences 
To further analyze the performance and compare 

the performance with other algorithm, we test PSA 
algorithm on four real protein sequences as in [8]. 
Those four sequences are listed in table 5; detail 
information can be downloaded from PDB 
(http://www.rcsb.org/pdb/). In the experiments, K-
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D method is used to distinguish hydrophobic and 
hydrophilic residues of 20 amino acids in real 
proteins. Briefly speaking, amino acids I, V, L, P, C, 
M, A, G are hydrophobic and D, E, F, H, K, N, Q, 
R, S, T, W, Y are polar.  Table 5 is the data about 
those four real protein sequences. In this table, there 
are also results obtained by other authors using 
different methods. ELAGAA is obtained by a genetic-
annealing algorithm with local adjustment 
mechanism[6]. ESPPSO is obtained by stochastic 
perturbation PSO combining with hill climbing 
algorithm[8]. 

Table 6 is the simulation results of PSOSA+ORBL 
algorithm on 1BXP, 1BXL, 1EDP and 1EDN 
respectively. Table 5 and table 6 show that 
PSOSA+ORBL algorithm has better performance than 
ELAGAA and ESPPSO algorithm on all four sequences. 
It is worth to mention that our algorithm does not 
use hill climbing algorithm to improve the found 
solution, so the function evaluation times of our 
algorithm is less than SPPSO algorithm. The big 
ALIG means PSOSA+ORBL has persistent optimizing 
ability. 

Table 5: The Four Real Protein Sequence Used In Our 
Experiment 

PDB 
ID 

N Sequence ELAGAA ESPPSO 

1BXP 13 MRYYESSLKSYPD -2.2448 -2.4902 

1BXL 16 GQVGRQLAIIGDDINR -8.7469 -8.5731 

1EDP 17 CSCSSLMDKECVYFCHL -5.6072 -6.7081 

1EDN 21 CSCSSLMDKECVYFCHLDIIW -7.0961 -8.6495 

Table 6: Results Obtained By PSOSA+ORBL Algorithm 
PDB ID Average Best Worst ALIG 

1BXP -2.2896 -2.4902 -2.1119 2972 

1BXL -8.5161 -8.8126 -7.7829 2949 

1EDP -6.7877 -6.9504 -6.4063 2972 

1EDN -8.1118 -8.6716 -7.7062 2981 

In order to evaluate visually the quality of the 
minimum energy configurations found by this paper, 
the best results were used to draw the planar form 
of the sequence. Figure 4 (a), (b), (c) and (d) show 
the minimum energy configurations found for 
1BXP, 1BXL, 1EDP and 1EDN respectively. In 
figure 4, filled circles represent ‘A’ monomers and 
the unfilled circles represent ‘B’ monomers. It is 
easy to see that the hydrophobic (A) monomers 
form one hydrophobic core in the 2D AB model for 
1BXP, 1BXL and 1EDP, and form two cores for 
1EDN. This can be explained by the fact that 
hydrophobic monomers are always flanked by the 
hydrophilic monomers along the sequence. 

 
Figure 4: Minimum Energy Configurations Found By 

The Proposed Algorithms 
 

5. CONCLUSION AND FUTURE WORK 
 
This paper introduces a improved PSO algorithm 

for 2D protein structure prediction based on AB 
model. Aims to deal with the interference 
phenomena between different dimensions, we use 
flying grain to control the neighborhood structure 
of particle, so particle can search the solution space 
more finely. In AB model, the range of each 
dimension is in [-π, π], which can be processed as 
a finite and unbounded circle. Inspired by this 
feature, we introduce the ORBL strategy to 
enhance the chance to escape from local optima.  
Metropolis criterion is combined into our algorithm. 
Those strategies can improve the balance between 
intensification and diversification significantly. The 
experiment simulations, which were carried on four 
real protein sequences, indicate that the proposed 
algorithm is promising.  

Due to the high complexity of energy function of 
AB model, we ran the proposed algorithms on short 
proteins only; further study can be done on the 
implementation of parallel PSOSA+ORBL algorithms 
and its application on 2D and more complex 3D AB 
model for long protein sequences.  
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