
Journal of Theoretical and Applied Information Technology
 30th April 2013. Vol. 50 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

677

ACCELERATE TERRAIN RENDERING USING
PROGRAMMABLE GRAPHICS HARDWARE

1ZHISHENG MA, 2MING SUN, 3GUANGJUN SONG
1Lecturer, Computer Center, Qiqihar University, China

2Assoc. Prof., College of Computer and Control Engineering, Qiqihar University, China
3Prof., College of Computer and Control Engineering, Qiqihar University, China

E-mail: 1xiaomageleiluo@163.com

ABSTRACT

Multiresolution representations are often used in terrain rendering systems to increase system performance.
To avoid popping effects, these systems usually utilize geomorphing technique, which may be presented as
the bottleneck of the system. With the recent advance of graphics hardware, that is, the programmability,
we try to decrease the CPU load by shifting the geomorphing from CPU to GPU. But this doubles the data
amount that needs to be transferred through graphics bus. By carefully organizing terrain data in compact
format, we can reduce the data amount to about 40% of the original. These techniques help us to accelerate
the rendering process about 30% to 100%, compared with standard OpenGL implementation.

Keywords: geomorph, GPU computing, terrain rendering

1. INTRODUCTION

Terrain rendering is an important part of many
applications such as 3D games, flight simulations
and geographical information systems. Due to the
large amount of data, it often presents as a
bottleneck of the whole system when high quality
rendering is required.

In recent years, the graphics hardware has been
experiencing a rapid progress. Now mainstream
graphics adapters can process over tens of millions
triangles per second, and most importantly, they
allow programmers to write programs to control the
rendering process, which was fixed before. This
enables us to shift some computations from the
CPU to the much faster GPU to decrease the CPU
load and thereby increasing the performance of the
whole system.

Another issue to be concerned is that current
generation graphics adapters have rasterization
performance that far outstrips the bus bandwidth
available to feed them [1]. So transferring geometry
data in a compact mode through graphics bus often
gains better performance.

In this paper, we focus on a specific case of
terrain rendering, geomorph in view dependant
systems, and try to accelerate the rendering
performance using current programmable graphics
hardware. By shifting geomorph computation to

GPU and transferring data in a compact format, we
gain 30%-100% more performance compared with
the standard OpenGL implementation.

This paper is organized as follows. We first
review previous work on terrain rendering and
recent progress of graphics hardware in section 2.
Then we present our improvement on geomorphing
rendering in section 3. Section 4 describes some
implementation details and shows our experiment
results. Then we make a conclusion in section 5.

2. RELATED WORK

Terrain rendering has been thoroughly
investigated in the last decade [2, 3, 4, 5]. These
algorithms seek to explore the potential of view
dependent multiresolution geometric representation
to reduce the scene complexity for an increased
frame rate. We can roughly classify them into two
categories: static level of detail algorithms and
continuous level of detail algorithms. Static LOD
algorithms represent terrain data in several fixed
resolution level and divide each level into blocks
offline. At runtime, blocks of appropriate level are
selected based on viewing parameters. Continuous
LOD algorithms can dynamically add or remove
individual triangles according to viewing
parameters or other time-varying criteria at runtime
[3, 4, 5]. Compared with Static LOD, continuous
LOD are more sophisticated and often need fewer

http://www.jatit.org/
mailto:xiaomageleiluo@163.com

Journal of Theoretical and Applied Information Technology
 30th April 2013. Vol. 50 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

678

triangles to provide the same rendering quality, but
consume more CPU resources. At the late ‘90s,
when CPU resource is more available than GPU’s,
this type of algorithms are widely used. While with
the recent rapid progress of graphics hardware, now
it usually takes longer time to reject triangles than
to render them out, so block based algorithms often
gain more performance [6].

Geomorph is widely used in multiresolution
rendering systems to reduce the popping effects that
may occur when the geometry models switch
between different resolutions. Instead of replacing
the previous representation of models with the new
one at a sudden, geomorph interpolates between the
two successive representations according to time or
other factors, so the geometry models can transit
smoothly and cause no visual unpleasing.

Today, more and more modern graphics
hardware adapts to programmable architecture and
allows programmers to write programs or scripts to
control the rendering process. Newly version 3D
graphics APIs such as OpenGL and DirectX
provide language level support to this
programmability, say, OpenGL Shading Language
and High Level Shading Language, respectively.
NVIDIA Corporation also promotes a language, C
for graphics, to facilitate 3D programming on their
product.

3. ALGORITHM DESCRIPTION

Terrain can be seen as a continuous function over
X-Z plane, and the terrain data we concern is the
values of the function sampled on regular grid over
the X-Z plane. Each node of the grid can be
represented using two integers indicating the row
and column number of the grid where it resides, we
call these two numbers grid coordinate. We also
record the color of each sampling points, and the
normal, if lighting effect is required.

For static scene or the scene that geometry
models do not change frequently, display lists are
preferred to increase rendering performance. But as
long as multiresolution representations of models
are used, especially when the network scenarios are
concerned, in which the terrain data is transferred
over network in a progressive way, the scene may
be updated very frequently, and even worse, with
the utilization of geomorph, geometry may change
every frame, thus display lists are no longer suitable.
We have to find other ways to increase the
rendering performance.

We observe that, in geomorph rendering system,
the vertex morphing operation presents as

bottleneck of the system since lots of floating-point
operations are involved. To overcome this
bottleneck, we shift the morphing operation from
CPU to GPU. That is, instead of doing morphing on
CPU and then transferring the result of calculation
to GPU as the input of graphics rendering pipeline,
we transfer both the properties of original samples
and those of target samples to GPU and perform
morphing operation in vertex shader. This step frees
the CPU load but doubles the amount of data that
needs to be transferred from main memory to GPU,
as a result, the bus bandwidth between them
appears to be new the bottleneck of the system. To
further improve system performance, we take
advantage of the regularity of terrain data and
represent terrain data in a compact mode while
transferring. As mentioned above, the terrain data
used in our system including positions, colors and
normals of each samples. In usual representation,
each position and normal contains three floating-
points, which is a large fraction of data compared to
color representation that takes three bytes. So we
will concentrate the compact representation of these
two components.

3.1 Compact Representation of Vertex Positions
Since the terrain data is sampled on a regular grid,

we can separate the position of each sample into
two parts, sample’s location and sample’s value,
corresponding to the location on the 2D grid and the
height field, respectively. The sample’s locations
are represented using grid coordinate. We also
divide the grid into blocks as most static LOD
algorithms do. Each block is identified by the grid
coordinate of its left-top corner, which we called
block identifier. Then each sample’s location can
be identified by the identifier of the block that it
belongs to and its offset in the block relative to the
left-top corner of the block. We call this offset
block coordinate. We can constrain the size of the
block to less than 256x256, so the block coordinate
can be represented using two bytes, one for row,
and the other for column. Rendering is performed
in a blockwise manner. For each block, we transfer
its identifier only once, since it is shared by all
samples that lie in it. And then, each height field
and its corresponding block coordinate are
transferred to GPU, in which they are assembled to
the usually-used three floating-point format. When
geomorphing applies to terrain data, since the
corresponding samples’ locations are the same, we
only need transfer another height field to GPU
instead of both height field and block coordinate.

If the height field is represented using 32-bits
IEEE floating-point, for a block contains n samples’

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 30th April 2013. Vol. 50 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

679

location, we only transfer n*4 bytes for original
height field, n*4 bytes for target height field, 2*n
bytes for block coordinate and 2 bytes for block
identifier, instead of 3*n*4 bytes for original
position and 3*n*4 bytes for target position. So
about 50% bandwidth is saved.

The x and z coordinate of the vertex assembled in
GPU are a sample’s grid coordinate instead of its
real coordinate. Fortunately, since the terrain is
regular sampled, its grid coordinate and its real
coordinate only differ by a scale factor. We can
integrate the scale factor into model transform
matrix. Since the matrix will always apply to
vertices that enter the graphics rendering pipeline,
this integration will not introduce additional
calculation.

3.2 Compact Representation of Vertex Normals
Deering [7] argued that the usual three floating-

points representation for normal far exceed the
actual requirement for rendering purpose. He
arrived at the result that an angular density of 0.01
radians between normals gave results that were not
visually distinguishable from finer representations.
This meant only 100,000 normals that distributed
over the unit sphere were needed. By extensively
taking advantage of the symmetry property of the
unit sphere, Deering used 17 bits to represent these
normals, 11 bits to index into a look-up table and 6
bits to indicate one symmetric region. We take
Deering’s idea but implement it in an easier way, by
taking graphics hardware programming and the
special characteristic of terrain data into
consideration.

For terrain data, it is easy to deduce that their
normals are surely distributed over the upper part of
the unit sphere. We can parameterize this
hemisphere over a square region to create a normal
texture (Fig. 1), serving as a look-up table, then
each normal is represented by its coordinate in the
normal texture. To recover the normals’ three
components, we perform looking-up operations in
GPU using texture mapping hardware. Since the
parameterization is continuous and has no
singularity, we can interpolate over normal texture
coordinates before the looking-up operation while
performing rasterization, this helps us to achieve
high quality images close to those that shaded by
phone model.

This differs from Deering’s algorithm since
Deering cared about more general cases instead of
terrain data, which meant the normals of the
geometry models might be distributed over the
whole unit sphere. Singularity is unavoidable when

a sphere is parameterized to a square region. So
interpolation is impossible.

By experiments, we find that it is enough to use a
256x256 normal texture to render high quality
images that not visually distinguishable from finer
representations, which means we can represent a
normal by two bytes. This result also coincides with
Deering’s conclusion, since he argued to represent
normals that distributed over the whole unit sphere
using 17 bits, and we represent normals over
hemisphere using 16 bits.

Fig. 1 The normal textures we have tested, the

left one is created by the parameterization proposed
by Shirley, and the right one is created by orthotic
projecting the hemisphere along y–axis. The x, y, z
component of the normal is represented by the r, g,

b color respectively

a. Terrain scene shaded using phone model

b. Terrain scene shaded with the orthotic

projection normal texture

c. Terrain scene shaded with the normal texture

that parameterized by Shirley’s method. Slight
artifact can be seen at the left-bottom of the image

Fig. 2 Images that shaded with different normal
textures

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 30th April 2013. Vol. 50 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

680

Another issue is about the mapping function
between the hemisphere and the square. We test
two functions, one was introduced by Shirley [8]
and another is simply orthotic projecting the
hemisphere to the square along y-axis. The
parameterization results are shown in Figure 1.
Using them as normal textures, we render terrain
scene and compare the rendering result with phone
shading (Fig. 2). We find that orthotic projecting
normal texture works well while Shirley’s introduce
slightly artifacts where height field changes rapidly.
This may be caused by the stretch at the corners of
the square. Orthotic projection is non-uniform,
since that normals that parallel or near parallel to y-
axis are over sampled while those that
perpendicular or near perpendicular to y-axis are
under sampled. But this seldom affects the
rendering result, since the normals of the terrain
data tends to distribute along y-axis and with the
only exception at cliffs.

The normal map is transferred to GPU when the
system starts up. While rendering, each normal is
represented using two bytes instead of three
floating-point numbers. This drastically decreases
the data amount that needs to be transferred.

4. EXPERIMENT RESULTS

We have implemented several versions of terrain
rendering system for comparison (Table 1 and
Table 2). All the versions are implemented using
OpenGL and Cg, if vertex shader programs and/or
pixel shader programs are needed. The OpenGL
versions use data arrays for efficiency (VertexArray,
ColorArray and NormalArray) instead of display
lists, since we assume terrain data updates
frequently when geomorphing is applied, so
precompiling schemes will not work. Another to
mention is that the version of Cg we use does not
support byte format while transferring, so we have
to represent block coordinates, normal texture
coordinates and colors using short int (two bytes)
format. This doubles the bandwidth needed to
transfer those data, but we still get improvement on
performance.

Table 1 and 2 shows comparison among OpenGL
standard implementation, Cg implementation with
data transferred in normal format and Cg
implementation with data transferred in compact
format. The first row is bytes per vertex that needs
to be transferred from CPU to GPU. The second
row is time consumed to render each frame. The
third row is triangle count that the system processes
per second. The data are obtained on a Pentium IV
2.4 GHz PC, with a GeForce FX5600 Ultra

graphics card. The terrain data we use contains
2,000,000 triangles.

Table 1 Statistics when render the scene with
color

 OpenGL Normal
Cg

Compact
Cg

Bytes per
sample 15 36 24

Time per
Fram

(sec/frame)
0.2407 0.1432 0.1178

Throughput
(M tri/sec) 8.309 13.966 16.978

Table 2 Statistics when shading the scene with

light

 OpenGL Normal
Cg

Compact
Cg

Bytes per
sample 27 60 32

Time per
Frame

(sec/frame)
0.2923 0.2582 0.2000

Throughput
(Mtri/sec) 6.842 7.746 10.000

Table 1 compares rendering performance when

the terrain is rendered with color. Standard
OpenGL implementation morph height values and
colors in CPU, so CPU presents as a bottleneck. Cg
implementations perform vertex morphing in GPU,
then the bottleneck appears on graphics bus. So
when we transfer data in compact format, we see
improvement on performance.

Table 2 compares rendering performance when
the terrain is shaded by light. We still need the
color information and serve it as the corresponding
sample’s material. The normal texture is selected
into graphics memory just like ordinary texture
maps and interpolation scheme are applied. In pixel
shader, we perform texture mapping and obtain
each pixels’s normal for lighting calculation. We
can see improvement of performance over standard
OpenGL version.

5. CONCLUSION

In this paper, we concentrate on acceleration
techniques of those terrain rendering systems that
multiresolution representation and geomorphing are
concerned. Our algorithm has following features:

1) We perform vertex morphing in GPU to decrease
CPU load.

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 30th April 2013. Vol. 50 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

681

2) By dividing terrain data into blocks, we can
represent the samples’ location in the local
coordinate relative to each block, so each
coordinate can be identified by one byte.

3) We create a normal texture and use normal
coordinates to represent normals. Since the normals
of terrain data are restrict to the upper part of the
unit sphere by nature, there is no singularity on
normal texture and we can interpolate over it freely.

REFERENCES:

[1] H. MORETON, “Watertight Tessellation Using

Forward Differencing,” In SIGGRAPH /
Eurographics Workshop on Graphics
Hardware, 2001, pp. 25-32.

[2] John S. Falby, Michael J. Zyda, David R. Pratt
and Randy L. Mackey, “NPSNET: Hierarchical
data structures for real-time three-dimensional
visual simulation,” Computers and Graphics,
Vol. 17, No.1, 1993, pp. 65 - 69.

[3] Peter Lindstrom, David Koller, William
Ribarsky, and Larry F. Hodge, “Real-Time,
Continuous Level of Detail Rendering of
Height Fields”, ACM SIGGRAPH 96
Proceedings, August 1996

[4] M. A. Duchaineau, M.Wolinsky, D. E. Sigeti,
M. C. Miller, C. Aldrich, and M. B. Mineev-
Weinstein, “ROAMing Terrain: Real-time
Optimally Adapting Meshes”, IEEE
Visualization '97, 1997, pp. 81-88.

[5] H. Hoppe, “Smooth view-dependent level-of-
detail control and its application to terrain
rendering”, IEEE Visualization ‘98, October
1998

[6] W. de Boer, “Fast Terrain Rendering Using
Geometrical MipMapping”, October 31, 2000
http://www.flipcode.com/tutorials/geomipmaps
.pdf

[7] M. Deering, “Geometry Compression”, Proc.
of SIGGRAPH'95, 1995, pp. 13-20.

[8] Peter Shirley and Kenneth Chiu, “A low
distortion map between disk and square”,
Journal of Graphics Tools, Vol. 2, No. 3, 1997,
pp. 45-52.

http://www.jatit.org/

	1ZHISHENG MA, 2MING SUN, 3GUANGJUN SONG

