
Journal of Theoretical and Applied Information Technology 
 30th April 2013. Vol. 50 No.3 

© 2005 - 2013 JATIT & LLS. All rights reserved.  
 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195 

 
677 

 

ACCELERATE TERRAIN RENDERING USING 
PROGRAMMABLE GRAPHICS HARDWARE 

 
1ZHISHENG MA, 2MING SUN, 3GUANGJUN SONG 
1Lecturer, Computer Center, Qiqihar University, China 

2Assoc. Prof., College of Computer and Control Engineering, Qiqihar University, China 
3Prof., College of Computer and Control Engineering, Qiqihar University, China 

E-mail:  1xiaomageleiluo@163.com  
 
 

ABSTRACT 
 

Multiresolution representations are often used in terrain rendering systems to increase system performance.  
To avoid popping effects, these systems usually utilize geomorphing technique, which may be presented as 
the bottleneck of the system.  With the recent advance of graphics hardware, that is, the programmability, 
we try to decrease the CPU load by shifting the geomorphing from CPU to GPU.  But this doubles the data 
amount that needs to be transferred through graphics bus.  By carefully organizing terrain data in compact 
format, we can reduce the data amount to about 40% of the original.  These techniques help us to accelerate 
the rendering process about 30% to 100%, compared with standard OpenGL implementation. 
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1. INTRODUCTION  
 

Terrain rendering is an important part of many 
applications such as 3D games, flight simulations 
and geographical information systems. Due to the 
large amount of data, it often presents as a 
bottleneck of the whole system when high quality 
rendering is required. 

In recent years, the graphics hardware has been 
experiencing a rapid progress.  Now mainstream 
graphics adapters can process over tens of millions 
triangles per second, and most importantly, they 
allow programmers to write programs to control the 
rendering process, which was fixed before.  This 
enables us to shift some computations from the 
CPU to the much faster GPU to decrease the CPU 
load and thereby increasing the performance of the 
whole system. 

Another issue to be concerned is that current 
generation graphics adapters have rasterization 
performance that far outstrips the bus bandwidth 
available to feed them [1]. So transferring geometry 
data in a compact mode through graphics bus often 
gains better performance. 

In this paper, we focus on a specific case of 
terrain rendering, geomorph in view dependant 
systems, and try to accelerate the rendering 
performance using current programmable graphics 
hardware.  By shifting geomorph computation to 

GPU and transferring data in a compact format, we 
gain 30%-100% more performance compared with 
the standard OpenGL implementation. 

This paper is organized as follows.  We first 
review previous work on terrain rendering and 
recent progress of graphics hardware in section 2.  
Then we present our improvement on geomorphing 
rendering in section 3. Section 4 describes some 
implementation details and shows our experiment 
results. Then we make a conclusion in section 5. 

2. RELATED WORK 
 

Terrain rendering has been thoroughly 
investigated in the last decade [2, 3, 4, 5]. These 
algorithms seek to explore the potential of view 
dependent multiresolution geometric representation 
to reduce the scene complexity for an increased 
frame rate.  We can roughly classify them into two 
categories: static level of detail algorithms and 
continuous level of detail algorithms.  Static LOD 
algorithms represent terrain data in several fixed 
resolution level and divide each level into blocks 
offline. At runtime, blocks of appropriate level are 
selected based on viewing parameters.  Continuous 
LOD algorithms can dynamically add or remove 
individual triangles according to viewing 
parameters or other time-varying criteria at runtime 
[3, 4, 5]. Compared with Static LOD, continuous 
LOD are more sophisticated and often need fewer 
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triangles to provide the same rendering quality, but 
consume more CPU resources.  At the late ‘90s, 
when CPU resource is more available than GPU’s, 
this type of algorithms are widely used.  While with 
the recent rapid progress of graphics hardware, now 
it usually takes longer time to reject triangles than 
to render them out, so block based algorithms often 
gain more performance [6]. 

Geomorph is widely used in multiresolution 
rendering systems to reduce the popping effects that 
may occur when the geometry models switch 
between different resolutions.  Instead of replacing 
the previous representation of models with the new 
one at a sudden, geomorph interpolates between the 
two successive representations according to time or 
other factors, so the geometry models can transit 
smoothly and cause no visual unpleasing. 

Today, more and more modern graphics 
hardware adapts to programmable architecture and 
allows programmers to write programs or scripts to 
control the rendering process. Newly version 3D 
graphics APIs such as OpenGL and DirectX 
provide language level support to this 
programmability, say, OpenGL Shading Language 
and High Level Shading Language, respectively.  
NVIDIA Corporation also promotes a language, C 
for graphics, to facilitate 3D programming on their 
product. 

3. ALGORITHM DESCRIPTION 
 

Terrain can be seen as a continuous function over 
X-Z plane, and the terrain data we concern is the 
values of the function sampled on regular grid over 
the X-Z plane. Each node of the grid can be 
represented using two integers indicating the row 
and column number of the grid where it resides, we 
call these two numbers grid coordinate. We also 
record the color of each sampling points, and the 
normal, if lighting effect is required. 

For static scene or the scene that geometry 
models do not change frequently, display lists are 
preferred to increase rendering performance.  But as 
long as multiresolution representations of models 
are used, especially when the network scenarios are 
concerned, in which the terrain data is transferred 
over network in a progressive way, the scene may 
be updated very frequently, and even worse, with 
the utilization of geomorph, geometry may change 
every frame, thus display lists are no longer suitable.  
We have to find other ways to increase the 
rendering performance. 

We observe that, in geomorph rendering system, 
the vertex morphing operation presents as 

bottleneck of the system since lots of floating-point 
operations are involved. To overcome this 
bottleneck, we shift the morphing operation from 
CPU to GPU. That is, instead of doing morphing on 
CPU and then transferring the result of calculation 
to GPU as the input of graphics rendering pipeline, 
we transfer both the properties of original samples 
and those of target samples to GPU and perform 
morphing operation in vertex shader. This step frees 
the CPU load but doubles the amount of data that 
needs to be transferred from main memory to GPU, 
as a result, the bus bandwidth between them 
appears to be new the bottleneck of the system.  To 
further improve system performance, we take 
advantage of the regularity of terrain data and 
represent terrain data in a compact mode while 
transferring.  As mentioned above, the terrain data 
used in our system including positions, colors and 
normals of each samples.  In usual representation, 
each position and normal contains three floating-
points, which is a large fraction of data compared to 
color representation that takes three bytes.  So we 
will concentrate the compact representation of these 
two components. 

3.1 Compact Representation of Vertex Positions 
Since the terrain data is sampled on a regular grid, 

we can separate the position of each sample into 
two parts, sample’s location and sample’s value, 
corresponding to the location on the 2D grid and the 
height field, respectively.  The sample’s locations 
are represented using grid coordinate.  We also 
divide the grid into blocks as most static LOD 
algorithms do.  Each block is identified by the grid 
coordinate of its left-top corner, which we called 
block identifier.  Then each sample’s location can 
be identified by the identifier of the block that it 
belongs to and its offset in the block relative to the 
left-top corner of the block.  We call this offset 
block coordinate.  We can constrain the size of the 
block to less than 256x256, so the block coordinate 
can be represented using two bytes, one for row, 
and the other for column.  Rendering is performed 
in a blockwise manner.  For each block, we transfer 
its identifier only once, since it is shared by all 
samples that lie in it. And then, each height field 
and its corresponding block coordinate are 
transferred to GPU, in which they are assembled to 
the usually-used three floating-point format.  When 
geomorphing applies to terrain data, since the 
corresponding samples’ locations are the same, we 
only need transfer another height field to GPU 
instead of both height field and block coordinate. 

If the height field is represented using 32-bits 
IEEE floating-point, for a block contains n samples’ 
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location, we only transfer n*4 bytes for original 
height field, n*4 bytes for target height field, 2*n 
bytes for block coordinate and 2 bytes for block 
identifier, instead of 3*n*4 bytes for original 
position and 3*n*4 bytes for target position. So 
about 50% bandwidth is saved. 

The x and z coordinate of the vertex assembled in 
GPU are a sample’s grid coordinate instead of its 
real coordinate. Fortunately, since the terrain is 
regular sampled, its grid coordinate and its real 
coordinate only differ by a scale factor. We can 
integrate the scale factor into model transform 
matrix. Since the matrix will always apply to 
vertices that enter the graphics rendering pipeline, 
this integration will not introduce additional 
calculation. 

3.2 Compact Representation of Vertex Normals 
Deering [7] argued that the usual three floating-

points representation for normal far exceed the 
actual requirement for rendering purpose.  He 
arrived at the result that an angular density of 0.01 
radians between normals gave results that were not 
visually distinguishable from finer representations.  
This meant only 100,000 normals that distributed 
over the unit sphere were needed. By extensively 
taking advantage of the symmetry property of the 
unit sphere, Deering used 17 bits to represent these 
normals, 11 bits to index into a look-up table and 6 
bits to indicate one symmetric region.  We take 
Deering’s idea but implement it in an easier way, by 
taking graphics hardware programming and the 
special characteristic of terrain data into 
consideration.   

For terrain data, it is easy to deduce that their 
normals are surely distributed over the upper part of 
the unit sphere.  We can parameterize this 
hemisphere over a square region to create a normal 
texture (Fig. 1), serving as a look-up table, then 
each normal is represented by its coordinate in the 
normal texture. To recover the normals’ three 
components, we perform looking-up operations in 
GPU using texture mapping hardware.  Since the 
parameterization is continuous and has no 
singularity, we can interpolate over normal texture 
coordinates before the looking-up operation while 
performing rasterization, this helps us to achieve 
high quality images close to those that shaded by 
phone model.   

This differs from Deering’s algorithm since 
Deering cared about more general cases instead of 
terrain data, which meant the normals of the 
geometry models might be distributed over the 
whole unit sphere.  Singularity is unavoidable when 

a sphere is parameterized to a square region.  So 
interpolation is impossible. 

By experiments, we find that it is enough to use a 
256x256 normal texture to render high quality 
images that not visually distinguishable from finer 
representations, which means we can represent a 
normal by two bytes. This result also coincides with 
Deering’s conclusion, since he argued to represent 
normals that distributed over the whole unit sphere 
using 17 bits, and we represent normals over 
hemisphere using 16 bits. 

                
Fig. 1 The normal textures we have tested, the 

left one is created by the parameterization proposed 
by Shirley, and the right one is created by orthotic 
projecting the hemisphere along y–axis. The x, y, z 
component of the normal is represented by the r, g, 

b color respectively 

 
a. Terrain scene shaded using phone model 

 
b. Terrain scene shaded with the orthotic 

projection normal texture 

 
c. Terrain scene shaded with the normal texture 

that parameterized by Shirley’s method.  Slight 
artifact can be seen at the left-bottom of the image 

Fig. 2 Images that shaded with different normal 
textures 
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Another issue is about the mapping function 
between the hemisphere and the square.  We test 
two functions, one was introduced by Shirley [8] 
and another is simply orthotic projecting the 
hemisphere to the square along y-axis. The 
parameterization results are shown in Figure 1. 
Using them as normal textures, we render terrain 
scene and compare the rendering result with phone 
shading (Fig. 2).  We find that orthotic projecting 
normal texture works well while Shirley’s introduce 
slightly artifacts where height field changes rapidly.  
This may be caused by the stretch at the corners of 
the square. Orthotic projection is non-uniform, 
since that normals that parallel or near parallel to y-
axis are over sampled while those that 
perpendicular or near perpendicular to y-axis are 
under sampled. But this seldom affects the 
rendering result, since the normals of the terrain 
data tends to distribute along y-axis and with the 
only exception at cliffs. 

The normal map is transferred to GPU when the 
system starts up.  While rendering, each normal is 
represented using two bytes instead of three 
floating-point numbers. This drastically decreases 
the data amount that needs to be transferred. 

4. EXPERIMENT RESULTS 
 

We have implemented several versions of terrain 
rendering system for comparison (Table 1 and 
Table 2).  All the versions are implemented using 
OpenGL and Cg, if vertex shader programs and/or 
pixel shader programs are needed.  The OpenGL 
versions use data arrays for efficiency (VertexArray, 
ColorArray and NormalArray) instead of display 
lists, since we assume terrain data updates 
frequently when geomorphing is applied, so 
precompiling schemes will not work.  Another to 
mention is that the version of Cg we use does not 
support byte format while transferring, so we have 
to represent block coordinates, normal texture 
coordinates and colors using short int (two bytes) 
format.  This doubles the bandwidth needed to 
transfer those data, but we still get improvement on 
performance. 

Table 1 and 2 shows comparison among OpenGL 
standard implementation, Cg implementation with 
data transferred in normal format and Cg 
implementation with data transferred in compact 
format.  The first row is bytes per vertex that needs 
to be transferred from CPU to GPU.  The second 
row is time consumed to render each frame.  The 
third row is triangle count that the system processes 
per second.  The data are obtained on a Pentium IV 
2.4 GHz PC, with a GeForce FX5600 Ultra 

graphics card. The terrain data we use contains 
2,000,000 triangles. 

Table 1 Statistics when render the scene with 
color 

 OpenGL Normal 
Cg 

Compact 
Cg 

Bytes per 
sample 15 36 24 

Time per 
Fram 

(sec/frame) 
0.2407 0.1432 0.1178 

Throughput 
(M tri/sec) 8.309 13.966 16.978 

 
Table 2 Statistics when shading the scene with 

light 

 OpenGL Normal 
Cg 

Compact 
Cg 

Bytes per 
sample 27 60 32 

Time per 
Frame 

(sec/frame) 
0.2923 0.2582 0.2000 

Throughput 
(Mtri/sec) 6.842 7.746 10.000 

 
Table 1 compares rendering performance when 

the terrain is rendered with color.  Standard 
OpenGL implementation morph height values and 
colors in CPU, so CPU presents as a bottleneck.  Cg 
implementations perform vertex morphing in GPU, 
then the bottleneck appears on graphics bus.  So 
when we transfer data in compact format, we see 
improvement on performance. 

Table 2 compares rendering performance when 
the terrain is shaded by light.  We still need the 
color information and serve it as the corresponding 
sample’s material.  The normal texture is selected 
into graphics memory just like ordinary texture 
maps and interpolation scheme are applied.  In pixel 
shader, we perform texture mapping and obtain 
each pixels’s normal for lighting calculation.  We 
can see improvement of performance over standard 
OpenGL version. 

5. CONCLUSION 
 

In this paper, we concentrate on acceleration 
techniques of those terrain rendering systems that 
multiresolution representation and geomorphing are 
concerned.  Our algorithm has following features: 

1) We perform vertex morphing in GPU to decrease 
CPU load. 
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2) By dividing terrain data into blocks, we can 
represent the samples’ location in the local 
coordinate relative to each block, so each 
coordinate can be identified by one byte. 

3) We create a normal texture and use normal 
coordinates to represent normals.  Since the normals 
of terrain data are restrict to the upper part of the 
unit sphere by nature, there is no singularity on 
normal texture and we can interpolate over it freely. 
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