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ABSTRACT 
 

In this paper, an adaptive fuzzy backstepping controller has been developed for the position tracking control 
of a permanent magnet synchronous motor (PMSM) drive. Fuzzy logic systems are used to approximate 
unknown nonlinearities appearing in the control law and an adaptive backstepping technique is employed to 
construct controller. To illustrate the performance of the proposed controller compared with the 
conventional backstepping that is studied by computer simulations. Simulation results verify that the 
proposed control structure is very simple and the position tracking error can converge to a small scope 
under parameter uncertainties and load torque disturbance. 
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1. INTRODUCTION  
 

Permanent magnet synchronous motors 
(PMSMs) have aroused great interest, since it has 
superior features such as compact size, high inertia 
ratio and low cost. However, it is a challenging 
problem to control PMSMs to get the perfect 
dynamic performance because it is very sensitive to 
external load disturbances and parameter variations 
in industrial applications. On the other hand， its 
dynamic model is highly nonlinear. Some control 
techniques such as nonlinear control [1], sliding 
mode control [2] and adaptive intelligent 
control [3] have been developed to overcome these 
problems for speed and position control of PMSMs. 

Much research has been witnessed in recent years 
to apply backstepping methodology to design 
controllers for nonlinear systems. This method 
provides a powerful control designing tool, for 
nonlinear systems in the strict feed back forms. The 
conventional backstepping is successfully applied 
to the control of PMSMs recently [4]. The most 
appealing point of the backstepping scheme is to 
use the virtual control variable to make the original 
high order system to be simple enough.  thus the 
final control outputs can be derived step by step 
through  the Lyapunov functions. Adaptive forms of 
this controller have been also developed. However, 

a major disadvantage with backstepping approaches 
is that some tedious analysis is needed to determine 
a” regression matrix”. In [5], adaptive backstepping 
was used to compensate the nonlinearities in the 
speed control for a PMSM, but it is worth notice 
that the regression matrix almost covers one full 
paper. Another disadvantage is called the problem 
of “explosion terms” caused by the virtual variable. 

 Fuzzy logic controllers (FLCs) have been used 
in many areas. FLCs can be easily used in the 
control systems for which an exact mathematical 
model of the system cannot be obtained [6]. Unlike 
the existing backstepping design technique, the 
fuzzy control approach is suitable for dealing with 
the system’s unknown nonlinearities. So the fuzzy 
control approach combining with backstepping 
technique can deal with the decoupling control 
problem of a class of nonlinear systems with 
unknown uncertainties [7-8]. In [9], the concept of 
fuzzy approximate disturbance decoupling based on 
backstepping technique is introduced for a class of 
MIMO nonlinear systems, and the proposed 
algorithm has less adaptive parameters. In [8], an 
adaptive fuzzy control method is developed to 
suppress chaos in the permanent magnet 
synchronous motor drive system via backstepping 
technology. Fuzzy logic systems are used to 
approximate unknown nonlinearities.  
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In this paper, we attempt to combine the direct 
adaptive fuzzy control approach with the 
backstepping technique to provide an effective 
position tracking control for the PMSM drive 
system. During the controller design process, fuzzy 
logic systems are employed to approximate the 
nonlinearities, and the adaptive technique and 
backstepping are used to construct fuzzy 
controllers. The designed fuzzy controller 
guarantees the uniform ultimate boundedness of the 
closed-loop adaptive systems; this means no 
regression matrices and the problem of “explosion 
of terms” are taken into account. So the major 
drawbacks of the classical backstepping are cured. 
To verify the performance of the proposed 
controller, a comparison between the classical 
backstepping and the proposed controller is 
implemented by computer simulations. The results 

show that the proposed controller is reliable, 
effective and insensitive to parameter variations and 
external disturbance for the position control of the 
PMSM. Moreover, the proposed controller 
guarantees that the position tracking error 
converges to a small scope.  

The paper is organized as follows. Section 2 
introduced the mathematical model of PMSM. In 
Section 3, an adaptive fuzzy backstepping 
controller is designed. In Section 4, stability of the 
proposed control method is analyzed. In Section 5, 
the classical backstepping controller is designed and 
stability is analyzed. In Section 6, comparison 
between the two controllers is studied by computer 
simulations to illustrate the feasibility of the 
proposed control scheme. In Section 7, we conclude 
the work of this paper. 

 
Fiure 1:  Position Control Of  PMSM Drive Using The Proposed Apaptive Fuzzy Backstepping 

 

2. PMSM MODEL 
 

With the assumption that the PMSM is 
unsaturated and eddy currents and hysteresis losses 
are negligible, the stator d, q-axes voltage equations 
of the PMSM in the synchronous rotating reference 
frame are given by  





Ψ++=
Ψ−++=

dqqnqq

qfnddndd

iLpRiU
piLpRiU
ω

ωϕ

          
(1)                                     

Ld and Lq are called d-and q-axis synchronous 
inductances, respectively, ω is motor electrical 
speed, dΨ  and qΨ  are the flux linkages in the dq 

frame, fϕ
is rotor flux linkage. Note that Ld and Lq 

are equal and are taken as L for the surface PMSM.  

Using the method of field oriented control of the 
PMSM, the d-axis current is controlled to be zero to 
maximize the output torque [10]. The motor torque is 
given by 

qtqfne iKipT == ϕ
2
3

                                    
(2)                                               

Where Kt is the torque constant and pn is the 
number of poles in the motor. 

In general, the mechanical equation of the PMSM 
can be represented as: 

ωω BTJT Le ++= 
                                        

(3) 

Where J is the total inertia and B is the frictional 
coefficient. 

Substituting Eq. (2) into Eq. (3), the mechanical 
dynamic of the PMSM drive system can be 
represented as 

J
Ti

J
K

J
B L

q
t

MM −+−= θθ 

                           
(4) 

Where Mθ  is rotor angular, ωθ =M


. 

Using the vector control technique, the 
simplified block diagram of the PMSM drive 
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system including current control and speed control 
can be represented and shown in Figure 1.   

For the purpose of further analysis in Figure 1, 
the dynamic model of the PMSM drive system can 
be described by the following differential equations: 

21 xx =                                                               
(5) 

J
Tx

J
Bx

J
Kx Lt −−= 232

                                        
(6)  

4323 x
L

KKK
x

L
KR

x
L

KKKp
x vivpipipvpipfn +

+
−

+
−= ωϕ


           

(7) 
*

24 refxKx ωω +−=
                                        

(8) 

Where x1=θM,x2=ω,x3=iq,x4=∫(
ωω −∗

ref )dt; 
Kip is the current controller gain; Kvp is the speed 
controller proportional parameter; Kvi is the speed 
controller integral parameter; Kω is the speed 

feedback coefficient. 
∗
refω

is the reference speed. 
LKKKpH vpipfn /)(2 ωϕ +−=

;
LKRH ip /)(3 +−= ; LKKKH vivpip /4 = . 

The control objective is to design an adaptive 
fuzzy controller so that the state variable xi (i=1, 4) 

follows the given reference signal 
∗
refθ

 and all the 
closed-loop signals are bounded. To this end, we 
adopt the singleton fuzzifier, product inference, and 
the central defuzzifier to deduce the following 
fuzzy rules [11]: 

IF x1 is 
iA1  and ….and xn is 

i
nA  THEN y is 

iB (i=1,2,…N) 

Where x=[x1,…,xn]T ∈Rn, and y∈R are the input 
and output of the fuzzy system, respectively, 

j
iA and 

iB  are fuzzy sets in R.  Since the strategy 
of singleton fuzzification, center-average 
defuzzification and product inference is used, the 
output of the fuzzy system can be formulated as 

∑
∑

= =

= =

∏

∏
= N

j iA
n
i

N

j iA
n
ij

x

xW
xy

j
i

j
i

1 1

1 1

)]([

)(
)(

µ

µ

                     
(9) 

Where Wj is the point at which fuzzy 

membership function 
)( jB Wjµ

achieves its 
maximum value. Let 

∑ = =

=

∏

∏
= N

j iA
n
i

iA
n
i

j
x

x
xp

j
i

j
i

1 1

1

)]([

)(
)(

µ

µ

, 
S(x)=[p1(x),p2(x),…, pN(x)]T and W=[W1, W2,…, 
WN]T, then the fuzzy logic system above can be 
rewritten as 

)()( xSWxy T=                                             
(10) 

If all memberships are taken as Gaussian 
functions, then the following lemma holds. 

Lemma 1: Let f(x) be a continuous function 
defined on a compact set Ω. Then for any scalar 
ε>0, there exists a fuzzy logic system in the form 
(10) such that 

ε≤−
Ω∈

)()(sup xyxf
x                                    

(11) 

3. ADAPTIVE FUZZY CONTROLLER 
DESIGN WITH BACKSTEPPING 
 

In this section, we will develop a control 
algorithm for the PMSM system. The system (1) 
leads a system structure, namely, the system with 

(x1, x2,…, x4) as state variables and  
∗
refω

as control 
input. The backstepping design procedure contains 
four steps. At each design step, a virtual control 
function αi (i=1,2,3) will be constructed by using an 
appropriate Lyapunov function. At the last step, the 
real controller is constructed to control the system. 

   Step1: For the reference signal 
∗
refθ

, define the 

tracking error variable as 
∗−= refxe θ11 . From the 

first differential equation of (1), the error dynamic 

system is given by 
∗−= refxe θ 2 . 

   Choose Lyapunov function candidate as 
22

11 eV = , then the time derivative of V1 is 
computed by  

)( 21111
∗−== refxeeeV θ

                               
(12) 

Construct the virtual control law α1 as 
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∗+−= refek θα 
111                                            

(13) 

With  01 >k   being a design parameter. By 
using (12) and (13) can be rewritten as the 
following form: 

21
2
111 eeekV +−=                                         

(14) 

With 122 α−= xe . 

Step 2: Differentiating e2 gives  

123122 αα  −−−=−=
J
Tx

J
Bx

J
Kxe Lt

             
(15) 

Now, choose the Lyapunov function candidate 

as

2
212 2

eJVV +=
. Obviously, the time derivative 

of V2 is given by 

)( 1232

21
2
112212

α


JTBxxKe
eeekeJeVV

Lt −−−+
+−=+=

       

(16) 

Remark 1: in this paper, due to the motor torque 
TL is unknown but its upper bound is d>0 in 
practice system, namely, dTL ≤≤0 . Obviously, 

22
22

12
22

1
2 2

2
deTe L ξ

ε
+≤

, where 2ξ is an arbitrary 
small positive constant. Since J and B are unknown, 
they cannot be used to construct the control signal. 

Thus, let Ĵ be the estimation of J and B̂ be the 
estimation of B. The virtual control 2α  is 
constructed as  

)ˆˆ
2
1(1

11222
2

222 eJxBeek
Kt

−++−−= α
ξ

α 

                                                     
(17
) 

Then the time derivative of V2 can be expressed 
as  

22
212

2232
2
22

2
112

2
1)ˆ(

)ˆ(

dJJe

xBBeeeKekekV t

ξα +−+

−++−−≤




                 

(18) 

With 02 >k  being a design parameter, 

233 α−= xe . 

Step 3: Choose Lyapunov function candidate as 
2
32

1
23 eVV += , then the time derivative of V3 is 

computed by  

3323 eeVV  +=                                               
(19) 

Construct the virtual control law α3 as 

)(1
22332233

4
3 eKxHxHek

H t−+−−−= αα 

                                                
(20
) 

With 0>k being a design parameter. By using 
(19) and (20) can be rewritten of the following 
form. 

22
21222434

3

1

2
3 2

1)ˆ()ˆ( dJJexBBeeeHekV
i

ii ξα +−+−++−≤ ∑
=



                                                                              
(21) 

With 03 >k being a design parameter, 

344 α−= xe . 

Step 4: At this step, we will construct the control 

law 
∗
refω

. In the end, choose the following 

Lyapunov function candidate as 
2
42

1
34 eVV += . 

Then the derivative of V4 is given by 

)(
2
1

)ˆ()ˆ(

4
*

4
22

2

1222

3

1

2
4434

fed

JJexBBeekeeVV

ref

i
ii

+++

−+−+−≤+= ∑
=

ωξ

α          

(22) 

Where 34324 eHxKf +−−= αω 
. 

Notice that f4 containing the derivative of α3. 
This will make the classical adaptive backstepping 
design become very complex and troubled, and the 

designed control law 
∗
refω

 will have the complex 
structure. To avoid the trouble in design procedure 
and simplify the control signal structure, we will 
employ the fuzzy logic system to approximate the 
fuction f4. According to Lemma 1, for any given 

04 >ξ there exists a fuzzy logic system 

)(4 xSW T
so that 
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444 )( σ+= xSWf T
                                       

(23) 

With σ4 being the approximation error and 
satisfying |σ4|≤ξ4. Consequently, a simple method 
computing produces the following inequality: 

2
4

2
4

2
444

2
4

2
42

4

4
44

4444
4434444

2
1

2
1

2
1

2
1

)()(

ξ

ξσ

+++

≤+≤+=

elSSWe
l

Wl
lWSW

eSWefe

T

T
T          

(24)  

It follows immediately from substituting (24) 
into (22) that  

22
2

2
4

2
444

2
4

2
42

4

1222
2

4

1
4

2
1

2
1

2
1

)ˆ(
2
1

)ˆ()ˆ(

dlSSWe
l

JJexBBeekV

T

i
i

i

ξξθ

α

+++−

+−+−+−≤ ∑
=

                 

(25) 

The control input 
∗
refω

is designed as 

4442
4

444
ˆ

2
1

2
1 SSe

l
eek T

ref θω −−−=∗

           
(26) 

Then, define θ=||W2 ||2, at the present stage, to 
estimate the unknown parameters B, J and θ, define 
the adaptive variables as follows: 

BBB −= ˆ~
, JJJ −= ˆ~

和 θθθ −= ˆ~
. In order 

to determine the corresponding adaptation laws, 
choose the following Lyapunov function candidate: 

2

3

2

2

2

1
4

~
2
1~

2
1~

2
1 θ

r
J

r
B

r
VV +++=

             
(27) 

Where ri (i=1, 2, 3) are positive constant. The 
derivative of V is given by 

 

)ˆ
2

(~1)ˆ(~1

)ˆ(~1
2
1

2
1

2
1

44
2
42

4

3

3
122

2

212
1

2
4

2
4

2
2

2
4

1

θθα

ξξ





+−+++

+++++−≤ ∑
=

SSe
l
r

r
JreJ

r

BxreB
r

ldekV

T

i
i

i         

(28) 

According to (28), the corresponding adaptive 
laws are chosen as follows: 

BmxreB ˆˆ
1212 −−=  

JmerJ ˆˆ
2122 −−= α

θθ ˆ
2

ˆ
344

2
42

4

3 mSSe
l
r T −=

                                 
(29) 

Where im (i=1, 2, 3)and l4 are positive constant.  

4. STABILITY ANALYSIS[12] 
 

In this section, substitute (29) into (28) gives 

θθξ

ξ

ˆ~ˆ~ˆ~
2
1

2
1

2
1

3

3

2

2

1

12
4

2
4

2
2

2
4

1

r
m

JJ
r
mBB

r
m

ldekV i
i

i

−−−

+++−≤ ∑
=



            

(30) 

We can change the term BB ˆ~
as 

22

2
1~

2
1)~(~ˆ~ BBBBBBB +−≤+−≤−

. 
Similarly, we have 

22

2
1~

2
1ˆ~ JJJJ +−≤−

22

2
1~

2
1ˆ~ θθθθ +−≤−

                                    
(31)                                                         

Consequently, substitute (31) into (30) yields 

oo

i

bVa
r

m
J

r
mB

r
m

r
m

J
r

m

B
r

mldekV

+−≤

++++−

−+++−≤ ∑

2

3

32

2

22

1

12

3

32

2

2

2

1

12
4

2
4

2
2

2
4

222
~

2
~

2

~
22

1
2
1

2
1

θθ

ξξ

      

(32) 

Where 
},,,2,2,2,2min{

3214321 mmmkkkkao =  

2
2

2
2

2
2

2
42

12
42

12
22

1
0

3

3

2

2

1

1 θ

ξξ

r
m

r
m

r
m JB

ldb

++

+++=
. 

Furthermore, (32) implies that  

0000

00
)(

000

,/)(
/)/)(()( 00

ttabtV
abeabtVtV tta

≥∀+≤
+−≤ −−

             

(33) 
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As a result, all ie (i=1,2,3,4), B~ , J~ andθ
~

 
belong to the compact set 

{ }0000 ,/)(|)~,~,~,( ttabtVVJBei ≥∀+≤=Ω θ
                                                                              
(34) 

So from (34) we have  

00
2
1 /2lim abe

t
≤

∞→  
Namely, all the signals in the position closed-

loop system are bounded. 

5. A COMPARISON WITH THE 
CLASSICAL BACKSTEPPING DESIGN 
 

   In this section, we will give a comparison 
between the adaptive fuzzy backstepping and the 
classical backstepping method. Thus the classical 
backstepping is used to control design for the 
position system of the PMSM drive. And the 
implementation of the control algorithm using the 
MATLAB/Simulink blocks is carried out by both 
control technique. 

5.1 Classical Backstepping Design 
Step 1: For the position signal refθ ∗ , define the 

tracking error variable as 1 1 refe x θ ∗= − . From the 
first differential equation of (1), the error dynamic 
system is given by 1 2 refe x θ ∗= −    

Choose Lyapunov function candidate as 
22

11 eV = , then the time derivative of V1 is 
computed by  

)( 21111
∗−== refxeeeV θ

                                
(35) 

Construct the virtual control law α1 as 
∗+−= refek θα 

111                                              
(36) 

With  1k  >0  being a design parameter. By using 
(35) and (36) can be rewritten as the following 
form: 

21
2
111 eeekV +−=                                           

(37) 

With 122 α−= xe . 

Step 2: Differentiating e2 gives  

123122 αα  −−−=−=
J
Tx

J
Bx

J
Kxe Lt

               
(38) 

Now, choose the Lyapunov function candidate as 
2
212 2

eJVV +=
. Obviously, the time derivative of 

V2 is given by 

)( 11232

2
112212

eJTBxxKe
ekeJeVV

Lt +−−−
+−=+=
α


                

(39) 

The virtual control α2 is constructed as 

)(1
112222 L

t

TeJBxek
K

+−++−= αα 

                 
(40) 

Where k2>0 is a positive design parameter. 
Adding an subtracting α2 in (39) shows that 

32
2
22

2
112 eeKekekV t+−−≤                           

(41) 

With e3=x3-α2. 

Step 3: Differentiating e3 results in the following 
equation 

24433

22233

α
α





−+
+=−=

xHxH
xHxe

                               

(42) 

Choose the Lyapunov function as 
2
32

1
23 eVV += . Thus differentiating V3 gives 

434

3

1

2
3 eeHekV

i
ii +−≤ ∑

=



                                        
(43) 

Where 
)( 22332233

1
3 4

eKxHxHek tH −+−−−= αα 
, 

k3>0 is a positive design parameter and e4=x4-α3. 

Step 4: Choose the Lyapunov function candidate 

as 
2
42

1
34 eVV += , then the time derivative of V4 is 

computed by 

)( 343
*

24

3

1

2
4434

eHxKe

ekeeVV

ref

i
ii

+−+−

+−≤+= ∑
=

αωω 

                                      (44) 
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And the control law 
∗
refω

is designed as  

343244 eHxKekref −++−=∗ αω ω 
              

(45) 

Where k4>0 is a positive design parameter. 

5.2 Stability Analysis 

Furthermore, using the equality (45), it can be 
easily verified that  

2
4

1
4 i

i
iekV ∑

=

−≤
                                                  (46) 

By comparing the control law (26) with (45), it is 
easy to see that the proposed adaptive fuzzy 
backstepping controller have simpler structure than 
the classical backstepping. In addition, the 
controller (45) requires the precise information on 
the nonlinear functions, when the nonlinear 
functions are unknown; the classical backstepping 
cannot be used to obtain the control law.  

6. SIMULATION 
 

The simulation is run for PMSM with the 
parameters: 

J=0.002625Kg·m2, R=1.32Ω, 
B=0.0001034N·m/(rad/s), L=0.0335H, pn=3, 
Kt=1.34N·m/A, Kvi=24, Kvp=25, Kip=10,  
d=25N.m. 

The fuzzy membership functions are  








 +−
=

2
)5(exp

2

1

x
iAµ

,







 +−
=

2
)4(exp

2

2

x
iAµ

 

,







 +−
=

2
)3(exp

2

3

x
iAµ

,







 +−
=

2
)2(exp

2

4

x
iAµ

,








 +−
=

2
)1(exp

2

5

x
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 −−
=

2
)5(exp

2

11

x
iAµ

. 

The control parameters are chosen as follows: 

1k  =17, 2k =11, 3k =35, 4k =13, 1r = 2r = 3r =2, 

1m = 2m = 3m =0.004, 4l =0.7. 

The classical backstepping are also used to 
control the PMSM drive system. The controller 
parameters are chosen as 1k  =17, 2k =11, 3k =35, 

4k =13. 

To give the further comparison, the simulation is 
run under the same assumption that the system 
parameters and the nonlinear functions are 
unknown.  

The reference signals are taken as 
x1d=2sin(t)+2sin(0.5t) with TL being 





≥
≤≤

=
10,5
100,15

t
t

TL
 

The simulation results for both adaptive fuzzy 
control and classical backstepping control are 
shown in Figures 2-18. The reference signals for 
both control approaches are shown in Figure 2. 
Figures 3-6 and Figures 11-14 display the system 
state responses. Figures 8-10 and Figures 16-18 
show the virtual control state signals. Figures 3-7 
shows our control scheme can achieve the better 
control performances than the classical backtepping 
in Figures 11-15. From Figures 8-10 and Figures 
16-18, it can be seen that under both control 
methods, the system follow the desired virtual 
control state signals well. 

 
Figure 2: Reference Signal 

 
Figure 3: x1 
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Figure 4: x2 

 
Figure 5: x3 

 
Figure 6: x4 

 
Figure 7: e1 

 
Figure 8:α1 

 
Figure 9:α2 

 
Figure 10:α3 

 
Figure 11: x1  For Classical Backstepping 

 
Figure 12: x2  For Classical Backstepping 

  
Figure 13: x3  For Classical Backstepping 
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Figure 14: x4  For Classical Backstepping 

 

 
Figure 15: e1  For Classical Backstepping 

  
Figure 16: α1  For Classical Backstepping 

 
Figure 17: α2  For Classical Backstepping 

 
Figure 18: α3  For Classical Backstepping 

7. CONCLUSION 
 

In this paper, an adaptive fuzzy backstepping is 
developed to control PMSM in unmeasured states. 
Fuzzy logic systems are used to approximate the 
uncertain nonlinear functions. The proposed 
controllers which overcome the problems of the 
classical backstepping guarantee that the position 
tracking error converges to a small scope and all the 
closed-loop signals are bounded. Simulation results 
show that the effectiveness of the proposed control 
method. 
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