
Journal of Theoretical and Applied Information Technology
 20th April 2013. Vol. 50 No.2

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

462

EQUIVALENCE CHECKING OF COMBINATIONAL CIRCUIT
USING CHAOTIC PATTERN SIMULATION AND BINARY

DECISION DIAGRAMS

ZHONGLIANG PAN, LING CHEN
Department of Electronics, School of Physics and Telecommunications Engineering,

 South China Normal University, Guangzhou 510006, China.

E-mail: panz@scnu.edu.cn

ABSTRACT

With the increase of complexity of circuits, guaranteeing the correctness of design becomes extremely
important. A new equivalence checking method is presented in this paper for the verifications
of combinational circuits; the method uses the chaotic pattern simulation to find a lot of equivalent nodes,
which results in that the scale of the composite circuit is reduced. The equivalence checking of two
combinational circuits is carried out by constructing a BDD which is corresponding to a circuit being made
up of the composite circuit and interface circuit. If the BDD is a constant 0, then the two combinational
circuits are functional equivalence, the two rest circuits are not equivalent. The experimental results for a
lot of circuits show that the more accurate equivalent nodes can be obtained by using chaotic pattern
simulation in this paper than the random pattern simulation, and the equivalence checking method
presented in this paper is able to verify the combinational circuits in shorter time.

Keywords: Combinational circuits, equivalence checking, formal verification, pattern simulation, binary
decision diagrams.

1. INTRODUCTION

In recent years, the advancements in VLSI
technology have led to the increased complexity in
the circuit hardware design. It is becoming more
and more important to ensure the correctness of
design and the removal of design errors in the
design cycle [1]. The larger sizes of circuits have
made the verifying functional correctness to
increasing difficult. Therefore, it is in a great need
of the equivalence checking technique that can
verify the correctness of circuit design. Here, the
verifying functional equivalence of combinational
circuits is one of basic equivalence checking
problems; it is known to be a co-NP complete
problem.

In the aspect of circuit verification
approaches, Guralnik et al [2] discussed the
simulation-based verification methods for floating-
point division; the method consists of a
comprehensive test plan and a powerful test
generator. Vasudevan et al [3] investigated the
approach to verify the correctness of arithmetic
circuit designs described at the register transfer
level, the approach used the stepwise refinement of
term rewriting system. Hao et al [4] discussed the
state explosion in the verification of timed-circuits

by using abstraction directed by the failure model.
Chandan et al [5] investigated the equivalence
checking approaches for scheduling verification in
high-level synthesis; the cut points in the finite state
machine with data path were used.

In the aspect of system-on-chip(SoC) verification,
Nam et al [6] aimed at various requirements
of SoC verification, discussed a universal
verification method to build an efficient and
structured verification environment, the
standardized test-bench architecture was used in
this method. Xiaoxi et al [7] discussed the
simulation-based verification of SoC, and used
transfer-resource graph (TRG) to generate the test
cases of resource competitions, and gave an
approach that the test cases were structured in
event-driven test programs. Strang et al [8] applied
the holistic technique to the SoC verification. The
hierarchies of signals, color-coding, advanced
packet bundling etc. were used in the SoC
verification and debug procedure. Chakraborty et al
[9] investigated the various timing issues related to
the modular SoC verifications, and presented
a hierarchical method to verify the system level
timing of SoC.

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 20th April 2013. Vol. 50 No.2

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

463

In the applications of verification techniques,
such as the verification of microprocessors,
Schubert et al [10] discussed the verifications of the
Power7 microprocessor and multiprocessor systems,
the random-constrained unit verification method
and the thread-scaling support method in core
verification were used. Ching et al [11] investigated
the verification of external interrupt behaviors of
microprocessor, and presented a tool of processor
exception verification to verify the individual,
multiple, and nested interrupts. Wagner et al [12]
gave a tool called stress-test for the microprocessor
verification, where the stress-test was based on a
markov model driven random instruction generator
with activity monitors. Madl et al [13] proposed a
cross-abstraction real-time analysis framework for
the model-based functional verification of chip
multiprocessors.

Besides, the Petri nets have been applied in the
circuit verification. For example, Little et al [14]
used the labeled hybrid Petri nets to the verification
of analog/mixed-signal circuits. Poliakov et al [15]
made use of a special type of Petri nets to represent
and verify the asynchronous circuits. Weinberger et
al [16] proposed the workflow Petri nets method
that can model the verification processes in the
circuit design flows.

In this paper, a new equivalence checking
method for combinational circuits is presented, the
method uses the chaotic pattern simulation to find a
lot of equivalent nodes, and construct the BDD of
composite circuit to perform the equivalence
checking of two combinational circuits. This paper
is organized as follows. Section 2 gives the brief
description about binary decision diagrams. Section
3 presents the equivalence checking method by
chaotic pattern simulation and binary decision
diagrams. Section 4 gives the experimental results
for a lot of benchmark circuits. Finally, the
conclusions are given in Section 5.

2. BINARY DECISION DIAGRAM

The Boolean variables and Boolean functions are
widely used in the circuit design. The binary
decision diagram (BDD) is a graph representation
of logic Boolean functions [17,18]. Suppose the
Boolean variable xi be from {0,1}, the vector
x=(x1, x2, ⋅⋅⋅ , xn). Let the Boolean functions h be
from {0,1}n →{0,1}m, i.e., the function h is
expressed over the variables x1, x2, ⋅⋅⋅, xn. Every
Boolean function h can be represented by a BDD,
where a following Shannon decomposition is
performed on each node in the BDD.

 1i0i xx hhh ⋅+⋅=

In the above equation, the h0 represents the value
of h at xi =0, the h1 represents the value of h at xi =1.
The binary decision diagram is a rooted directed
acyclic graph, which has two types of terminal
nodes that are referred to as the 0-terminal and the
1-terminal. Each non-terminal node is associated
with a primary input variable so that it has two
outgoing edges called the 0-edge and 1-edge. The
0-edge corresponds to assigning the variable a 0
value, and the 1-edge corresponds to assigning the
variable a 1 value.

 For example, the BDD of function h=x1x2x3+x4
is shown in the Fig.1. The 0-edge is shown by a
dashed line, the 1-edge is shown by a solid line in
the Fig.1.

A BDD is called ordered if it satisfied following

two aspects: (a) Each variable is encountered at
most once on each path from the root node to a
terminal node. (b) The variables are encountered in
the same order on all such paths. The BDD is called
reduced if it has not isomorphic sub-graphs or
instances of both edges from a single node pointing
to the same node. The reduced and ordered binary
decision diagram (ROBDD) is unique for a given
variable order of a Boolean function, it can provide
compact representations of logic Boolean functions
[19]. In the following discussions, the ROBDD is
considered, and for briefness these graphs are
referred to as BDD.

3. EQUIVALENCE CHECK BY CHAOTIC
PATTERN SIMULATION AND BDD

It is necessary to verify the correctness of the

synthesis operations during the synthesis and
optimization of the combinational circuits. The

Fig.1 The BDD of function h.

x1

x2

x3

0 1

x4

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 20th April 2013. Vol. 50 No.2

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

464

main verification task of combinational circuits is to
carry out the equivalence checking, i.e., verifying
the functional equivalence of two combinational
circuits, one of which is the circuit before the
synthesis steps and the other circuit is the post-
synthesis circuit.

3.1 Composite Circuit
A digital circuit is combinational circuit if and

only if the circuit does not contain cycles. A
combinational circuit can be modeled as a directed
acyclic graph. A composite circuit given in the
Fig.2 is produced in order to carry out the
equivalence checking of two combinational circuits.

In the Fig.2, the circuit A is the circuit before the
synthesis steps, the circuit B is the circuit after
synthesis steps. The circuit A and circuit B are
connected to same primary inputs x1, x2, ⋅⋅⋅, xn. The
equivalence checking is the problem to check
whether corresponding primary outputs pairs zi and
yi (i=1,2,⋅⋅⋅,m) in a composite circuit are equivalent.

 Besides, an interface circuit is constructed,
which consists of m XOR gates with two inputs and
an OR gate with m inputs that is the outputs of the
m XOR gates. For every XOR gate, one of its
inputs is the zi, and the other is the yi. The interface
circuit is shown in the Fig.3.

Therefore, verifying the functional equivalence

of two combinational circuits can be implemented
by checking whether the output of the interface

circuit is 0 for all values of the primary inputs x1,
x2, ⋅⋅⋅, xn.

3.2 Equivalence Checking Algorithm
In the following, a new equivalence checking

method for combinational circuits is presented; the
method uses the chaotic pattern simulation to find a
lot of equivalent nodes, which reduces the structure
and the number of signal lines in the composite
circuit. The equivalence checking method is
implemented by constructing the BDDs of the
composite circuit and interface circuit. The method
consists of following five steps:

Algorithm 1

Step 1. Compute the structure level of each node
(signal line) in the circuit A and circuit B.

Step 2. For these nodes whose structure level
being less than a given positive integer L0, search a
lot of possible equivalent nodes in the circuit A and
circuit B of composite circuit by using the chaotic
pattern simulation. Let the set N={(nA1, nB1), (nA2,
nB2), ⋅⋅⋅, (nAs, nBs)} is the set of all the possible
equivalent node pairs, where an element in the N is
a node pair, for example (nA1, nB1), which shows
that the node named as nA1 is possible functional
equivalent to the node named as nB1.

Step 3. Each node pair in the N is the related to
the primary inputs x1, x2, ⋅⋅⋅, xn. Therefore, the
logic function of each node can be expressed by
these primary inputs. Construct the BDD of each
node pair in the N, i.e., construct the BDD of the nAi

and nBi for i=1,2, ⋅⋅⋅, s. Go to step further, check the
functional equivalence of each node pair nAi and
nBi. Obtain a new set M of node pairs by discarding
the not equivalent node pair in the N.

Step 4. For the composite circuit and the set M,
all the equivalent nodes being obtained in the
circuit B are reconnected to the nodes in the circuit
A.

Step 5. Construct the BDD of the circuit that
consists of the composite circuit and the interface
circuit. If the BDD is a constant 0, then the two
circuits A and B are functional equivalence, the two
rest circuits are not equivalent.

The detail implementation of the Algorithm 1 is
given in the following.

In the Step 1 of the Algorithm 1, the structure
level of a node is defined as follows: The structure
levels of all primary input lines are 0. For all non-
primary input lines, for instance, for line P, the
structure level of P is defined by L(P), the L(P)=

Circuit A

Fig.2 Composite circuit.

x1
x2

xn

Circuit B

z1
z2

zm

y1
y2

ym

Fig.3 Interface circuit.

Z1

y1

z2

y2

zm
ym

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 20th April 2013. Vol. 50 No.2

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

465

(a)

x1

x2

x3

z1

(b)

y1

nA1

x1

x2

x3

nA2

nB2

nB1

max(L(S)) +1, the line S belongs to the fanin of line
P. If there is a path from line S to line P, then line S
is called in the transitive fanin of line P.

3.3 Chaotic Pattern Simulation
In the Step 2 of the Algorithm 1, the L0 is a

constant, for example, the L0=145. The task of this
step is to search the possible equivalent nodes
whose structure levels are less than the L0. Here,
the following chaotic pattern simulation is used,
which has three steps.

First of all, define the following chaotic system
which is the map given by the equation:

dk+1= sin(2/dk) k = 0,1,2, ⋅⋅⋅ ⋅⋅⋅. (1)

Where the dk is variable d at the k-th iteration,
the value of dk belongs to (0, 1). The chaotic map
(1) can generate a large number of uncorrelated,
random like and deterministic data sequences. A
small difference in the initial value d0 can lead to a
vast change of the chaotic sequence.

The chaotic map (1) is used to generate the input
vectors of the circuit A and circuit B, i.e., the vector
x=(x1, x2, ⋅⋅⋅, xn). The component xi of a vector x is
0 if the dk being produced by chaotic map (1)
belongs to (0, 0.5). The component xi of a vector x
is 1 if the dk being produced belongs to [0.5, 1]. By
using this approach, we can generate a set T, which
is made up of K input vectors of the circuit A and
circuit B, where the K is a given positive integer.

Secondly, the values of each signal line (whose
structure level being less than a given positive
integer L0) in the circuit A and circuit B are
computed when the K input vectors in the set T are
applied to the primary input lines of the circuit A
and circuit B.

Thirdly, when the K input vectors in the set T are
applied to the primary input lines, for the circuit A,
count the amounts of the value 0 and value 1 for
each signal line whose structure level being less
than a given positive integer L0. Perform similar
this counting for the circuit B.

If a signal line LA in the circuit A has the same
amounts of both the value 0 and value 1 as the
signal line LB in the circuit B, then the signal lines
LA and LB are considered as a possible equivalent
node pairs (LA, LB). Therefore, the set N of
equivalent node pairs is obtained, Let the N={(nA1,
nB1), (nA2, nB2), ⋅⋅⋅, (nAs, nBs)}, which is made up of
s node pairs.

3.4 Construction of BDD

In the Step 3 of the Algorithm 1, the task of this
step is to check the functional equivalence of each
node pair nAi and nBi in the set N, and obtain a new
set M of node pairs by discarding the not equivalent
node pair in the N.

The node pair nAi and nBi is related to the
primary inputs x1, x2, ⋅⋅⋅, xn. The logic functions of
nodes nAi and nBi can be expressed by these
primary inputs. Therefore, the BDDs corresponding
to the nodes nAi and nBi are constructed respectively.
Whether the logic functions of node nAi is
equivalent to the node nBi or not, it can be checked
by comparing the BDDs that corresponding to the
nodes nAi and nBi. The logic functions of nodes nAi
and nBi are equivalent if the two BDDs are
isomorphic graphs; the other logic functions are not
equivalent.

In the Step 4 of the Algorithm 1, the structure of
the composite circuit is modified by the following
mode: all the equivalent nodes being obtained in the
circuit B are reconnected to the nodes in the circuit
A. An example is given as follows.

In the Fig.4, there are two equivalent node pairs

(nA1, nB1) and (nA2, nB2) in the circuits shown in the
Fig.4(a) and Fig.4(b). The composite circuit being
modified is shown in the Fig.4(c), where the nB1 is
directly connected the nA1, the nB2 is directly

(c)

z1

y1

x1

x2

x3

Fig.4 The composite circuit being modified.

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 20th April 2013. Vol. 50 No.2

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

466

connected the nA2, respectively. Thus, the number
of signal lines in the composite circuit is reduced.

In the Step 5 of the Algorithm 1, a BDD is
constructed for the circuit that consists of the
composite circuit and the interface circuit. If the
BDD is a constant 0, then the two circuits A and B
are functional equivalent, the other two circuits are
not equivalent.

4. EXPERIMENTAL RESULTS

The equivalence checking method proposed in

this paper has been implemented in C++ language,
and the method has been applied to carry out the
verifications of combinational circuits in ISCAS’85
benchmark circuits. A lot of experiments have been
carried out on a personal computer with 3.0GHz
and 512MB memory under Windows operation
system. The total numbers of gates in these
ISCAS’85 benchmark circuits are shown in the
Table 1.

Table 1 The ISCAS’85 benchmark circuits.

Circuit Ninputs Noutputs Ngates Nfaults

C499 41 32 202 758
C880 60 26 383 942
C1355 41 32 546 1574
C1908 33 25 880 1879
C2670 233 140 1193 2747
C3540 50 22 1669 3428
C7552 207 108 3512 7550

In the Table 1, the column “Circuit” gives the
names of benchmark circuits. The columns
“Ninputs” and “Noutputs” show the numbers of
primary inputs and primary outputs in the circuits,
respectively. The column “Ngates” shows the total
number of gates in a circuit. The column “Nfaults”
denotes the size of the simplistically reduced
equivalent single stuck-at fault set for a circuit.

The BDDs in the Algorithm 1 are constructed by
following approach. In general, a circuit is made up
of many circuit blocks. The logic function of whole
circuit can be expressed by a sequence of
operations on the logic Boolean functions being
realized by these circuit blocks. The BDD of whole
circuit can be obtained by using these BDDs of all
circuit blocks. The procedure of building BDD is
shown as follows: start from the circuit primary
inputs, each gate output is expressed in terms of its
inputs, and then these BDDs corresponding to the
gate outputs are constructed. Repeat this operation,

until the BDDs of the circuit primary outputs are
constructed.

The following operator ite is used for the
building BDD. For given three logic functions f, g,
and h, ite(f, g, h) = f⋅g + f ⋅h. The ite operator can
realize all Boolean operations with two variables.

Let the F, G, and H are the BDDs of logic
functions f, g and h, respectively. The Shannon
decomposition of the F is expressed by the
following equation:

wwww FFF ⋅+⋅= (2)

The variable w belongs to {x1, x2, ⋅⋅⋅, xn}. The
Fw denotes the F|w=1, the wF denotes the F|w=0.
The Fw and wF are F being evaluated at w=1 and
w=0, respectively. The following equation can be
obtained by the equation (2):

ite(F,G,H)=ite(v, ite(Fv,Gv,Hv),
ite(vF , vG , vH))

The variable v belongs to {x1, x2, ⋅⋅⋅, xn}.
Therefore, the BDD of ite(F,G,H) can be
constructed by using the three BDDs: the F, G, and
H.

For the parameter L0 in the Step 2 of Algorithm
1, its value is set to less than λ⋅Lmax, where the Lmax
is the maximal structure level of signal lines in a
circuit, the λ is a constant, it is set to 2/3, i.e., λ=2/3.

In these experiments, the Algorithm 1 is used to
carry out the equivalence checking of two types of
combinational circuits: The ISCAS’85 circuits and
their non-redundant versions, for example, C499 vs.
C499nr, where the C499nr is a non-redundant
version of C499. The time being needed for the
Algorithm 1 is less than one minute for the
equivalence checking of the circuits C499, C880
and C1355, and is greater than one minute but less
than two minutes for the equivalence checking of
the circuits C1908, C2670, C3540 and C7552.

The experimental results also demonstrate that
the chaotic pattern simulation in this paper can get
more accurate equivalent nodes than the random
pattern simulation, the number of nodes in the BDD
corresponding to whole circuits are reduced greatly.

5. CONCLUSIONS

The equivalence checking of the combinational

circuits is one important aspects in circuit design, it
is known to be a co-NP complete problem. In this
paper, the chaotic pattern simulation and BDD are
used to perform the equivalence checking of

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 20th April 2013. Vol. 50 No.2

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

467

combinational circuits; a lot of equivalent nodes can
be found to reduce the number of nodes in the
composite circuit. Further work needs to be done
such as acquire more equivalent nodes by using
pattern simulation.

ACKNOWLEDGEMENTS

This work was supported by National Natural
Science Foundation of China (No.61072028), the
Project of Department of Education of Guangdong
Province (No.2012KJCX 0040), Guangdong
Province & Chinese Ministry of Education
Cooperation Project of Industry, Education and
Academy (No.2009B090300339).

REFERENCES:

[1] C.Karfa, D.Sarkar, C.Mandal. “Verification of

datapath and controller generation phase in
high-level synthesis of digital circuits”. IEEE
Trans. on Computer-Aided Design of
Integrated Circuits and Systems, vol.29, no.3,
2010, pp.479-492.

[2] E.Guralnik, M.Aharoni, A.J.Birnbaum,
A.Koyfman. “Simulation-based verification of
floating-point division”. IEEE Trans. on
Computers, vol.60, no.2, 2011, pp.176-188.

[3] S.Vasudevan, V.Viswanath, R.W.Sumners,
J.A.Abraham. “Automatic verification of
arithmetic circuits in RTL using stepwise
refinement of term rewriting systems”. IEEE
Trans. on Computers, vol.56, no.10, 2007,
pp.1401-1414.

[4] Z.Hao, C.J.Myers, D.Walter, S.Little,
T.Yoneda. “Verification of timed circuits with
failure-directed abstractions”. IEEE Trans. on
Computer-Aided Design of Integrated Circuits
and Systems, vol.25, no.3, 2006, pp.403-412.

[5] K.Chandan, D.Sarkar, C.Mandal, P.Kumar.
“An equivalence-checking method for
scheduling verification in high-level
synthesis”. IEEE Trans. on Computer-Aided
Design of Integrated Circuits and Systems,
vol.27, no.3, 2008, pp.556-569.

[6] Y.Y.Nam, K.J.Beom, K.N.Do, M.Byeong.
“Beyond UVM for practical SoC verification”.
Proceedings of International SoC Design
Conference, Jeju (Korea), Nov.17-18, 2011,
pp.158-162.

[7] X.Xiaoxi, L.C.Chew. “Using transfer-resource
graph for software-based verification of
system-on-chip”. IEEE Trans. on Computer-
Aided Design of Integrated Circuits and
Systems, vol.27, no.7, 2008, pp.1315-1328.

[8] A.Strang, D.Potts, S.Hemmady. “A holistic
approach to SoC verification”, Proceedings of
International Symposium on Quality Electronic
Design, San Jose (USA), March 18-19, 2008,
pp.417-422.

[9] R.Chakraborty, D.Chowdhury. “A hierarchical
approach towards system level static timing
verification of SoCs”. Proceedings of IEEE
International Conference on Computer Design,
Squaw Creek (USA), Oct.4-7, 2009, pp.201-
206.

[10] K.D.Schubert, W.Roesner, J.Ludden,
J.Jackson. “Functional verification of the IBM
Power7 microprocessor and Power7
multiprocessor systems”. IBM Journal of
Research and Development, vol.55, no.3, 2011,
101-107.

[11] Y.F.Ching, H.W.Kai, Z.J.Kun, H.I.Jer.
“Automatic verification of external interrupt
behaviors for microprocessor design”. IEEE
Trans. on Computer-Aided Design of
Integrated Circuits and Systems, vol.27, no.9,
2008, pp.1670-1683.

[12] I.Wagner, V.Bertacco, T.Austin. “Micro-
processor verification via feedback-adjusted
markov models”. IEEE Trans. on Computer-
Aided Design of Integrated Circuits and
Systems, vol.26, no.6, 2007, pp.1126-1138.

[13] G.Madl, S.Pasricha, N.Dutt, S.Abdelwahed.
“Cross-abstraction functional verification and
performance analysis of chip multiprocessor
designs”. IEEE Trans. on Industrial
Informatics, vol.5, no.3, 2009, pp.241-256.

[14] S.Little, D.Walter, C.Myers, R.Thacker,
S.Batchu, T.Yoneda. “Verification of analog/
mixed-signal circuits using labeled hybrid petri
nets”. IEEE Trans. on Computer-Aided Design
of Integrated Circuits and Systems, vol.30,
no.4, 2011, pp.617-630.

[15] I.Poliakov, A.Mokhov, A.Rafiev, D.Sokolov,
A.Yakovlev. “Automated verification of
asynchronous circuits using circuit petri nets”.
Proceedings of IEEE International Symposium
on Asynchronous Circuits and Systems,
Newcastle (UK), April 7-11, 2008, pp.161-170.

[16] K.Weinberger, S.Bulach, R.Bosch.
“Application of workflow petri nets to
modeling of formal verification processes in
design flow of digital integrated circuits”.
Proceedings of Design, Automation and Test in
Europe, Munich (Germany), March 10-14,
2008, pp.937-938.

[17] S.Miremadi, B.Lennartson, K.Akesson. “A
BDD-based approach for modeling plant and

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 20th April 2013. Vol. 50 No.2

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

468

supervisor by extended finite automata”. IEEE
Trans. on Control Systems Technology, vol.20,
no.6, 2012, pp.1421-1435.

[18] O.Keren, I.Levin, R.S.Stankovic. “Determining
the number of paths in decision diagrams by
using autocorrelation coefficients”. IEEE
Trans. on Computer-Aided Design of
Integrated Circuits and Systems, vol.30, no.1,
2011, pp.31-44.

[19] J.A.Carrasco, V.Sune. “An ROBDD-based
combinatorial method for the evaluation of
yield of defect-tolerant systems-on-chip”. IEEE
Trans. on Very Large Scale Integration (VLSI)
Systems, vol.17, no.2, 2009, pp.207-220.

http://www.jatit.org/

	ZHONGLIANG PAN, LING CHEN

