
Journal of Theoretical and Applied Information Technology 
 20th April 2013. Vol. 50 No.2 

© 2005 - 2013 JATIT & LLS. All rights reserved.  
 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195 

 
401 

 

A HYBRID GLOBAL NUMERICAL OPTIMIZATION WITH 
COMBINATION OF EXTREMAL OPTIMIZATION AND 

SEQUENTIAL QUADRATIC PROGRAMMING 
 

1,2PENGCHEN, 3ZAI-SHENG PAN, 4YONG-ZAI LU 
1Zhejiang Supcon Research Co., LTD., Hangzhou, P. R. China 

2Department of Control science and engineering, Zhejiang University, Hangzhou, P. R. China 
3Department of Control science and engineering, Zhejiang University, Hangzhou, P. R. China 
4Department of Control science and engineering, Zhejiang University, Hangzhou, P. R. China 

E-mail:  1chenpeng@supcon.com, 3panzs@hz.cn, 4y.lu@ieee.org 
 

ABSTRACT 
 

In recent years, many efforts have focused on cooperative (or hybrid) optimization approaches for their 
robustness and efficiency to solve decision and optimization problems. This paper proposes a novel hybrid 
solution with the integration of bio-inspired computational intelligence extremal optimization (EO) and 
deterministic sequential quadratic programming (SQP) for numerical optimization, which combines the 
unique features of self-organized criticality (SOC), non-equilibrium dynamics and global search capability 
in EO with local search efficiency of SQP. The performance of proposed EO-SQP algorithm is tested on 
twelve benchmark numerical optimization problems and compared with some other state-of-the-art 
approaches. The experimental results show the EO-SQP method is capable of finding the optimal or near 
optimal solutions for nonlinear programming problems effectively and efficiently. 

Keywords: Extremal optimization (EO), Sequential quadratic programming (SQP), Memetic algorithms 
(MA), Nonlinear programming (NLP), Numerical optimization 

 
1. INTRODUCTION  

With the high demand in decision and 
optimization for many real-world problems and the 
progress in computer science, the research on novel 
global optimization solutions has been a challenge 
to academic and industrial societies. During past 
few decades, various optimization techniques have 
been intensively studied; those techniques follow 
different approaches and can be divided roughly 
into three main categories, namely, the 
deterministic methods [1], stochastic methods [2] 
and bio-inspired computational intelligence [3]. 

In general, most global optimization problems 
are intractable, especially when the optimization 
problem has complex landscape and the feasible 
region is concave and covers a very small part of 
the whole search space [4]. Solution accuracy and 
global convergence are two important factors in the 
development of optimization techniques. 
Deterministic search methods are known to be very 
efficient with high accuracy. Unfortunately, they 
are easily trapped in local minima [5]. On the other 
hand, the methods of computational intelligence [3] 
are much more effective for traversing these 

complex surfaces and inherently better suited for 
avoiding local minima. However, computational 
intelligence has its weakness in slow convergence 
and providing a precise enough solution because of 
the failure to exploit local information [6]. 
Moreover, for constrained optimization problems 
involving a number of constraints with which the 
optimal solution must satisfy, computational 
intelligence methods often lack an explicit 
mechanism to bias the search in feasible regions 
[4][7][8]. 

During the last decades, a particular class of 
global-local search hybrids named “memetic 
algorithms” (MAs) are proposed [9], which are 
motivated by Richard Dawkins’s theory [10]. MAs 
are a class of stochastic heuristics for global 
optimization which combine the global search 
nature of EA with local search to improve 
individual solution [11]. They have been 
successfully applied to hundreds of real-world 
problems such as optimization of combinatorial 
optimization [12], multi-objective optimization [13], 
bioinformatics [14], etc. 

This paper proposed a novel hybrid EO-SQP 
method with the combination of recently proposed 
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extremal optimization (EO) and the popular 
deterministic sequential quadratic programming 
(SQP) under the conceptual umbrella of MA. EO is 
a general-purpose heuristic algorithm, with the 
superior features of self-organized criticality (SOC), 
non-equilibrium dynamics, co-evolutions in 
statistical mechanics and ecosystems respectively 
[15] [16]. SQP has been one of the most popular 
methods for nonlinear optimization because of its 
efficiency of solving medium and small size 
nonlinear programming problems [1][17]. It 
guarantees local optima as it follows a gradient 
search direction from the starting point towards the 
optimum point and has special advantages in 
dealing with various constraints [18]. This will be 
particularly helpful for the hybrid EO-SQP 
algorithm when solving constrained optimization 
problems: the SQP can also serve as a means of 
“repairing” infeasible solutions during EO 
evolution. The proposed method balances both 
aspects through the hybridization of heuristic EO as 
the global search scheme and deterministic SQP as 
the local search scheme. 

The rest of this paper is organized as follows: In 
section 2, the nonlinear optimization problem 
with/without constraints is described in a general 
formulation. Section 3 presents the EO-SQP 
fundamental and algorithm in detail. In section 4, 
the proposed approach is used to solve twelve 
benchmark test functions, and the results are 
quantitatively compared with genetic algorithm 
(GA), particle swarm optimization (PSO), SQP and 
some other popular methods such as Stochastic 
Ranking (SR) [8], Simple Multimembered 
Evolution Strategy (SMES) [19] and Auxiliary 
Function Method (AFM) [20]. Finally, the 
concluding remarks are addressed in Section 5. 

2. PROBLEM FORMULATION 

Many real-world optimization problems can be 
mathematically modeled in terms of a desired 
objective function subject to a set of constraints as 
follows: 

 1 2Minimize ( ),    [ , ,..., ]nf X X x x x=  (1) 

subject to 

 ( ) 0;     1, 2,...,tg X t p≤ =  (2) 

 ( ) 0;     1, 2,...,uh X u q= =  (3)  

 ;     1, 2,...,v v vx x x v n≤ ≤ =  (4) 

where nX R∈  is an n-dimensional vector 
representing the solution of the problem (1) - (4), 

( )f X  is the objective function, which needs to 

satisfy p-inequality constraints ( )tg X , q-equality 
constraints ( )uh X , vx  and vx  are the lower and 
upper bounds of the variable vx .  

The above formulation is an instance of the well-
known nonlinear programming (NLP) problem. In 
general, the global optimization of NLP is one of 
the toughest NP-hard problems. Solving this type of 
problems has become a challenge to computer 
science and operations research. 

3. EO-SQP OPTIMIZATION INSPIRED BY 
MEMETIC ALGORITHM 

3.1 Extremal Optimization 

The Extremal Optimization (EO) proposed by 
Boettcher and Percus [15][16] is derived from the 
fundamentals of statistical physics and self-
organized criticality (SOC) [21] based on Bak-
Sneppen (BS) model [22] which simulates far-from 
equilibrium dynamics in statistical physics and co-
evolution[23]. Generally speaking, EO is 
particularly applicable in dealing with large 
complex problems with rough landscape, phase 
transitions passing “easy-hard-easy” boundaries or 
multiple local optima. It is less likely to be trapped 
in local minima than traditional gradient-based 
search algorithms. The research results by Chen and 
Lu show EO and its derivatives can be effectively 
applied in solving multi-objective combinatorial 
hard benchmarks and real-world optimization 
problems [24] [25] [26] [27]. 

3.2 Sequential quadratic programming (SQP) 

After its initial proposal by Wilson in 1963 [28], 
the sequential quadratic programming (SQP) 
method was popularized in the 1970’s by Han [29] 
and Powell [30]. SQP proves itself as the most 
successful method and outperforms other nonlinear 
programming methods in terms of efficiency and 
accuracy to solve nonlinear optimization problems. 
The solution procedure is on the basis of 
formulating and solving a quadratic sub-problem 
with iterative search.  

3.3 MA based Hybrid EO-SQP algorithm 

As mentioned above, conventional optimization 
techniques based on deterministic rules often fail or 
get trapped in local optimum when solving complex 
problems. In contrast to deterministic optimization 
techniques, many computational intelligence based 
optimization methods are good at global search, but 
relatively poor in fine-tuned local search when the 
solutions approach to a local region near the global 
optimum. According to so-called “No-Free-Lunch” 
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Theorem by Wolpert and Macready [31], a search 
algorithm strictly performs in accordance with the 
amount and quality of the problem knowledge they 
incorporate. This fact clearly underpins the 
exploitation of problem knowledge intrinsic to MAs 
[32]. Under the framework of MAs, the stochastic 
global search heuristics work together with 
problem-specific solvers, in which Neo-
Darwinian’s natural evolution principles are 
combined with Dawkins’ concept of a meme [10] 
defined as a unit of cultural evolution that is 
capable of performing individual learning (local 
refinement). The global character of the search is 
given by the evolutionary nature of computational 
intelligence approaches while the local search is 
usually performed by means of constructive 
methods, intelligent local search heuristics or other 
search techniques [11]. The hybrid algorithms can 
combine the global explorative power of 
computational intelligence methods with the local 
exploitation behavior of conventional optimization 
techniques, complement their individual weak 
points, and thus outperform either one used alone. 

In this study, a MA based hybrid EO-SQP 
algorithm is developed and applied to nonlinear 
programming problems. The proposed algorithm is 
a hybridization of EO and SQP. We intend to make 
use of the capacity of both algorithms: the ability of 
EO to find a solution close to the global optimum 
and effectively dealing with phase transition; the 
ability of SQP to fine-tune a solution quickly by 
means of local search and repair infeasible solutions. 
To implement EO-SQP optimization, the following 
practical issues need to be addressed. 

3.4 Fitness function definition 

The fitness function measures how fit an 
individual (i.e., solution) is, and the “fittest” one has 
more chance to be inherited into the next 
generation. A “global fitness” must be defined to 
evaluate a solution in the proposed EO-SQP 
algorithm. To solve the NLP optimization 
problems, the global fitness is defined as the object 
function value in Eq. (1) for unconstrained 
benchmark problems: 

 ( ) ( )globalFitness S f S=   (5) 

For constrained NLP optimization problems, a 
popular penalization strategy is used in EO-SQP 
evolution in order to transform the constrained 
problem to unconstrained one. If a solution is 
infeasible, its fitness value is penalized according to 
the violations of constraints defined in Eq. (2) and 
Eq. (3): 

 
,

( ) ( ) ( )
t u

global
g h

Fitness S f S Penalty S= +
∏ ∏

  (6) 

Unlike GA, which works with a population of 
candidate solutions, EO depends on a single 
individual (i.e. chromosome) based evolution. 
Through always performing mutation on the worst 
component and its neighbors successively, the 
individual in EO can evolve itself toward the global 
optimal solution generation by generation. This 
requires a suitable representation which permits 
each component to be assigned with a quality 
measure (i.e. fitness) called “local fitness”. In this 
paper, the local fitness kλ  is defined as an 
improvement in global fitness globalFitness  made by 
the mutation imposed on the kth component of best-
so-far chromosome S : 

 ( ) ( )
( ) ( )

k local global

global global k

Fitness k Fitness k
Fitness S Fitness S

λ = = ∆

′= −
  (7) 

3.5 Termination criteria 

Termination criteria are used for the detection of 
an appropriate time to stop the optimization run. In 
this paper, the termination criteria are designed 
based on two widely used rules. If the predefined 
maximum generation is exceeded; or an error 
measure in dependence on the known optimum is 
satisfied (we can assume that the algorithm has 
managed to discover the global minimum), the 
algorithm should terminate. Denote bestS  as the 
best-so-far solution found by the algorithms and *S  
as the optimum solution of the functions. The 
search is considered successful, or in other words, 
the near-optimal solution is found, if bestS  satisfies 
that * *( ) / 1 3F F F e− < −  (for the case optimum value 

* 0F ≠ ) or *( ) 1 3F F e− < −  (for the case optimum 
value * 0F = ). These criteria are perfectly suitable 
for comparing the performance of different 
algorithms. 

3.6 Workflow and Algorithm 

The hybrid algorithm proposed in this study 
combines EO and SQP method. The structure of the 
hybrid EO-SQP is based on the standard EO with 
which the characteristic of gradient search is added 
by propagating individual solution with SQP 
algorithm during the EO evolution. In this section, 
we illustrate the workflow of the EO-SQP 
algorithm and introduce three mutation operators 
adopted in this paper: the standard EO mutation, 
SQP mutation and Multi-start Gaussian mutation; 
To utilize the advantages of each mutation operator, 
one or more phases of local search (mutation 
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operator) are applied to the best-so-far solution S  
based on a probability parameter mp  in each 
generation. In contrast to the standard EO mutation, 
when SQP mutation or Multi-start Gaussian 
mutation is adopted, we use the “GEOvar” [33] 
strategy to evolve the current solution by improving 
all variables simultaneously, as an attempt to speed 
up the process of local search. The flowchart of the 
proposed EO-SQP algorithm is shown in Figure. 1. 

4. EXPERIMENTAL TEST ON 
BENCHMARK FUNCTIONS 

In this section, twelve widely used NLP 
benchmark problems are introduced, which have 
been already extensively discussed in many 
published literatures. These benchmark functions 
make it possible to study the proposed EO-SQP 

algorithm in comparison with other state-of-the-art 
methods and some well-known results published 
recently. 

4.1 Unconstrained problems 

First, the performance of the proposed algorithm 
is tested on six well-known unconstrained problems 
with the detailed description in appendix. For close 
comparison of solution accuracy, the Runtime, 
success rate, best, average, worst and standard 
deviation values obtained from total 10 independent 
runs of proposed EO-SQP, standard GA, standard 
PSO and standard SQP on the six test functions are 
presented in Table 1. The best results among the 
four approaches are shown in bold. “Success” 
represents the success rate (percentage of success to 
discover the global minimum), and “Runtime” is 
the average runtime when the algorithm stops 
according to the termination criteria defined in 
section 3.5. In our experiments, the population size 
of GA and PSO are set to 100 and 50, respectively.  

As shown in Table 1, the EO-SQP algorithm 
proposed in this study is able to find the global 
optima consistently for all six unconstrained 
benchmark functions. The GA, PSO, SQP have a 
very low successful rate for most benchmark 
problems (Michalewicz, Schwefel, Rastrigin and 
Rosenbrock functions). In contrast, the proposed 
EO-SQP algorithm achieved a success rate of 100% 
for all the six problems. Moreover, EO-SQP is a 
quite efficient method; the computational time is 
significantly reduced in comparison with GA and 

Termination?

New Generation

Randomly generate the 
mutation step for each 

component

Optimize the 
Best-so-far solution for N 

iterations using SQP 
algorithm

Mutation on the worst 
component

Calculate  localized fitness 
for the each component

Find the worst component 

Randomly generate new 
chromosome by adding a   

Gaussian distributed 
vector to best-so-far 

solution 

Y

N

Stop

Global Fitness Calculation

If current solution is better
than best so far solution

Replace the best solution 
with current solution

Y

N

EO mutation SQP mutation Multi-start 
Gaussian 
mutation

Select the Mutation operator based on a randomly 
generated probability

EO Evolution Cycle

To Fitness evaluation

Evolve new generated 
chromosome for M 
iterations by SQP 

Mutations for EO-SQP 
algorithm

Start

Create the initial 
Solution randomly

 
Figure. 1 Flowchart of the EO-SQP algorithm 

Table 1. Comparison results for six benchmark unconstrained functions 

PROBLEMS 
(*OPTIMUM) ALGORITHM RUNTIME 

(S) 
SUCCESS 

(%) WORST MEAN BEST STD. DEV 

MICHALEWICZ 
(-9.66) 

EO-SQP 25.6757 100 -9.66 -9.66 -9.66 1.39E-07 
GA 179.2503 0 -8.7817 -9.2020 -9.4489 0.1989 
PSO 93.7919 0 -8.6083 -9.0733 -9.4796 0.2264 
SQP 0.1497 0 -3.0995 -4.7615 -6.4559 1.0656 

SCHWEFEL 
(-12569.5) 

EO-SQP 0.8257 100 -1.2569E+04 -1.2569E+04 -1.2569E+04 6.2674E-08 
GA 1233.5 0 -1.014E+04 -1.0719E+04 -1.1227E+04 321.5311 
PSO 218.7393 0 -7.150E+03 -8.8250E+03 -1.0037E+04 832.7256 
SQP 0.1046 0 -5.5547E+03 -6.8011E+03 -7.7497E+03 720.3097 

GRIEWANK 
(0) 

EO-SQP 0.0962 100 0 0 0 0 
GA 64.1398 80 0.1346 0.0172 7.8931E-04 0.0422 
PSO 102.9561 0 5.1443 0.7026 0.0074 1.5786 
SQP 0.0167 100 0 0 0 0 

RASTRIGIN 
(0) 

EO-SQP 13.2099 100 0 0 0 0 
GA 137.1764 30 2.9849 0.9999 7.7225E-004 1.1942 
PSO 102.3654 0 109.8554 70.4078 44.4531 22.6459 
SQP 0.7289 0 267.6421 188.2451 92.5310 62.4574 

ACKLEY 
(0) 

EO-SQP 3.8563 100 0 0 0 0 
GA 16.8079 90 1.5017 0.1511 9.3102E-04 0.4619 
PSO 103.9701 0 11.7419 7.0320 3.8700 2.7755 
SQP 0.0404 0 19.8725 19.5720 19.1787 0.2086 

ROSENBROCK 
(0) 

EO-SQP 2.6241 100 4.3065E-04 4.3200E-05 1.5547E-08 1.3614E-04 
GA 1195.6 20 22.1819 3.5821 9.9942E-04 6.6396 
PSO 94.3400 0 853.3601 150.7588 27.1222 242.7105 
SQP 1.6760 50 3.9866 1.9933 1.1961E-007 2.1011 
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PSO. Although the deterministic SQP is the fastest 
method among the four, it is easily trapped in local 
minima as shown in simulation results 
(Michalewicz, Schwefel, Rastrigin, Ackley and 
Rosenbrock functions). The proposed EO-SQP 
method can successfully prevent solutions from 
falling into the deep local minimal which is far 
from the global optimum, reduce evolution process 
significantly with efficiency, and converge to the 
global optimum or its close vicinity. 

4.2 Constrained problems 

In this study, we selected six (g04, g05, g07, g09, 
g10 and g12) out of thirteen benchmark functions 
published in [8][19][20] as constrained test 
problems, since the characteristics of those 
functions contain the “difficulties” in having global 
optimization problems by using an evolutionary 
algorithm. Table 2 shows the performance 
comparisons among Stochastic Ranking (SR) [8], 
Simple Multimembered Evolution Strategy (SMES) 
[19], Auxiliary Function Method (AFM) [20] and 
proposed hybrid EO-SQP. The best results among 
the four approaches are shown in bold. 

Among these four methods (see Table 2), the 
EO-SQP appears to be more promising. It provided 
three better “best” results (g05, g07 and g10) 
among six functions, and two similar “best” results 
(g04 and g12). Moreover, the EO-SQP provided 
better “mean” results for three problems (g05, g07 
and g10), and similar “mean” results in other two 

(g04 and g12). Finally, the EO-SQP obtained better 
“worst” results in two problems (g05 and g07), and 
it reached similar “worst” solutions in other two 
problems (g04 and g12). The proposed EO-SQP can 
produce the better, if not optimal, solutions for most 
of the six benchmark problems with the exception 
of test function g09. With respect to test function 
g09, although the EO-SQP fails to provide superior 
results, the performance of the four methods are 
very close actually. Generally, constrained 
optimization problems with equality constraints are 
very difficult to solve. It should be noted that for 
the three test functions with equality constraints 
(g05, g07, and g10), EO-SQP can provide better 
performance than other three methods, the optimum 
solutions are found by EO-SQP for all the three 
problems with equality constraints; while the SR, 
SMES and AFM fail to find the global optimums. 
This is due to the hybrid mechanism that the EO-
SQP can benefit from the strong capability of SQP 
to deal with constraints during the EO evolution. 

4.3 Dynamics analysis of the hybrid EO-SQP 

The convergence and the dynamics during the 
optimization of EO and its derivatives remain up to 
now challenging open problems. In this section, we 
use a typical optimization run of Ackley function 
( * 0F = ) as an example to analyze evolution 
dynamics of the proposed EO-SQP and show the 
mechanism strength of proposed algorithm. 

http://www.jatit.org/


Journal of Theoretical and Applied Information Technology 
 20th April 2013. Vol. 50 No.2 

© 2005 - 2013 JATIT & LLS. All rights reserved.  
 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195 

 
406 

 

Figure. 2 shows the search dynamics of basic EO 
and the hybrid EO-SQP, which demonstrates the 
fitness evolution of the current solution in a typical 
run on Ackley function. The figure shows that both 
basic EO and hybrid EO-SQP descend sufficiently 
fast to a near-optimal solution with enough 
fluctuations to escape from local optima and 
explore new regions of configuration space. It can 
be seen quite clearly that with the help of SQP, the 

hybrid EO-SQP can execute a more deeply search 
in comparison with basic EO. The search efficiency 
of basic EO can be improved significantly by 
incorporating local search method SQP into the 
evolution, when EO-SQP converges to the close 

vicinity of the global optimum, the SQP mutation 
will help to find the global optimum point in just a 
few runs, as shown in Figure. 2. 

Evolutions of best solution fitness as a function 
of time for EO-SQP, GA, PSO and SQP on Ackley 
function are also shown in Figure. 3. The 
convergence rate of the proposed EO-SQP 
algorithm is a little slower than GA and PSO at the 
early stage, due to better solution diversity of 
population based methods (GA and PSO); however, 
when the solution approach to a near region of the 
global optimum, the convergence rate of EO-SQP 
increases rapidly and reaches the global minimum 
very fast due to the efficiency of gradient based 
SQP local search. On the other hand, the 
conventional SQP converges to a local minimal far 
from the global optimum with high efficiency and 
can’t escape from it during the rest runs due to the 
weakness of gradient search. 

As a general remark on the comparisons above, 
EO-SQP shows better performance with respect to 
state-of-the-art approaches in terms of the quality, 
the robustness, and the efficiency of search. The 

results show that 
the proposed EO-
SQP finds optimal 
or near-optimal 
solutions quickly, 
and has more 

statistical 
soundness and 
faster convergence 
rate than the 

compared 
algorithms. It 
should be noted 
that the factors 
contributing to the 
performance of the 
proposed EO-SQP 
method are the 
global search 
capability of EO 
and the capability 
of the gradient-
based SQP method 
to search local 

optimum 
efficiently with high accuracy and deal with various 
constraints. 

5. CONCLUDING REMARKS 

Table 2. Comparison results for six benchmark functions with constraints 
Function and 

optimum 
Statistical 
features 

Approaches for constrained optimization 
SR[8] SMES[19] AFM[20] EO-SQP 

g04 Best -30665.539 -30665.539 -30665.50 -30665.539 
Mean -30665.539 -30665.539 -30665.32 -30665.539 

-30665.539 Worst -30665.539 -30665.539 -30665.23 -30665.539 
Std. Dev 2.0e-05 0 0.063547 4.4238e-07 

g05 
Best *5126.497 5126.599 5126.5 5126.498 

Mean 5128.881 5174.492 5126.65 5126.498 

5126.498 Worst 5142.472 5304.167 5126.96 5126.498 
Std. Dev 3.5 5.006e+01 0.145896 7.4260e-13 

g07 Best 24.307 24.327 24.30694 24.306 
Mean 24.374 24.475 24.30789 24.306 

24.306 Worst 24.642 24.843 24.30863 24.306 
Std. Dev 6.6e-02 1.32e-01 4.9999e-04 3.0169e-14 

g09 
Best 680.630 680.632 680.6376 680.6387 

Mean 680.656 680.643 680.67833 680.8047 

680.630 Worst 680.763 680.719 680.6980 680.9844 
Std. Dev 3.4e-02 1.55e-02 0.016262 0.1145 

g10 
Best 7054.316 7051.903 7049.333 7049.248 

Mean 7559.192 7253.047 7049.545 7049.312 

7049.248 Worst 8835.655 7638.366 7049.603 7049.891 
Std. Dev 5.3e+02 1.3602e+02 0.071513 0.2034 

g12 Best 1 1 1 1 
Mean 1 1 0.999988 1 

1 Worst 1 1 0.999935 1 
Std. Dev 0 0 1.7e-05 0 

* The best result of problem g05 by SR is even better than the optimal solution of 5126.498. This is the consequence of transforming 
equality constraints into inequality constraints by a relaxed parameter ε [8]. 
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Figure. 2 Comparison of current solution fitness 

generation by generation between EO and EO-SQP on 
Ackley Function 
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In this paper, a novel MA based Hybrid EO-SQP 
algorithm is proposed for global optimization of 
NLP problems which are typically quite difficult to 
solve exactly. Traditional deterministic methods are 
more vulnerable to getting trapped in the local 
minima; while most computational intelligence 
based optimization methods with global search 
capability tend to suffer from high computation 
cost. Therefore, under the framework of MA, the 
general-purpose heuristic EO with deterministic 
local search method SQP are combined together in 
order to develop a robust and fast optimization 

technique with global search capability and 
mechanism to deal with constraints. The hybrid 
method avoids the possibility of local minimum by 
providing the gradient search method with the 
exploration ability of EO. Those advantages have 
been clearly demonstrated by the comparison with 
some other state-of-the-art approaches over 12 
widely used benchmark functions. 

The future studies involve more fundamental 
research on evolution dynamics of the proposed 
method and the application of EO-SQP for more 
benchmark and real-world problems. 
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