
Journal of Theoretical and Applied Information Technology 
 20th April 2013. Vol. 50 No.2 

© 2005 - 2013 JATIT & LLS. All rights reserved.  
 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195 

 
373 

 

DESIGN AND IMPLEMENTATION OF A DATA CACHE FOR 
UM_BUS 

 
1YANG XIAOLIN, 1ZHANG WEIGONG* 

1 Department of Information Engineering, Capital Normal University, Beijing 100048, China 

 E-mail: xiao_lin_yang_cnu@163.com, zwg771@yahoo.com.cn  
 
 

ABSTRACT 
 

In modern embedded systems, most of them mount with a certain amount of peripherals devices, often a 
large number of I / O time is consumed  in the process of processor access these devices, thereby reducing 
the overall performance of embedded systems. However, to open up a space in the memory for caching of 
these device’s data can resolve this problem. UM_BUS (Dynamically Reconfigurable High-speed Serial 
Bus) with 32 bits wide is the research object of this paper, whose bandwidth can reach 269.5M/s in the 
ideal condition, but the large number of I/O operations has a serious impact on bus bandwidth utilization. In 
order to resolve this problem, a data cache mechanism based on the structure and basic theory of cache is 
designed and implemented for UM_BUS in this paper. After the experimental test, the mechanism is 
proved to run in the UM_BUS controller driver effectively and improves the bandwidth utilization of 
UM_BUS significantly, therefore, enhances the performance of the bus to some extent. 
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1. INTRODUCTION  
 

UM_BUS (Dynamic Reconfigurable High-speed 
Serial Bus) is a multi-channel high-speed serial 
system bus based on M_LVDS, which transfers 
data in parallel in a redundant lane with a 
dynamically reconfigurable method. At the same 
time, the UM_BUS detects the lane faults in real 
time and isolates the fault line, and then according 
to the existing line of effective, date are transmitted 
after dynamic restricted, thereby improving the 
overall system reliability and fail safety. This bus 
supports only one master device and 32 external 
devices (slave) by now. The slave device contains 
three address spaces: configuration space, I/O 
space, and storage space, in order to access these 
address spaces, two kinds of command are designed 
in the bus controller (master). One of them is short 
packet data frame used to access the slave device's 
I/O space and configuration space by master, the 
other is long packet data frame designed for the 
master to access the slave device's memory space. 
Every time the master accesses the slave device's 
memory data with the size of 1KB. In the ideal 
case, the bandwidth of UM_BUS with 32 lanes can 
be achieved 269.5M/s, unfortunately, the actual 
bandwidth utilization is limited as the large number 
of devices I/O operations in bus, which in a certain 
extent affects the performance of the bus. To solve 
this problem, drawing on the page cache 

mechanism in Linux [1, 2] and the drive-level 
caching mechanism proposed in the literature [3], 
we design a date cache for UM_BUS and realize it 
in the driver of UM_BUS controller. With this date 
cache, the bus controller can buffer some of data 
from the salve devices which is non-real time, and 
at the same time, device write operation is delayed. 
As the date cache implementation, the number of 
the device’s I/O operations greatly reduced, 
therefore promoting bus bandwidth utilization and 
improving bus performance. 

This paper is divided into five sections. The first 
section briefly introduces UM_BUS, as well as the 
problem needed to be resolved and solution method. 
Section 2 analyses the buffer block replacement 
algorithm and proposes an improved LRU 
algorithm realized with stack. Section 3 is the most 
important part of this paper, the design and 
implementation of data cache mechanism for 
UM_BUS will be discussed in this section. The test 
and analysis method which proves the correctness 
and validity of the date cache is in section 4. The 
last section is the conclusion of the paper and the 
overview of the next step work. 

2. REPLACEMENT POLICY 
 
2.1 Common replacement algorithm 

The cache replacement algorithm is a major 
factor affecting the performance of the cache 
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mechanism, there are many kinds of replacement 
algorithm, such as LRU, FIFO and RANDOM are 
the frequently-used. In general, the advantage of 
FIFO and RANDOM algorithm is relatively simple 
to achieve, but the performance is poor, a worse 
problem which maybe occur when performing 
FIFO or RANDOM algorithm is page thrashing, 
that is, the cache mechanism down to nothing more 
than the repeated backward and forward swapping 
of buffer blocks[4, 5]. LRU is short for least 
recently used; it is based on a inference of program 
locality principle: the recently-used block possibly 
to be accessed again in future. The performance of 
LRU is optimal while implementation is very 
complex. Generally, there are two main methods to 
realize LRU: counter and stack. The first one 
usually depends on a lot of hardware support and is 
suitable for large-capacity cache. On the contrary, 
LRU with stack implementation is very simple and 
fit for small-capacity cache. As the slave devices of 
UM_BUS has a Features of small amount of data 
and a small-capacity cache is enough to UM_BUS, 
so stack method is adopted to implement LRU in 
this paper. Besides, some improvements are made 
in the algorithm to make it more applicable to the 
cache of UM_BUS. 

2.2 The improved LRU replacement 
algorithm  

There are two doubly linked lists, called the 
active list and the inactive list, are taken to realize 
the improved LRU [6]. Every buffer block must 
and only be grouped into one list, taking 
BLK_active status bit to mark it. The active list 
tends to include the buffer blocks that have been 
accessed recently, while the inactive list tends to 
include the blocks that have not been accessed for 
some time. Clearly, buffer blocks should be stolen 
from the inactive list [4, 5]. The relationship of 
these two lists is illustrated clearly in Fig.1. The 
active list is used to implement the LRU with the 
traditional stack method, that is, every accessed 
buffer block will be move to the head of list (Fig.1 
⑤). With the passage of time, this results in a kind 
of “equilibrium” in which frequently used buffer 
blocks are at the beginning of the list and least used 
buffer blocks are right at the end. On the other 
hand, the inactive list is managed with simple NRU 
algorithm, which not needs to move element of 
linked list when a buffer block is accessed. NRU is 
an approximation algorithm of LRU, whose 
implementation requires an access bit called 
BLK_reference [6] to mark one buffer block 
whether accessed or not recently. There are two 
functions in BLK_reference; one function is 

worked as the evidence which is needed when a 
buffer block is moved from inactive list to active 
list. As long as every hitting or replacement of a 
buffer block in inactive list is occur, a judgment of 
BLK_referenced should be taken. If the 
BLK_reference is 1, the relevant buffer block will 
be put into active list (Fig.1 ④ ), else set 
BLK_referece to 1(Fig.1 ②). In other words, only 
recently accessed buffer block will be added to the 
active list. It  required a second proof to convert a 
buffer block from inactive to active; the other 
function is used as a mark by NRU. When one 
buffer block needs to be replaced, found a buffer 
block from the header of inactive list at first, if 
BLK_reference of the found buffer block is 0, then  
replaced it (Fig.1 ①), else set the BLK_reference 
bit to 0 (Fig.1 ③) and then retain the buffer block 
in cache and continue to check the next block. If the 
BLK_reference is still 1 until the last block of 
inactive list is checked, then the search procedure 
should back to the header of inactive list and 
continue until a block is found with BLK_reference 
is 0. In the actual implement, of course, it must be 
take into considered that moved part of buffer block 
from active list to inactive list when the amount of 
buffer block in active list is excessive after the 
search failure (Fig.1 ⑥). 

 
Fig1. Block movement between the LRU lists 

3. DESIGN AND IMPLEMENTATION OF 
CACHE 
 

The cache mentioned in this paper refers to a 
software-defined data structure, which is used to 
buffer the data got from the slave devices by 
master, rather than a hardware cache for 
accelerating memory access. It is implemented in 
the driver of UM_BUS controller (master). The 
Detail design and implementation of this cache are 
described as below. 
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3.1 Cache workflow 
With the data cache, the process of master device 

from received to completed an I/O request is 
approximately shown in Figure 2. 

 
Fig2. Cache workflow diagram 

When received an I/O request, the master will 
access the slave device with three means. The first 
is directly access the slave device. For real-time 
performance consideration, some slave devices 
can’t buffer the device’s data, only directly perform 
I/O operations (Fig.2 ① ); Accessing the data of 
slave devices from cache is the second way, it is as 
the same as the traditional way to cache. At first 
searching the cache with the offset address of 
request data, otherwise, the replacement algorithm 
will be called to find a block to buffer the read-
write data (Fig.2 ③); The third way will be taken 
when the I/O request is marked with a flag that 
accessing the device directly and the device’s data 
is cacheable. In this case, the first step is to 
synchronize the corresponding dirty blocks in cache 
with the device and set these blocks to an outdated 
state. If the I/O request is write, it is also essential 
to set the buffered blocks related the device to an 
outdated state. At last, directly I/O operations on 
devices will be performed (Fig.2 ②). Among these 
three methods, only the first one doesn’t modify the 
structural information of cache, the others will 
change. 

3.2 Module division 
In order to make the implementation of cache 

more feasible and easily, it is necessary to 
modularize the cache mechanism. In this paper, the 
cache mechanism is divided into four modules 
included data structure management module, I/O 
management module, find and replacement module 
and dirty blocks write-back module. Among these 
modules, the I/O management module can be 
further divided into I/O transfer module, error 
handling module and read-ahead module; Find and 
replacement module is composed with find sub-
module and replacement sub-module. The 
relationship of these four modules is shown in 
Figure 3. 

 
Fig3. Module relationship diagram 

The basic functions of these modules will be 
described as below.  

3.2.1 Data structure management module 
There are four kinds of data structure that are 

designed to manage the cache information, is they 
are, umbus_cache, dev_inode, block and buffer. We 
will generally describe the basic information of 
each structure in this section.  
① The structure of umbus_cache manages the 

global information of cache, including the 
linked list for managing device nodes and 
two block linked list used to implement 
LRU algorithm and so on. Specific 
members of this structure are shown in 
Table 1. It is noted that background_thresh 
and dirty_thresh fields are designed to 
control dirty blocks write-back. As soon as 
the number of dirty blocks exceeds the 
value of dirty_thresh, a forced write-back 
thread will be called and be pended until 
the number under the value of 
background_thresh. The polling Timer 
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member is a timer which is used for waking 
the periodic write-back thread. (Note: There 
are only list important members in the 
following table. The structure of list_head 
is a double-linked list. The connection 
between these list_head members involved 
in tables is shown in Figure 3). 

TABLE1: THE STRUCTURE OF UMBUS_CACHE 

 

Type Field Description 
struct  

dev_inode ** 
dev_tree Manage all of pointer to 

the device node address. 
struct list_head active_list The head of active double-

linked list 
struct list_head inactive_list The head of inactive 

double-linked list 
struct list_head private_list The head of a device with 

dirty data. 
long background_t

hresh 
The dirty background 
threshold. 

long dirty_thresh The maximum number of 
dirty blocks allowed. 

long nrblks The number of block in 
cache. 

KTIMER  pollingTimer The timer for waking 
periodic write-back 
thread. 

… … Other information such as 
lock. 

  

   
 

②The dev_inode structure describes the basic 
information of a specified device and the linked list 
of corresponding blocks. Table 2 illustrates the 
detail members of dev_inode. There is a rw_lock 
number which is a Reader-Writer lock with priority 
for writers, it allows shared read the buffer data for 
multiple readers but restricts only one write 
operation at a time; The io_blk and dirty_blk 
member manage the dirty block list of the device 
with together. The io_blk list links dirty blocks 
which are ready to write back to device. These field 
is designed to avoid several processes flush a dirty 
block to device at the same time, when a process 
issued an request to flush a dirty block detects a 
write-back operation on the dirty block is 
performing, it will directly give up the write-back 
request, which is conducive to reduce I/O 
operations; The tags field is used to record the 
status of buffer blocks related to the device, 
including three states: TAG_EXIST, TAG_DIRTY 
and TAG_WRITEBACK. With the tags field, a 
process can quickly detect the status of a block, 
which greatly improves search efficiency.  

③ The block structure remains the basic 
information of buffer blocks, and also manages a 
linked list of buffer structure. The specific 
configuration is shown in Table 3. The buffer_list 

linked list describes the offset address of changed 
data in the block; The VirtualAddress is the address 
of the buffer block data in memory; The Flags field 
records the status of the block (see Table 4). 

 
TABLE2． THE STRUCTURE OF DEV_INODE 

Type Field Description 
Struct 

umbus_cache* 
UM_cache The pointer points to the 

address of cache space. 
unsigned long devNum The device number 
unsigned long flags The status of device 

struct rw_struct rw_lock Reader-writer lock for 
device 

struct list_head dev_list_dri
ty 

The list links the next 
device node with dirty 
data. 

struct list_head io_blk The head of list which 
links the dirty blocks 
reading to write back. 

struct list_head dirty_blk The head of list which 
links the dirty blocks 

struct list_head blk_list_lru The head of list which 
links the blocks. 

long tags[][] the state of buffer blocks 
long i_size The size of device’s data 

space. 
long nrblks The number of buffer 

block. 
… … Other information such 

as lock. 
 

TABLE3． THE STRUCTURE OF BLOCK 
Type Field Description 

struct dev_inode* pdev_inode The pointer point to 
the belonging 
device structure. 

unsigned long index The block offset in 
device 

unsigned long flags The information of 
block attributes. 

struct list_head blk_list The list links to the 
next buffer block of 
the same device. 

struct list_head dirty_io_list The list links to the 
next dirty buffer 
block of the same 
device. 

struct list_head buffer_list The head of the list 
which links buffer. 

struct list_head lru The list links to the 
next block that is 
belong to either 
active list or 
inactive list. 

void * virtualAddress The address of data 
in memory. 

… … Other information 
such as lock. 

 
③ The buffer structure records the location 

information of dirty data in a buffer block. When 
only a small amount of data in a block is modified, 
write-back the whole block data will waste a lot of 
I/O time flushing the data which is unchanged to 
device. However, according to the location 
information recorded in the buffer structure, we can 
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be able to write back fewer dirty data to device, 
which is benefit to improve the bandwidth 
utilization of UM_BUS. Table 5 shows the detail 
members of this structure.  

 
TABLE4． FLAGS DESCRIBING THE STATUS OF A BLOCK 

Flag name Meaning 
BLK_locked The block is locked, it is involved in a 

device I/O operation. 
BLK_new The block is initialized. 
BLK_uptodate The data of the block is update and 

invalid. 
BLK_error Exception information thrown in a 

device I/O operation. 
BLK_referenced The block has been recently accessed. 
BLK_active The block is in the active block list. 
BLK_dirty The block has been modified 
BLK_private The buffer list in block is not NULL. 
BLK_writeback The block is writing back. 

 
TABLE5．THE STRUCTURE OF BUFFER 

 
The relationship of these four structures is shown 

in Figure 4. 

 
Fig4.The relationship of five data structures diagram 

3.2.2 I/O management module 
This module mainly manages the slave device’s 

access operations. There are two ways to access the 
device’s data, including read/write the device’s data 
with cache and direct I/O transfer the device’s data 
bypass cache. Just as the Figure 3 shown, the 
module can be divided into three sub-modules: I/O 

transfer, error handling and read-ahead of data. In 
these sub-modules, error handling module deals 
with the exception information thrown by the 
master device when an error is occurred in the 
process of accessing slave device. According to the 
characteristics of UM_BUS, exception information 
fall into two types, one is that the slave device is 
unreachable, if it happened, all buffer blocks of this 
device should be set to invalid state; The other type 
is that a device I/O operation is timeout, for 
example, an I/O congestion is generated at the time 
of accessing the device’s data. In this case, nothing 
should do with the cache except return the error 
status simply. I/O transfer module is used to 
complete the read/write operations of devices, just 
as previously described, the module includes two 
methods to access the device’s data. When the I/O 
request is marked with a flag that accessing the 
device directly and the device’s data is cacheable, it 
is necessary to synchronize the dirty blocks in cache 
with this device and set the related blocks to an 
outdated state, and then access the device directly.  
Read-ahead module read several adjacent data 
blocks of a slave device before they are actually 
requested. In most cases, read-ahead significantly 
enhances the access performance of device, because 
it lets the device handle fewer commands, each of 
which refers to a larger chunk of adjacent blocks. 
Moreover, it improves system responsiveness. A 
process that is sequentially reading a device does 
not usually have to wait for the requested data 
because it is already available in cache. Therefore, 
read-ahead is conducive to improve the bandwidth 
utilization of UM_BUS. However, read-ahead is of 
no use when a process performs random accesses to 
devices [7-10]; in this case, it is actually detrimental 
because it tends to waste space in the cache with 
useless information. Therefore, the kernel reduces 
or stops read-ahead when it determines that the 
most recently issued I/O access is not sequential to 
the previous one. In this paper, we draw on the 
read-ahead algorithm in Linux [4] and simplify it to 
satisfy our requirement. The simplified read-ahead 
algorithm is described as below: if a read request 
issues as the first one read command to an 
appointed device, the device will output the demand 
block as well as several adjacent blocks (referred to 
as a group), such pre-fetch process is called 
synchronous read-ahead. If the request that in the 
second reading the device’s data misses in the 
cache, which means that the access to the device is 
not sequential, synchronous read-ahead will be 
continued adopted (in other words, the number of 
pre-read blocks stay unchanged) and the device is 
marked with non-sequential flag; if the request hits, 

Type Field Description 
struct block * b_blk The pointer point to the 

belonging block. 
unsigned long from The start offset address of 

dirty data in block. 
unsigned long To The end offset address of 

dirty data in block. 
struct list_head b_this_blk The list links the next buffer 

structure. 
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that is, the requested data block in the group of the 
last pre-read, it indicates that the access to the 
device is sequential, then marked the device with 
sequential flag. At the same time, the number of 
pre-read blocks will be double in the next operation 
of reading the device, such pre-fetch process is 
called asynchronous read-ahead. Any one cache 
miss happened, as well as the device is non-
sequential, will return to synchronize read-ahead 
processing, that is, the number of pre-read block is 
reset to the initial value [8-10]. 

3.2.3 Find and replacement module 
According to the device number and data offset 

provided by caller, the find module will searches 
for the cache at first and return the address of a 
block head to the caller if cache hit happened, 
otherwise, the replacement module implemented 
with the aforementioned LRU algorithm will be 
called to find a clear block or replace a block from 
inactive list, and then allocate this block to the 
caller.  

3.2.4 Dirty blocks write-back module 
As we have seen, this module is designed to 

flush dirty data in cache to the slave device. Draw 
lessons from the write-back mechanism of the page 
cache in Linux, we design this module as follow. 

  In this paper, the mechanisms for flushing dirty 
data are divided into four types for different 
conditions and at different times: 

 Periodic write back the dirty blocks which has 
stayed dirty for a long time. 

 If there are too many dirty blocks in the cache, 
a mandatory flush mechanism will be 
triggered to synchronize blocks with the slave 
device until the number of dirty blocks returns 
to an acceptable level. 

 A process requests all pending changes of a 
specified device to be flushed, it does this by 
invoking a system call. Through this 
mechanism, the user can flush the data of an 
appointed device directly. 

 If too much dirty blocks of a specified device 
have existed in the cache after a write operate, 
a balance mechanism will be called to keep 
the number of this device’s dirty blocks under 
the threshold (the threshold is different for 
different devices). It is often trigged as a result 
of a massive write operation. This mechanism 
is conducive to save data timely and avoid 
mass of dirty data lost when the device 
becomes fault. 

It should be noted that third write-back 
mechanism must ensure that the write-back process 
is complete, while others don’t need to wait for the 

completion. The general relationship between these 
four mechanisms is illustrated in Figure 5 (In the 
figure, the writeback_dev_inodes function scan the 
linked list called private_list which is included in 
the umbus_cache structure, and then flush dirty 
blocks into the relevant device; The 
sync_dev_inode function is used for synchronizing 
the cache with a specified device; The do_write_blk 
function  flushes a dirty block to the relevant 
device). 

 The first two mechanisms are implemented by 
means of two threads called pdflush in driver, one 
thread executes the periodic synchronization code, 
which is waked automatically by a timer defined in 
the umbus_cache structure. The other thread is 
responsible for forced flush operation and will be 
triggered when too many number of dirty blocks 
existed in the cache or failed to call the replacement 
algorithm (that is, there are no clear blocks in the 
inactive linked list). 

 
Fig5. Write-back Mechanism Figure 

4. EXPERIMENTAL RESULTS 
 

  In order to verify the correctness and 
effectiveness of the cache, we take a UM_BUS 
controller as a PCI device in PC, and develop a 
driver, in which implemented the data cache 
mechanism, for this device in the windows xp 
platform. In our experiment, the data cache is fixed 
in the size of 128KB and every block is 1kB. 
Besides, we design a software, shown in Figure 6, 
to control the cache mechanism and make test more 
easily and accurate. After a large number of 
experimental tests and results analysis, we prove 
that the date cache can buffer the salve device’s 
data effectively and timely write back dirty data to 
the device correctly, cache replacement algorithm 
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also work validly. All of these results demonstrate 
that the data cache mechanism is correct. 

 
Fig6. Cache Control Platform 

There are two major factors decide the 
performance of cache: cache speedup and cache hit 
rate. As the design and implementation of a date 
cache is the primary focus in this paper, the impact 
of cache hit rate will be neglected, we focus our 
attention on the influence of cache speedup. 
Therefore, it is assumed that the size of cache and 
hit rate is certain in our experiment. The formula of 
cache speedup is R=Tm/Tc. Tm is the access time 
of cache, in fact, it is the access time of memory; Tc 
is the access time of slave device. The access time 
of memory is certain and is 10ns in our experiment. 
Based on a large number of experimental tests, we 
get the average access time of slave device in 
UM_BUS is 10±2μs. It is clear that the cache 
speedup is promoted an order of magnitude. These 
test results prove that the cache mechanism in this 
paper can accelerate the slave device’s access 
efficiency, and therefore demonstrate the 
effectiveness of the cache. 

5.  CONCLUSIONS AND FURTHER WORK 
 

This paper focuses on the problem of low 
bandwidth utilization in UM_BUS. The goal is to 
find an effective solution to resolve this problem. 
Through researching and analyzing the page cache 
of Linux and the feature of UM_BUS, we propose a 
data cache mechanism which is suitable for 
UM_BUS, as well as design and implement it in the 
driver of UM_BUS controller. It not only solves the 
aforementioned problem, but also makes up for the 
defect of cache proposed in [5] which only mergers 
the I/O commands and not buffers the device’s 
data. The cache runs in UM_BUS very well. 
Analyzing the factors that affect the performance of 
the cache and cache hit rate will be our future work, 
and we will improve the cache according to the 
study results. In addition, the level of improvement 

to UM_BUS with the data cache still needs further 
research. 
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