
Journal of Theoretical and Applied Information Technology
 20th April 2013. Vol. 50 No.2

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

373

DESIGN AND IMPLEMENTATION OF A DATA CACHE FOR
UM_BUS

1YANG XIAOLIN, 1ZHANG WEIGONG*

1 Department of Information Engineering, Capital Normal University, Beijing 100048, China

 E-mail: xiao_lin_yang_cnu@163.com, zwg771@yahoo.com.cn

ABSTRACT

In modern embedded systems, most of them mount with a certain amount of peripherals devices, often a
large number of I / O time is consumed in the process of processor access these devices, thereby reducing
the overall performance of embedded systems. However, to open up a space in the memory for caching of
these device’s data can resolve this problem. UM_BUS (Dynamically Reconfigurable High-speed Serial
Bus) with 32 bits wide is the research object of this paper, whose bandwidth can reach 269.5M/s in the
ideal condition, but the large number of I/O operations has a serious impact on bus bandwidth utilization. In
order to resolve this problem, a data cache mechanism based on the structure and basic theory of cache is
designed and implemented for UM_BUS in this paper. After the experimental test, the mechanism is
proved to run in the UM_BUS controller driver effectively and improves the bandwidth utilization of
UM_BUS significantly, therefore, enhances the performance of the bus to some extent.

Keywords: UM_BUS, LRU, Cache, Buffer, Read-ahead

1. INTRODUCTION

UM_BUS (Dynamic Reconfigurable High-speed
Serial Bus) is a multi-channel high-speed serial
system bus based on M_LVDS, which transfers
data in parallel in a redundant lane with a
dynamically reconfigurable method. At the same
time, the UM_BUS detects the lane faults in real
time and isolates the fault line, and then according
to the existing line of effective, date are transmitted
after dynamic restricted, thereby improving the
overall system reliability and fail safety. This bus
supports only one master device and 32 external
devices (slave) by now. The slave device contains
three address spaces: configuration space, I/O
space, and storage space, in order to access these
address spaces, two kinds of command are designed
in the bus controller (master). One of them is short
packet data frame used to access the slave device's
I/O space and configuration space by master, the
other is long packet data frame designed for the
master to access the slave device's memory space.
Every time the master accesses the slave device's
memory data with the size of 1KB. In the ideal
case, the bandwidth of UM_BUS with 32 lanes can
be achieved 269.5M/s, unfortunately, the actual
bandwidth utilization is limited as the large number
of devices I/O operations in bus, which in a certain
extent affects the performance of the bus. To solve
this problem, drawing on the page cache

mechanism in Linux [1, 2] and the drive-level
caching mechanism proposed in the literature [3],
we design a date cache for UM_BUS and realize it
in the driver of UM_BUS controller. With this date
cache, the bus controller can buffer some of data
from the salve devices which is non-real time, and
at the same time, device write operation is delayed.
As the date cache implementation, the number of
the device’s I/O operations greatly reduced,
therefore promoting bus bandwidth utilization and
improving bus performance.

This paper is divided into five sections. The first
section briefly introduces UM_BUS, as well as the
problem needed to be resolved and solution method.
Section 2 analyses the buffer block replacement
algorithm and proposes an improved LRU
algorithm realized with stack. Section 3 is the most
important part of this paper, the design and
implementation of data cache mechanism for
UM_BUS will be discussed in this section. The test
and analysis method which proves the correctness
and validity of the date cache is in section 4. The
last section is the conclusion of the paper and the
overview of the next step work.

2. REPLACEMENT POLICY

2.1 Common replacement algorithm

The cache replacement algorithm is a major
factor affecting the performance of the cache

http://www.jatit.org/
mailto:zwg771@yahoo.com.cn

Journal of Theoretical and Applied Information Technology
 20th April 2013. Vol. 50 No.2

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

374

mechanism, there are many kinds of replacement
algorithm, such as LRU, FIFO and RANDOM are
the frequently-used. In general, the advantage of
FIFO and RANDOM algorithm is relatively simple
to achieve, but the performance is poor, a worse
problem which maybe occur when performing
FIFO or RANDOM algorithm is page thrashing,
that is, the cache mechanism down to nothing more
than the repeated backward and forward swapping
of buffer blocks[4, 5]. LRU is short for least
recently used; it is based on a inference of program
locality principle: the recently-used block possibly
to be accessed again in future. The performance of
LRU is optimal while implementation is very
complex. Generally, there are two main methods to
realize LRU: counter and stack. The first one
usually depends on a lot of hardware support and is
suitable for large-capacity cache. On the contrary,
LRU with stack implementation is very simple and
fit for small-capacity cache. As the slave devices of
UM_BUS has a Features of small amount of data
and a small-capacity cache is enough to UM_BUS,
so stack method is adopted to implement LRU in
this paper. Besides, some improvements are made
in the algorithm to make it more applicable to the
cache of UM_BUS.

2.2 The improved LRU replacement
algorithm

There are two doubly linked lists, called the
active list and the inactive list, are taken to realize
the improved LRU [6]. Every buffer block must
and only be grouped into one list, taking
BLK_active status bit to mark it. The active list
tends to include the buffer blocks that have been
accessed recently, while the inactive list tends to
include the blocks that have not been accessed for
some time. Clearly, buffer blocks should be stolen
from the inactive list [4, 5]. The relationship of
these two lists is illustrated clearly in Fig.1. The
active list is used to implement the LRU with the
traditional stack method, that is, every accessed
buffer block will be move to the head of list (Fig.1
⑤). With the passage of time, this results in a kind
of “equilibrium” in which frequently used buffer
blocks are at the beginning of the list and least used
buffer blocks are right at the end. On the other
hand, the inactive list is managed with simple NRU
algorithm, which not needs to move element of
linked list when a buffer block is accessed. NRU is
an approximation algorithm of LRU, whose
implementation requires an access bit called
BLK_reference [6] to mark one buffer block
whether accessed or not recently. There are two
functions in BLK_reference; one function is

worked as the evidence which is needed when a
buffer block is moved from inactive list to active
list. As long as every hitting or replacement of a
buffer block in inactive list is occur, a judgment of
BLK_referenced should be taken. If the
BLK_reference is 1, the relevant buffer block will
be put into active list (Fig.1 ④), else set
BLK_referece to 1(Fig.1 ②). In other words, only
recently accessed buffer block will be added to the
active list. It required a second proof to convert a
buffer block from inactive to active; the other
function is used as a mark by NRU. When one
buffer block needs to be replaced, found a buffer
block from the header of inactive list at first, if
BLK_reference of the found buffer block is 0, then
replaced it (Fig.1 ①), else set the BLK_reference
bit to 0 (Fig.1 ③) and then retain the buffer block
in cache and continue to check the next block. If the
BLK_reference is still 1 until the last block of
inactive list is checked, then the search procedure
should back to the header of inactive list and
continue until a block is found with BLK_reference
is 0. In the actual implement, of course, it must be
take into considered that moved part of buffer block
from active list to inactive list when the amount of
buffer block in active list is excessive after the
search failure (Fig.1 ⑥).

Fig1. Block movement between the LRU lists

3. DESIGN AND IMPLEMENTATION OF
CACHE

The cache mentioned in this paper refers to a
software-defined data structure, which is used to
buffer the data got from the slave devices by
master, rather than a hardware cache for
accelerating memory access. It is implemented in
the driver of UM_BUS controller (master). The
Detail design and implementation of this cache are
described as below.

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 20th April 2013. Vol. 50 No.2

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

375

3.1 Cache workflow
With the data cache, the process of master device

from received to completed an I/O request is
approximately shown in Figure 2.

Fig2. Cache workflow diagram

When received an I/O request, the master will
access the slave device with three means. The first
is directly access the slave device. For real-time
performance consideration, some slave devices
can’t buffer the device’s data, only directly perform
I/O operations (Fig.2 ①); Accessing the data of
slave devices from cache is the second way, it is as
the same as the traditional way to cache. At first
searching the cache with the offset address of
request data, otherwise, the replacement algorithm
will be called to find a block to buffer the read-
write data (Fig.2 ③); The third way will be taken
when the I/O request is marked with a flag that
accessing the device directly and the device’s data
is cacheable. In this case, the first step is to
synchronize the corresponding dirty blocks in cache
with the device and set these blocks to an outdated
state. If the I/O request is write, it is also essential
to set the buffered blocks related the device to an
outdated state. At last, directly I/O operations on
devices will be performed (Fig.2 ②). Among these
three methods, only the first one doesn’t modify the
structural information of cache, the others will
change.

3.2 Module division
In order to make the implementation of cache

more feasible and easily, it is necessary to
modularize the cache mechanism. In this paper, the
cache mechanism is divided into four modules
included data structure management module, I/O
management module, find and replacement module
and dirty blocks write-back module. Among these
modules, the I/O management module can be
further divided into I/O transfer module, error
handling module and read-ahead module; Find and
replacement module is composed with find sub-
module and replacement sub-module. The
relationship of these four modules is shown in
Figure 3.

Fig3. Module relationship diagram

The basic functions of these modules will be
described as below.

3.2.1 Data structure management module
There are four kinds of data structure that are

designed to manage the cache information, is they
are, umbus_cache, dev_inode, block and buffer. We
will generally describe the basic information of
each structure in this section.
① The structure of umbus_cache manages the

global information of cache, including the
linked list for managing device nodes and
two block linked list used to implement
LRU algorithm and so on. Specific
members of this structure are shown in
Table 1. It is noted that background_thresh
and dirty_thresh fields are designed to
control dirty blocks write-back. As soon as
the number of dirty blocks exceeds the
value of dirty_thresh, a forced write-back
thread will be called and be pended until
the number under the value of
background_thresh. The polling Timer

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 20th April 2013. Vol. 50 No.2

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

376

member is a timer which is used for waking
the periodic write-back thread. (Note: There
are only list important members in the
following table. The structure of list_head
is a double-linked list. The connection
between these list_head members involved
in tables is shown in Figure 3).

TABLE1: THE STRUCTURE OF UMBUS_CACHE

Type Field Description
struct

dev_inode **
dev_tree Manage all of pointer to

the device node address.
struct list_head active_list The head of active double-

linked list
struct list_head inactive_list The head of inactive

double-linked list
struct list_head private_list The head of a device with

dirty data.
long background_t

hresh
The dirty background
threshold.

long dirty_thresh The maximum number of
dirty blocks allowed.

long nrblks The number of block in
cache.

KTIMER pollingTimer The timer for waking
periodic write-back
thread.

… … Other information such as
lock.

②The dev_inode structure describes the basic
information of a specified device and the linked list
of corresponding blocks. Table 2 illustrates the
detail members of dev_inode. There is a rw_lock
number which is a Reader-Writer lock with priority
for writers, it allows shared read the buffer data for
multiple readers but restricts only one write
operation at a time; The io_blk and dirty_blk
member manage the dirty block list of the device
with together. The io_blk list links dirty blocks
which are ready to write back to device. These field
is designed to avoid several processes flush a dirty
block to device at the same time, when a process
issued an request to flush a dirty block detects a
write-back operation on the dirty block is
performing, it will directly give up the write-back
request, which is conducive to reduce I/O
operations; The tags field is used to record the
status of buffer blocks related to the device,
including three states: TAG_EXIST, TAG_DIRTY
and TAG_WRITEBACK. With the tags field, a
process can quickly detect the status of a block,
which greatly improves search efficiency.

③ The block structure remains the basic
information of buffer blocks, and also manages a
linked list of buffer structure. The specific
configuration is shown in Table 3. The buffer_list

linked list describes the offset address of changed
data in the block; The VirtualAddress is the address
of the buffer block data in memory; The Flags field
records the status of the block (see Table 4).

TABLE2． THE STRUCTURE OF DEV_INODE

Type Field Description
Struct

umbus_cache*
UM_cache The pointer points to the

address of cache space.
unsigned long devNum The device number
unsigned long flags The status of device

struct rw_struct rw_lock Reader-writer lock for
device

struct list_head dev_list_dri
ty

The list links the next
device node with dirty
data.

struct list_head io_blk The head of list which
links the dirty blocks
reading to write back.

struct list_head dirty_blk The head of list which
links the dirty blocks

struct list_head blk_list_lru The head of list which
links the blocks.

long tags[][] the state of buffer blocks
long i_size The size of device’s data

space.
long nrblks The number of buffer

block.
… … Other information such

as lock.

TABLE3． THE STRUCTURE OF BLOCK
Type Field Description

struct dev_inode* pdev_inode The pointer point to
the belonging
device structure.

unsigned long index The block offset in
device

unsigned long flags The information of
block attributes.

struct list_head blk_list The list links to the
next buffer block of
the same device.

struct list_head dirty_io_list The list links to the
next dirty buffer
block of the same
device.

struct list_head buffer_list The head of the list
which links buffer.

struct list_head lru The list links to the
next block that is
belong to either
active list or
inactive list.

void * virtualAddress The address of data
in memory.

… … Other information
such as lock.

③ The buffer structure records the location

information of dirty data in a buffer block. When
only a small amount of data in a block is modified,
write-back the whole block data will waste a lot of
I/O time flushing the data which is unchanged to
device. However, according to the location
information recorded in the buffer structure, we can

http://www.jatit.org/
http://code.activestate.com/recipes/577803-reader-writer-lock-with-priority-for-writers/
http://code.activestate.com/recipes/577803-reader-writer-lock-with-priority-for-writers/

Journal of Theoretical and Applied Information Technology
 20th April 2013. Vol. 50 No.2

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

377

be able to write back fewer dirty data to device,
which is benefit to improve the bandwidth
utilization of UM_BUS. Table 5 shows the detail
members of this structure.

TABLE4． FLAGS DESCRIBING THE STATUS OF A BLOCK

Flag name Meaning
BLK_locked The block is locked, it is involved in a

device I/O operation.
BLK_new The block is initialized.
BLK_uptodate The data of the block is update and

invalid.
BLK_error Exception information thrown in a

device I/O operation.
BLK_referenced The block has been recently accessed.
BLK_active The block is in the active block list.
BLK_dirty The block has been modified
BLK_private The buffer list in block is not NULL.
BLK_writeback The block is writing back.

TABLE5．THE STRUCTURE OF BUFFER

The relationship of these four structures is shown

in Figure 4.

Fig4.The relationship of five data structures diagram

3.2.2 I/O management module
This module mainly manages the slave device’s

access operations. There are two ways to access the
device’s data, including read/write the device’s data
with cache and direct I/O transfer the device’s data
bypass cache. Just as the Figure 3 shown, the
module can be divided into three sub-modules: I/O

transfer, error handling and read-ahead of data. In
these sub-modules, error handling module deals
with the exception information thrown by the
master device when an error is occurred in the
process of accessing slave device. According to the
characteristics of UM_BUS, exception information
fall into two types, one is that the slave device is
unreachable, if it happened, all buffer blocks of this
device should be set to invalid state; The other type
is that a device I/O operation is timeout, for
example, an I/O congestion is generated at the time
of accessing the device’s data. In this case, nothing
should do with the cache except return the error
status simply. I/O transfer module is used to
complete the read/write operations of devices, just
as previously described, the module includes two
methods to access the device’s data. When the I/O
request is marked with a flag that accessing the
device directly and the device’s data is cacheable, it
is necessary to synchronize the dirty blocks in cache
with this device and set the related blocks to an
outdated state, and then access the device directly.
Read-ahead module read several adjacent data
blocks of a slave device before they are actually
requested. In most cases, read-ahead significantly
enhances the access performance of device, because
it lets the device handle fewer commands, each of
which refers to a larger chunk of adjacent blocks.
Moreover, it improves system responsiveness. A
process that is sequentially reading a device does
not usually have to wait for the requested data
because it is already available in cache. Therefore,
read-ahead is conducive to improve the bandwidth
utilization of UM_BUS. However, read-ahead is of
no use when a process performs random accesses to
devices [7-10]; in this case, it is actually detrimental
because it tends to waste space in the cache with
useless information. Therefore, the kernel reduces
or stops read-ahead when it determines that the
most recently issued I/O access is not sequential to
the previous one. In this paper, we draw on the
read-ahead algorithm in Linux [4] and simplify it to
satisfy our requirement. The simplified read-ahead
algorithm is described as below: if a read request
issues as the first one read command to an
appointed device, the device will output the demand
block as well as several adjacent blocks (referred to
as a group), such pre-fetch process is called
synchronous read-ahead. If the request that in the
second reading the device’s data misses in the
cache, which means that the access to the device is
not sequential, synchronous read-ahead will be
continued adopted (in other words, the number of
pre-read blocks stay unchanged) and the device is
marked with non-sequential flag; if the request hits,

Type Field Description
struct block * b_blk The pointer point to the

belonging block.
unsigned long from The start offset address of

dirty data in block.
unsigned long To The end offset address of

dirty data in block.
struct list_head b_this_blk The list links the next buffer

structure.

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 20th April 2013. Vol. 50 No.2

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

378

that is, the requested data block in the group of the
last pre-read, it indicates that the access to the
device is sequential, then marked the device with
sequential flag. At the same time, the number of
pre-read blocks will be double in the next operation
of reading the device, such pre-fetch process is
called asynchronous read-ahead. Any one cache
miss happened, as well as the device is non-
sequential, will return to synchronize read-ahead
processing, that is, the number of pre-read block is
reset to the initial value [8-10].

3.2.3 Find and replacement module
According to the device number and data offset

provided by caller, the find module will searches
for the cache at first and return the address of a
block head to the caller if cache hit happened,
otherwise, the replacement module implemented
with the aforementioned LRU algorithm will be
called to find a clear block or replace a block from
inactive list, and then allocate this block to the
caller.

3.2.4 Dirty blocks write-back module
As we have seen, this module is designed to

flush dirty data in cache to the slave device. Draw
lessons from the write-back mechanism of the page
cache in Linux, we design this module as follow.

 In this paper, the mechanisms for flushing dirty
data are divided into four types for different
conditions and at different times:

 Periodic write back the dirty blocks which has
stayed dirty for a long time.

 If there are too many dirty blocks in the cache,
a mandatory flush mechanism will be
triggered to synchronize blocks with the slave
device until the number of dirty blocks returns
to an acceptable level.

 A process requests all pending changes of a
specified device to be flushed, it does this by
invoking a system call. Through this
mechanism, the user can flush the data of an
appointed device directly.

 If too much dirty blocks of a specified device
have existed in the cache after a write operate,
a balance mechanism will be called to keep
the number of this device’s dirty blocks under
the threshold (the threshold is different for
different devices). It is often trigged as a result
of a massive write operation. This mechanism
is conducive to save data timely and avoid
mass of dirty data lost when the device
becomes fault.

It should be noted that third write-back
mechanism must ensure that the write-back process
is complete, while others don’t need to wait for the

completion. The general relationship between these
four mechanisms is illustrated in Figure 5 (In the
figure, the writeback_dev_inodes function scan the
linked list called private_list which is included in
the umbus_cache structure, and then flush dirty
blocks into the relevant device; The
sync_dev_inode function is used for synchronizing
the cache with a specified device; The do_write_blk
function flushes a dirty block to the relevant
device).

 The first two mechanisms are implemented by
means of two threads called pdflush in driver, one
thread executes the periodic synchronization code,
which is waked automatically by a timer defined in
the umbus_cache structure. The other thread is
responsible for forced flush operation and will be
triggered when too many number of dirty blocks
existed in the cache or failed to call the replacement
algorithm (that is, there are no clear blocks in the
inactive linked list).

Fig5. Write-back Mechanism Figure

4. EXPERIMENTAL RESULTS

 In order to verify the correctness and
effectiveness of the cache, we take a UM_BUS
controller as a PCI device in PC, and develop a
driver, in which implemented the data cache
mechanism, for this device in the windows xp
platform. In our experiment, the data cache is fixed
in the size of 128KB and every block is 1kB.
Besides, we design a software, shown in Figure 6,
to control the cache mechanism and make test more
easily and accurate. After a large number of
experimental tests and results analysis, we prove
that the date cache can buffer the salve device’s
data effectively and timely write back dirty data to
the device correctly, cache replacement algorithm

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 20th April 2013. Vol. 50 No.2

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

379

also work validly. All of these results demonstrate
that the data cache mechanism is correct.

Fig6. Cache Control Platform

There are two major factors decide the
performance of cache: cache speedup and cache hit
rate. As the design and implementation of a date
cache is the primary focus in this paper, the impact
of cache hit rate will be neglected, we focus our
attention on the influence of cache speedup.
Therefore, it is assumed that the size of cache and
hit rate is certain in our experiment. The formula of
cache speedup is R=Tm/Tc. Tm is the access time
of cache, in fact, it is the access time of memory; Tc
is the access time of slave device. The access time
of memory is certain and is 10ns in our experiment.
Based on a large number of experimental tests, we
get the average access time of slave device in
UM_BUS is 10±2μs. It is clear that the cache
speedup is promoted an order of magnitude. These
test results prove that the cache mechanism in this
paper can accelerate the slave device’s access
efficiency, and therefore demonstrate the
effectiveness of the cache.

5. CONCLUSIONS AND FURTHER WORK

This paper focuses on the problem of low
bandwidth utilization in UM_BUS. The goal is to
find an effective solution to resolve this problem.
Through researching and analyzing the page cache
of Linux and the feature of UM_BUS, we propose a
data cache mechanism which is suitable for
UM_BUS, as well as design and implement it in the
driver of UM_BUS controller. It not only solves the
aforementioned problem, but also makes up for the
defect of cache proposed in [5] which only mergers
the I/O commands and not buffers the device’s
data. The cache runs in UM_BUS very well.
Analyzing the factors that affect the performance of
the cache and cache hit rate will be our future work,
and we will improve the cache according to the
study results. In addition, the level of improvement

to UM_BUS with the data cache still needs further
research.

ACKNOWLEDGMENT

This work was supported by the National Natural
Science Foundation. NO: 61170009.

REFRENCES:

[1] X.Zhang, X. Zuo, “Analysis of Linux Page-cache
and Influence on Disk I/O Optimization”,
Computer and Modernization, Vol. 54, No. 2,
2010, pp. 106-114.

[2] Q.Yang, X. Cui, B. Zhou, “Study and
Implementation of Storage Management
Mechanism for Transactional File System”,
Aeronautical Computing Technique, Vol. 41,
No. 5, 2011, pp. 81-84.

[3] J. Liu, X. Yang, Y. Tang, “Driver Cache: A New
Cache to Improve Disk Performance”, Computer
Engineering, Vol. 30, No. 15, 2004, pp. 62-63.

[4] H.Zhu, H. Dai, Y. Yan, “Summarization on Page
Replacement Algorithms for Flash Memory
Storages”, Journal of Computer Research and
Development, Vol. 48, No. Suppl, 2011, pp. 251-
257.

[5] H. Jin, K. Wang, “Efficient LRU algorithm for
cache scheduling in a disk array system”,
International Journal of Computers &, Vol.
22, No. 3, 2000, pp. 134-139.

[6] G. Jia, X. Li, C. Wang, “Cache Promotion Policy
Using Re-reference Interval Prediction”, Cluster
Computing (CLUSTER), 2012 IEEE International
Conference on , September 24-28, 2012, 2012,
pp. 534-537.

[7] F. Wu, “Sequential File Prefetching in Linux”,
Advanced Operating Systems and Kernel
Applications: Techniques and Technologies.
2010, p. 218-236.

[8] Kyung-Ho Kim, Seung-Ho Lim, Kyu-Ho Park,
“ADAPTIVE READ-AHEAD AND BUFFER
MANAGEMENT FOR MULTIMEDIA
SYSTEMS”, Eighth IASTED International
Conference on Internet and Multimedia Systems
and Applications (IMSA 2004), 2004, pp. 264-
269.

[9] Dorota M. Huizinga, Saurabh Desai,
“Implementation of informed prefetching and
caching in Linux”, International Conference on
Information Technology: Coding and Computing
(ITCC 2000). 2000, pp. 443-448.

[10] Linux man page for read-ahead system call,
Available: http://www.kernel.org/doc/man-
pages/online/ pages/man2/readahead.2.html

http://www.jatit.org/
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6336636
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6336636
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6336636

	1YANG XIAOLIN, 1ZHANG WEIGONG*
	2.1 Common replacement algorithm
	2.2 The improved LRU replacement algorithm
	3.1 Cache workflow
	3.2 Module division
	3.2.1 Data structure management module
	3.2.2 I/O management module
	3.2.3 Find and replacement module
	3.2.4 Dirty blocks write-back module

