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ABSTRACT 
 

Recently Elliptic Curve Digital Signature Standard (ECDSA) is used for smart card applications and 
financial transaction applications, because it needs less memory space, low bandwidth, limited power, reuse 
and portability. So it is more suitable for wireless network applications. Normally it is implemented in two 
ways called as ECDSA over binary field GF (2n) for hardware applications and ECDSA over prime field 
GF (p) for software applications. It has two main computations. One is point addition and another point 
multiplication. In these operations, the point multiplication takes more execution time than point addition. 
Because the latency time of point multiplication is higher than point addition.  So it is necessary to find out 
optimized implementation for point multiplication. This article suggests a technique for point multiplication 
over GF(2n) to increase the speed of the execution using concurrent  computation. 

Keywords: ECDSA,  Binary Field, Time complexity, latency time, parallel computation. 
 
1. INTRODUCTION  

The NIST (National Institute of Standards 
and Technology) has published a standard FIPS 
186-v3 known as Federal Information Processing 
Standard 186-3 version for Digital Signature 
Standard (DSS) applications in 2009. This 
document standardized two approaches for DSS 
which are RSA (Rivast-Shamir-Adleman) and ECC 
(Elliptic Curve Cryptography) based DSS. The 
RSA based DSS is not suitable for wireless and 
smart card applications, because it needs more 
power for large prime number manipulation and 
ECC offer a much shorter key length than RSA. For 
example, the RSA uses 1024,2048,3072,7680 or 
15360 bits of key length for encryption to provide 
security level, and then ECC uses only 
161,224,256,384 or 512 key sizes accordingly to 
provide same security level. In wireless and smart 
card environments, the 1024-bit RSA cannot be 
implemented, while 163-bit ECC can be 
implemented [6]. 
 

The ECC based DSS is also called as 
Elliptic Curve Cryptography Digital Signature 
algorithm (ECDSA). It defines two important 
procedures for digital signature generation and 
verification based on domain parameters. This 
provides Authentication, Integrity and non 
reputation security services to avoid passive and 

active attacks on network [3]. This ECDSA is 
implemented in two different ways by using Finite 
Field (FF) or Galois Field (GF). One is called as 
ECDSA over prime field GF(p) and another is 
called as ECDSA over binary field GF (2m ). The 
ECDSA over prime field is used for software 
application such as online financial transactions and 
commercial applications and another type for 
hardware applications such as designing circuits for 
credit cards, smart cards and commercial 
authentication’s cards. This article mainly focuses 
on ECDSA over binary field. 
 

ECDSA algorithm has some limitations 
such as lack of implementations and low latency 
time of point operations. It is mainly dependent on 
two important point operations called as point 
addition and point multiplication. The point 
addition is a basic operation which needs only 
limited number of clock cycles and its latency time 
is low. But the point multiplication needs more 
number of clock cycles for its latency time [4]. So 
this paper suggests a software scheduling technique 
to reduce the dependent operation into independent 
operations for parallel processing. When the ECC is 
used in software scheduling for hardware 
execution, it reduces number of clock pulses and 
latency time of point multiplication operations in 
order to increase the speed of algorithm [1].  
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The section-II gives an introduction to 
finite field and overview of ECDSA over 2n and 
subsequently the section-III concludes the literature 
survey of previous methods. The Section-IV 
describes a suggested implementation for ECDSA. 
This innovative technique is analysed and 
compared with existing ECDSA as given in 
section-V. Then the section-VI concludes with 
some of applications which may be implemented by 
using the proposed methodology. Finally the 
section VII acknowledges to previous contributors 
on ECDSA. 

 

2. BASIC CONCEPTS FOR ECDSA 

2.1 Finite Field over GF(2n) 
Theory of Finite Field is a main part of 

mathematical theory in cryptology which is used to 
implement ECC over 2n. This is defined with the 
help of Abelain group, commutative ring and fields 
[11]. 

 
Theorem-1: An abelain group (G,*) is a set of 
elements over operation * (assumed as +) with the 
following group laws and commutative law. 

 
1. a+b ∈ G 
2. (a+b)+c=a+(b+c)∈G 
3. a+(-a)=(-a)+a=0∈G 
4. a+0=0+a=a∈G 
5. a+b=b+a∈G where a,b,c,0,-a,-b,-c∈G 

 
Theorem-2: A commutative ring (R,+,×) is an 
algebraic structure of G with two operations called 
addition and multiplication with the following 
rules. 

 
1.a×b∈G ∈G 
2.(a×b)×c=a×(b×c)∈G 
3. (a+b)×c=(a×c)+(b×c)∈G 
4. a×b=b×a. ∈G 

 
Theorem-3: A Field is defined by using a 
commutative ring under the following three rules. 

 
1. a×1=1×a=a ∈G 
2. a×b=0∈G than either a=0 or b=0 ∈G 
3. a×a−1=a−1×a=1 a and a−1∈G 
 

Theorem 4: Finally a finite field GF(2n) consists of 
2n elements together with addition and 
multiplication. They are determined based on 
reducible and irreducible polynomials [7]. It means 
that 

 

• GF (2n) → contains 2n elements and they are 
irreducible polynomials (generator polynomial) 
which are identified from reducible polynomial. 

 
Elliptic Curve Cryptography is an 

algebraic structure of elliptic curves over finite 
fields [11]. It is defined by using polynomial basis 
and finite field. It mainly has a set of points over 
point addition and multiplication. 
 
2.2  ECDSA over GF (2n) 

For example, the general Weierstrass 
Equation is considered for defining ECC over 2n:  

 
             y2+a1xy+a3y = x3+a2x2+a4x+a5                      
(1) 
 
where a1 ,a3  ,a2 ,a4  and  a5 are co-efficient and x 
& y are variables [7]. And this Equation is 
simplified as the following to compute points on 
elliptic curve rapidly.  
             y2=x3+ax2+b                                           (2) 
 

In this Equation, the value of x and y are 
calculated based on a and b , to define points on 
Elliptic Curve. The point has positive and negative 
co-ordinate values. The negative values are 
redefined by using the following constraint (3). 
 

Δ=4a3+27b2  modulo p ≠ 0 mod p  
where p is a prime   

           and it is denoted by E2
n(a,b)                    (3) 

 
 These sets of points are manipulated by 
using point addition and point multiplication [11]. 
The point addition is a basic operation which needs 
a limited clock cycles. But the importance of ECC 
is to compute the point multiplication Q=kP, where 
k is a scalar value and P is a point on the elliptic 
curve. It needs more clock cycles to compute its 
result and is implemented by using point addition 
and point doubling [7].  
 
If P=(x1, y1) and Q= (0, 0) then  
R=P+Q=P   where O is origin point.                    (4) 
 
If P=(x1, y1) and Q=(x1,-y1) then  
R=P+Q=O where -P is inverse of P.                     (5) 
 
 
If P=(x1, y1) and Q=(x2, y2) then R=P+Q= (x3, y3)  
where x3=λ2+ λ+x1+x2+a and y3=λ(x1+x3)+x3+y1. 

 
λ = (y2+y1)/(x2+x1)    if(P ≠ Q)                          (6) 
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λ =   (x1+y1/ x1)          if (P = Q)                         (7) 
 

In this case point addition is an atomic 
operation and a point multiplication is a complex 
operation of ECC to compute Q=kP  [10]. The k 
denotes a scalar value and P,Q are points on the 
EC. ECDSS is an algebraic structure of elliptic 
curves over finite fields [3].  It has three main 
concepts called as digital signing, digital verifying 
and key generation and the procedure for each 
concept is explained as follows [6]. 

 
Key generation: 

1. Define E2
n(a,b) where a,b→ variable where p     

     is irreducible polynomial in the form of 2n 
2. Select another irreducible polynomial q  
     where q is smaller than p. 
3. Choose a binary integer d as private key. 
4. Choose e1(x,y)) form EC point set. 
5. Find e2(x, y)=d×e1(x, y). 
6. User private key is d and public key is  
    (e1,e2,p,q,a,b) where e1 and e2 polynomial  
    generators. 
 

Signing on Sender side: 
1. choose random binary number r where 1<r<q-1 
2. Find P(x,y)=r×e1(x,y) 
3. Find S1=x (modulo) q from P 
4. Find S2=(h(M)+d×S1)r-1(modulo)q 
5. Send M,S1 and S2 to receiver side 

 
Verifying on Receiver Side: 
1. Calculate A=h(M)S2

-1(modulo)q  
2. Calculate B=S2

-1S1(modulo)q 
3. Find T(x,y)=A×e1(x,y)+B×e2(x,y) 
4. Is x=S1 (modulo)q than it is verified otherwise it 
is     rejected. 
 

All of these procedures are based on point 
multiplication and point addition. This point 
multiplication is implemented by using point 
addition and point doubling based on Equation (6) 
and Equation (7) respectively. One of the common 
way of implementing the point multiplication is 
linear scalar point multiplication as shown in 
Equation (8) and the procedure is as follows [5]. 

 
kP=P+2P+3P+…+(k-1)P+kP                             (8)  

 
( k times of Point addition) 

The diagram representation of point 
multiplication by using Equation (1) is shown in 
Figure 1. 
 

 
Figure 1. Linear point multiplication of kP 

 
procedure linearmultiplication 
                                                  (Point P,Integer k) 
(1) Integer I, Q0 =(0,0) 
(2) I=1 
(3) if(I≠k) 
     (3.1) compare P with Q0. 
     (3.2) compute and update P and Q0 by using  
             Equations (4),(5),(6) or (7)   
     (3.3) I=I+1 goto step 3. 
(4) return P→ kP. 

 
3. LITERATURE SURVEY 

There are four types of dependences 
existing in the linear point multiplications called as 
register value (data), register name, control and 
loop carried dependences [12]. In this case, Name 
dependence means that two or more points refer the 
same register. And register value (data) decencies 
means a point in a register is dependent on another 
point in a register. A Control dependence 
determines the way of predicting points based on 
four constraints which are mentioned in Equations 
(4), (5), (6) and (7). A loop-carried dependence is 
used to check current point computation whether it 
depends on later or earlier iteration’s computation 
or not. In linear multiplication, the same point is 
updated in each iteration called as name 
dependence and a point is computed by using point 
addition or point doubling known data dependence. 
Then a point computation is always depends on 
point addition or point doubling called as control 
dependence and a point multiplication always 
depends on previous iterations known as loop 
carried dependence.  
 
 The next left to right or right to left binary 
methodologies  process a loop scanning of scalar 
bits and performing a point doubling followed by a 
point addition based on scalar bit value (equals 1) 
[10]. These binary algorithms involve n point 
doubling and n/2 point additions. The main 
weakness of this methodology is side channel 
attack. The scalar bits are traceable based on power 
analysis. The above mentioned control dependences 
are also there in this methodology.  But these 
algorithms are only suitable for special type of 
elliptic curve such as Montgomery curve [8]. 
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Procedure MogRL(Point P, Integer k 
                                                       (kn−1 , . . . , k0 )2 
) 
1. R0←P, R1←P and i←n-2. 
2. R0←2R0 . 
3. if ki =1 then 

(a) R0←R0+R1 . 
(b) I←one time shift right of i go to step 3. 

4. return R0 . 
 
Procedure MogLR(Point P, Integer k 
                                                       (kn−1 , . . . , k0 )2 
) 
1. R0←O, R1←P and i←1. 
2. if ki =1 then R0←R0 +R1 
3. R1←2R1 . 
4. I← one time of shift left of I go to step 2. 
5. return R0. 
 
 The point multiplication called as regular 
binary algorithm which is defined by Jacobian 
requires more field registers such as 7 or 6 [9]. 
These field register is used to store additional bits 
value for kP computation. In this case, the numbers 
of inversion operations are reduced. But the number 
of data dependences, register dependences, control 
dependences are increased. Hence there is no 
change loop-carried dependence.  
 
 The literature survey shows that there is no 
optimal implementation of scalar multiplication for 
parallel processing. So this paper suggests a 
technique to solve the problem of optimizing point 
multiplication operations over parallel processing. 
The suggested innovative technique uses a divide 
and conquer algorithm [10]. And it calls by 
iteratively to break down multiplication into two or 
more sub-problems until these become simple to 
compute directly by using point addition or 
doubling. Finally, these solutions are combined to 
find out the required computation of point 
multiplication [2].  
 
4. SUGGESTED METHODOLOGY 

In this proposed point multiplication, the 
Equation (7) is used to create binary tree and skew 
tree based on k value. In this case each node 
assumed is as a point value. Finally the summing of 
skew tree node value and binary tree node value 
computes kP value. The k value is assumed as 
1111. When the k value is divided by 2 in every 
time, quotient values 111, 11, 1 and remainder 
values 1,1,1 are obtained. The binary tree is created 

by using quotient values and points are used to 
compute point doubling operation based on the 
formula (6). And subsequently the skew tree is also 
formed by using reminder value and points are used 
to compute point addition and point doubling 
operations based on the formula (7). Finally these 
two trees are summed by using formula (4),(5),(6) 
or (7) to compute point doubling for kP and 
diagrammatically shown in Figure 2(a) and Figure 
2(b). The corresponding algorithms of kP 
computation 3(a), 3(b), 3(c) and 3(d) are as follows. 
 
Algorithm. 3(a) PointCompute  
Input: Point P, Integer k.  
Output: kP  
Point P1=(0,0), P2=(0,0); 
1. If k=1 then 

1.1 One time of P 
2. If k>1 then 

2.1 Q←one time of shift left k 
2.2 if (Q>0) then 

2.2.1 P1=call PointMulBinary(Point P) 
2.2.2 P=P1   

2.3 R←one time of shift left k 
2.4 if (R=1) then 

2.4.1 P2=call PointMulSkew(Point P) 
2.4.2 P=P2 

3. k=one time of shift left k and goto step 2. 
4. call PointSummazation(Point P1,Point P2) 
 

 
 

Figure. 2(a). The proposed Point multiplication of kP by 
using divide processes. 

 
Algorithm. 3(b) PointMulBinary 
Input: Point P, Integer Q.  
Output: kP 
Point Sum=(0,0). 

http://www.jatit.org/


Journal of Theoretical and Applied Information Technology 
 10th April 2013. Vol. 50 No.1 

© 2005 - 2013 JATIT & LLS. All rights reserved.  
 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195 

 
25 

 

1.SUM=P+SUM based on Equation (6). 
2. kP=SUM  

 
Algorithm. 3(c) PointMulskew 
Input: Point P, Integer R.  
Output: kP 
Point Sum=(0,0). 
1.SUM=P+SUM based on Equation (7). 
2. kP=SUM  
 
Algorithm. 3(d) PointSummazation 
Input: Point P1,P2.   
Output: kP 
Point Sum=(0,0). 
1. SUM=P1+P2 based on Equations (4), (5), (6) 
    or (7). 
2. kP=SUM. 
 
 

 
 

Figure. 2(b). The Proposed Point multiplications of kP   
by using conquer processes. 

 
This methodology minimizes number of 

loop carried dependences, register value (data) 
dependences and predictor (control) dependence 
which help to improve software scheduling for 
hardware. And also it reduces the number of 
hazards and stalls at the time of execution. But the 
linear and other binary scalar multiplications are 
always dependent on the early iteration known as 
loop carried dependence.  The Data dependence 
creates N-1 times of hazards and stalls to affect 
loop level parallelism. If it is not optimized, it will 
affect the performance of the computing  

 
    
5. EXPERIMENTAL RESULT ANALYSIS 

The y2=x3+ax+b Equation is assumed to 
support a set of points on Elliptic Curve for 
experimentation. Then E2

n(a,b)  is defined by using 
E2

4(g4,g2). The point (x=g5,y=g3) is taken from the 
set to compute point multiplication for both linear 
scalar and the proposed binary tree multiplication 
as shown in the Table 1.  

 
The mathematical study of the difficulty of 

a mathematical problem which describes the 
resources required by a computing machine to solve 
the problem is called computational complexity 
theory and is important in many branches of 
theoretical computer science, especially 
cryptography. In this case, computational 
complexity of point multiplication is analyzed by 
using the time complexity of execution in terms of 
clock pulses. In proposed case, there are three cases 
to analyze point doubling by using k value.  

 
Table 1: Shows that different parameter value needed for 

simulating Point multiplication of kP 
 

Parameter Type Value 
E2

n   Input E2
4 

a Input g4 
b Input g2 
x Input g5 
y Input g3 
P Input (x,y) 
K Input Number of times(N) 
ki Input 0<N<2i 
kP Output Point multiplication 

Value 
kP execution time Output Number of clock 

pulses 
 

First Case is called as best case. The best 
case time complexity is defined by the way of an 
algorithm behaves under optimal conditions. There 
is no remainder of k value for all iterations. It 
means that k = 2N where N>0. Because it takes 
only log2N times to compute kP based on Quotient 
point computation and no need to compute skew 
tree computation. It is denoted by O(log2N).  

 
Second case is called as worst case and it 

is defined the way of an algorithm behaves under 
all possible conditions. There is a remainder and 
quotient values of k for all iteration. So the k value 
is in the form of 2N-1, where N>0. The k value 
takes only log2N times to compute kP based on 
quotient point computation, as well as remainder 
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point computation. So the time complexity of this 
case is defined by O(log2N)+ O(log2N) times.  

 
Third case is called as average case which 

the way algorithm of an algorithm acts under the 
probability of execution. There is a remainder of k 
values for some iterations and no remainder for 
some other iterations. The k value is in 2N or 2N-1. 
The computation time of this case is defined by 
log2N+Prob {log2N} times and its denoted by 
O(log2N)+O(Prob{log2N}).  

 
All time complexities are redefined by 

log2N+1, 2log2N+1 and log2N+Prob{log2N}+1. 
The value 1 denotes the final computation of 
combining quotient point computation and 
remainder point computation to compute kP.  

 
The best case and worst case of proposed 

methodologies are compared with linear scalar 
point multiplication. Both are simulated 
computation values are measured in terms of clock 
pulses as shown Table-2.  

 
Table  2. Shows that the number of clock cycles needed to 

compute kP using linear multiplication and proposed 
point multiplication for both (best case and worst case) 
based on various k value and P in the unit of seconds. 

 
calculates kP Clock pulses 

i  2i Best Worst Linear 

2 100 1 1 3 

3 1000 2 3 4 

4 10000 3 5 6 

5 100000 4 6 13 

6 1000000 5 7 24 

7 10000000 6 9 46 

8 100000000 6 10 91 

9 1000000000 7 11 191 

10 10000000000 7 11 380 

11 100000000000 8 12 748 

12 1000000000000 9 13 1503 

13 10000000000000 9 14 3054 

 
Then the proposed method is analyzed 

with graph shown in Figure 3(a) and Figure 3(b). In 
this graph, the y-axis denotes k values in the form 
of 2i and x axis total number of execution time for 
kP.  

 

 
 

Figure. 3(a). This Graph shows that the total amount of 
execution time needed to compute kP for Liner point 

multiplication. 
 

 
 

Figure. 3(b). This  graph compares that the total amount 
time needed to compute kp based on best & worst cases 

of point multiplication. 
 

The proposed strategy will reduce number 
of dependence into log2N+1 for best case and 
2log2N+1 for worst case dependent operations. 
Beside the proposed technique is useful to 
minimize the number of data dependences, control 
dependences and loop carried dependences.  
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6. CONCLUSION AND APPLICATION 

The ECDSA uses linear scalar point 
multiplication to perform digital signature signing, 
verification and key generation. The consequence 
of using this approach takes more time for 
execution, because these algorithms are 
implemented in linear fashion. But the proposed 
methodology which is implemented by using 
polynomial basis decreases number of clock pulses 
and power consumption for computing point 
multiplication and also increases the performance 
of ECDSA through for creating possibility to 
support parallel computation. It is also to utilize 
hardware units for minimum number of times to 
find out point multiplication. So it increases the life 
time of hardware units. Hence it is more suitable 
for smart card based application and wireless based 
authentication’s operation to perform financial 
transactions and commercial applications using 
embedded devices. 
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