
Journal of Theoretical and Applied Information Technology
 10th April 2013. Vol. 50 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

21

IMPROVED THE EXECUTION SPEED OF ECDSA OVER
GF(2N) ALGORITHM FOR CONCURRENT COMPUTATION

1A. SAKTHIVEL, 2R. NEDUNCHEZHIAN

1Asstt Prof., Department of Information Technology, Adithya Institute of Technology, Coimbatore, India
2Prof., Department of Information Technology, Sri Ramakrishna Engineering College, Coimbatore, India

E-mail: 1asakthivel75@yahoo.com, 2rachezhian@yahoo.co.in

ABSTRACT

Recently Elliptic Curve Digital Signature Standard (ECDSA) is used for smart card applications and
financial transaction applications, because it needs less memory space, low bandwidth, limited power, reuse
and portability. So it is more suitable for wireless network applications. Normally it is implemented in two
ways called as ECDSA over binary field GF (2n) for hardware applications and ECDSA over prime field
GF (p) for software applications. It has two main computations. One is point addition and another point
multiplication. In these operations, the point multiplication takes more execution time than point addition.
Because the latency time of point multiplication is higher than point addition. So it is necessary to find out
optimized implementation for point multiplication. This article suggests a technique for point multiplication
over GF(2n) to increase the speed of the execution using concurrent computation.

Keywords: ECDSA, Binary Field, Time complexity, latency time, parallel computation.

1. INTRODUCTION

The NIST (National Institute of Standards
and Technology) has published a standard FIPS
186-v3 known as Federal Information Processing
Standard 186-3 version for Digital Signature
Standard (DSS) applications in 2009. This
document standardized two approaches for DSS
which are RSA (Rivast-Shamir-Adleman) and ECC
(Elliptic Curve Cryptography) based DSS. The
RSA based DSS is not suitable for wireless and
smart card applications, because it needs more
power for large prime number manipulation and
ECC offer a much shorter key length than RSA. For
example, the RSA uses 1024,2048,3072,7680 or
15360 bits of key length for encryption to provide
security level, and then ECC uses only
161,224,256,384 or 512 key sizes accordingly to
provide same security level. In wireless and smart
card environments, the 1024-bit RSA cannot be
implemented, while 163-bit ECC can be
implemented [6].

The ECC based DSS is also called as
Elliptic Curve Cryptography Digital Signature
algorithm (ECDSA). It defines two important
procedures for digital signature generation and
verification based on domain parameters. This
provides Authentication, Integrity and non
reputation security services to avoid passive and

active attacks on network [3]. This ECDSA is
implemented in two different ways by using Finite
Field (FF) or Galois Field (GF). One is called as
ECDSA over prime field GF(p) and another is
called as ECDSA over binary field GF (2m). The
ECDSA over prime field is used for software
application such as online financial transactions and
commercial applications and another type for
hardware applications such as designing circuits for
credit cards, smart cards and commercial
authentication’s cards. This article mainly focuses
on ECDSA over binary field.

ECDSA algorithm has some limitations
such as lack of implementations and low latency
time of point operations. It is mainly dependent on
two important point operations called as point
addition and point multiplication. The point
addition is a basic operation which needs only
limited number of clock cycles and its latency time
is low. But the point multiplication needs more
number of clock cycles for its latency time [4]. So
this paper suggests a software scheduling technique
to reduce the dependent operation into independent
operations for parallel processing. When the ECC is
used in software scheduling for hardware
execution, it reduces number of clock pulses and
latency time of point multiplication operations in
order to increase the speed of algorithm [1].

http://www.jatit.org/
mailto:asakthivel75@yahoo.co
mailto:rachezhian@yahoo.co.in

Journal of Theoretical and Applied Information Technology
 10th April 2013. Vol. 50 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

22

The section-II gives an introduction to
finite field and overview of ECDSA over 2n and
subsequently the section-III concludes the literature
survey of previous methods. The Section-IV
describes a suggested implementation for ECDSA.
This innovative technique is analysed and
compared with existing ECDSA as given in
section-V. Then the section-VI concludes with
some of applications which may be implemented by
using the proposed methodology. Finally the
section VII acknowledges to previous contributors
on ECDSA.

2. BASIC CONCEPTS FOR ECDSA

2.1 Finite Field over GF(2n)
Theory of Finite Field is a main part of

mathematical theory in cryptology which is used to
implement ECC over 2n. This is defined with the
help of Abelain group, commutative ring and fields
[11].

Theorem-1: An abelain group (G,*) is a set of
elements over operation * (assumed as +) with the
following group laws and commutative law.

1. a+b ∈ G
2. (a+b)+c=a+(b+c)∈G
3. a+(-a)=(-a)+a=0∈G
4. a+0=0+a=a∈G
5. a+b=b+a∈G where a,b,c,0,-a,-b,-c∈G

Theorem-2: A commutative ring (R,+,×) is an
algebraic structure of G with two operations called
addition and multiplication with the following
rules.

1.a×b∈G ∈G
2.(a×b)×c=a×(b×c)∈G
3. (a+b)×c=(a×c)+(b×c)∈G
4. a×b=b×a. ∈G

Theorem-3: A Field is defined by using a
commutative ring under the following three rules.

1. a×1=1×a=a ∈G
2. a×b=0∈G than either a=0 or b=0 ∈G
3. a×a−1=a−1×a=1 a and a−1∈G

Theorem 4: Finally a finite field GF(2n) consists of
2n elements together with addition and
multiplication. They are determined based on
reducible and irreducible polynomials [7]. It means
that

• GF (2n) → contains 2n elements and they are
irreducible polynomials (generator polynomial)
which are identified from reducible polynomial.

Elliptic Curve Cryptography is an

algebraic structure of elliptic curves over finite
fields [11]. It is defined by using polynomial basis
and finite field. It mainly has a set of points over
point addition and multiplication.

2.2 ECDSA over GF (2n)

For example, the general Weierstrass
Equation is considered for defining ECC over 2n:

 y2+a1xy+a3y = x3+a2x2+a4x+a5
(1)

where a1 ,a3 ,a2 ,a4 and a5 are co-efficient and x
& y are variables [7]. And this Equation is
simplified as the following to compute points on
elliptic curve rapidly.
 y2=x3+ax2+b (2)

In this Equation, the value of x and y are
calculated based on a and b , to define points on
Elliptic Curve. The point has positive and negative
co-ordinate values. The negative values are
redefined by using the following constraint (3).

Δ=4a3+27b2 modulo p ≠ 0 mod p
where p is a prime

 and it is denoted by E2
n(a,b) (3)

 These sets of points are manipulated by
using point addition and point multiplication [11].
The point addition is a basic operation which needs
a limited clock cycles. But the importance of ECC
is to compute the point multiplication Q=kP, where
k is a scalar value and P is a point on the elliptic
curve. It needs more clock cycles to compute its
result and is implemented by using point addition
and point doubling [7].

If P=(x1, y1) and Q= (0, 0) then
R=P+Q=P where O is origin point. (4)

If P=(x1, y1) and Q=(x1,-y1) then
R=P+Q=O where -P is inverse of P. (5)

If P=(x1, y1) and Q=(x2, y2) then R=P+Q= (x3, y3)
where x3=λ2+ λ+x1+x2+a and y3=λ(x1+x3)+x3+y1.

λ = (y2+y1)/(x2+x1) if(P ≠ Q) (6)

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 10th April 2013. Vol. 50 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

23

λ = (x1+y1/ x1) if (P = Q) (7)

In this case point addition is an atomic
operation and a point multiplication is a complex
operation of ECC to compute Q=kP [10]. The k
denotes a scalar value and P,Q are points on the
EC. ECDSS is an algebraic structure of elliptic
curves over finite fields [3]. It has three main
concepts called as digital signing, digital verifying
and key generation and the procedure for each
concept is explained as follows [6].

Key generation:

1. Define E2
n(a,b) where a,b→ variable where p

 is irreducible polynomial in the form of 2n
2. Select another irreducible polynomial q
 where q is smaller than p.
3. Choose a binary integer d as private key.
4. Choose e1(x,y)) form EC point set.
5. Find e2(x, y)=d×e1(x, y).
6. User private key is d and public key is
 (e1,e2,p,q,a,b) where e1 and e2 polynomial
 generators.

Signing on Sender side:
1. choose random binary number r where 1<r<q-1
2. Find P(x,y)=r×e1(x,y)
3. Find S1=x (modulo) q from P
4. Find S2=(h(M)+d×S1)r-1(modulo)q
5. Send M,S1 and S2 to receiver side

Verifying on Receiver Side:
1. Calculate A=h(M)S2

-1(modulo)q
2. Calculate B=S2

-1S1(modulo)q
3. Find T(x,y)=A×e1(x,y)+B×e2(x,y)
4. Is x=S1 (modulo)q than it is verified otherwise it
is rejected.

All of these procedures are based on point
multiplication and point addition. This point
multiplication is implemented by using point
addition and point doubling based on Equation (6)
and Equation (7) respectively. One of the common
way of implementing the point multiplication is
linear scalar point multiplication as shown in
Equation (8) and the procedure is as follows [5].

kP=P+2P+3P+…+(k-1)P+kP (8)

(k times of Point addition)

The diagram representation of point
multiplication by using Equation (1) is shown in
Figure 1.

Figure 1. Linear point multiplication of kP

procedure linearmultiplication
 (Point P,Integer k)
(1) Integer I, Q0 =(0,0)
(2) I=1
(3) if(I≠k)
 (3.1) compare P with Q0.
 (3.2) compute and update P and Q0 by using
 Equations (4),(5),(6) or (7)
 (3.3) I=I+1 goto step 3.
(4) return P→ kP.

3. LITERATURE SURVEY

There are four types of dependences
existing in the linear point multiplications called as
register value (data), register name, control and
loop carried dependences [12]. In this case, Name
dependence means that two or more points refer the
same register. And register value (data) decencies
means a point in a register is dependent on another
point in a register. A Control dependence
determines the way of predicting points based on
four constraints which are mentioned in Equations
(4), (5), (6) and (7). A loop-carried dependence is
used to check current point computation whether it
depends on later or earlier iteration’s computation
or not. In linear multiplication, the same point is
updated in each iteration called as name
dependence and a point is computed by using point
addition or point doubling known data dependence.
Then a point computation is always depends on
point addition or point doubling called as control
dependence and a point multiplication always
depends on previous iterations known as loop
carried dependence.

 The next left to right or right to left binary
methodologies process a loop scanning of scalar
bits and performing a point doubling followed by a
point addition based on scalar bit value (equals 1)
[10]. These binary algorithms involve n point
doubling and n/2 point additions. The main
weakness of this methodology is side channel
attack. The scalar bits are traceable based on power
analysis. The above mentioned control dependences
are also there in this methodology. But these
algorithms are only suitable for special type of
elliptic curve such as Montgomery curve [8].

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 10th April 2013. Vol. 50 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

24

Procedure MogRL(Point P, Integer k
 (kn−1 , . . . , k0)2
)
1. R0←P, R1←P and i←n-2.
2. R0←2R0 .
3. if ki =1 then

(a) R0←R0+R1 .
(b) I←one time shift right of i go to step 3.

4. return R0 .

Procedure MogLR(Point P, Integer k
 (kn−1 , . . . , k0)2
)
1. R0←O, R1←P and i←1.
2. if ki =1 then R0←R0 +R1
3. R1←2R1 .
4. I← one time of shift left of I go to step 2.
5. return R0.

 The point multiplication called as regular
binary algorithm which is defined by Jacobian
requires more field registers such as 7 or 6 [9].
These field register is used to store additional bits
value for kP computation. In this case, the numbers
of inversion operations are reduced. But the number
of data dependences, register dependences, control
dependences are increased. Hence there is no
change loop-carried dependence.

 The literature survey shows that there is no
optimal implementation of scalar multiplication for
parallel processing. So this paper suggests a
technique to solve the problem of optimizing point
multiplication operations over parallel processing.
The suggested innovative technique uses a divide
and conquer algorithm [10]. And it calls by
iteratively to break down multiplication into two or
more sub-problems until these become simple to
compute directly by using point addition or
doubling. Finally, these solutions are combined to
find out the required computation of point
multiplication [2].

4. SUGGESTED METHODOLOGY

In this proposed point multiplication, the
Equation (7) is used to create binary tree and skew
tree based on k value. In this case each node
assumed is as a point value. Finally the summing of
skew tree node value and binary tree node value
computes kP value. The k value is assumed as
1111. When the k value is divided by 2 in every
time, quotient values 111, 11, 1 and remainder
values 1,1,1 are obtained. The binary tree is created

by using quotient values and points are used to
compute point doubling operation based on the
formula (6). And subsequently the skew tree is also
formed by using reminder value and points are used
to compute point addition and point doubling
operations based on the formula (7). Finally these
two trees are summed by using formula (4),(5),(6)
or (7) to compute point doubling for kP and
diagrammatically shown in Figure 2(a) and Figure
2(b). The corresponding algorithms of kP
computation 3(a), 3(b), 3(c) and 3(d) are as follows.

Algorithm. 3(a) PointCompute
Input: Point P, Integer k.
Output: kP
Point P1=(0,0), P2=(0,0);
1. If k=1 then

1.1 One time of P
2. If k>1 then

2.1 Q←one time of shift left k
2.2 if (Q>0) then

2.2.1 P1=call PointMulBinary(Point P)
2.2.2 P=P1

2.3 R←one time of shift left k
2.4 if (R=1) then

2.4.1 P2=call PointMulSkew(Point P)
2.4.2 P=P2

3. k=one time of shift left k and goto step 2.
4. call PointSummazation(Point P1,Point P2)

Figure. 2(a). The proposed Point multiplication of kP by
using divide processes.

Algorithm. 3(b) PointMulBinary
Input: Point P, Integer Q.
Output: kP
Point Sum=(0,0).

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 10th April 2013. Vol. 50 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

25

1.SUM=P+SUM based on Equation (6).
2. kP=SUM

Algorithm. 3(c) PointMulskew
Input: Point P, Integer R.
Output: kP
Point Sum=(0,0).
1.SUM=P+SUM based on Equation (7).
2. kP=SUM

Algorithm. 3(d) PointSummazation
Input: Point P1,P2.
Output: kP
Point Sum=(0,0).
1. SUM=P1+P2 based on Equations (4), (5), (6)
 or (7).
2. kP=SUM.

Figure. 2(b). The Proposed Point multiplications of kP
by using conquer processes.

This methodology minimizes number of

loop carried dependences, register value (data)
dependences and predictor (control) dependence
which help to improve software scheduling for
hardware. And also it reduces the number of
hazards and stalls at the time of execution. But the
linear and other binary scalar multiplications are
always dependent on the early iteration known as
loop carried dependence. The Data dependence
creates N-1 times of hazards and stalls to affect
loop level parallelism. If it is not optimized, it will
affect the performance of the computing

5. EXPERIMENTAL RESULT ANALYSIS

The y2=x3+ax+b Equation is assumed to
support a set of points on Elliptic Curve for
experimentation. Then E2

n(a,b) is defined by using
E2

4(g4,g2). The point (x=g5,y=g3) is taken from the
set to compute point multiplication for both linear
scalar and the proposed binary tree multiplication
as shown in the Table 1.

The mathematical study of the difficulty of

a mathematical problem which describes the
resources required by a computing machine to solve
the problem is called computational complexity
theory and is important in many branches of
theoretical computer science, especially
cryptography. In this case, computational
complexity of point multiplication is analyzed by
using the time complexity of execution in terms of
clock pulses. In proposed case, there are three cases
to analyze point doubling by using k value.

Table 1: Shows that different parameter value needed for

simulating Point multiplication of kP

Parameter Type Value
E2

n Input E2
4

a Input g4
b Input g2
x Input g5
y Input g3
P Input (x,y)
K Input Number of times(N)
ki Input 0<N<2i
kP Output Point multiplication

Value
kP execution time Output Number of clock

pulses

First Case is called as best case. The best
case time complexity is defined by the way of an
algorithm behaves under optimal conditions. There
is no remainder of k value for all iterations. It
means that k = 2N where N>0. Because it takes
only log2N times to compute kP based on Quotient
point computation and no need to compute skew
tree computation. It is denoted by O(log2N).

Second case is called as worst case and it

is defined the way of an algorithm behaves under
all possible conditions. There is a remainder and
quotient values of k for all iteration. So the k value
is in the form of 2N-1, where N>0. The k value
takes only log2N times to compute kP based on
quotient point computation, as well as remainder

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 10th April 2013. Vol. 50 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

26

point computation. So the time complexity of this
case is defined by O(log2N)+ O(log2N) times.

Third case is called as average case which

the way algorithm of an algorithm acts under the
probability of execution. There is a remainder of k
values for some iterations and no remainder for
some other iterations. The k value is in 2N or 2N-1.
The computation time of this case is defined by
log2N+Prob {log2N} times and its denoted by
O(log2N)+O(Prob{log2N}).

All time complexities are redefined by

log2N+1, 2log2N+1 and log2N+Prob{log2N}+1.
The value 1 denotes the final computation of
combining quotient point computation and
remainder point computation to compute kP.

The best case and worst case of proposed

methodologies are compared with linear scalar
point multiplication. Both are simulated
computation values are measured in terms of clock
pulses as shown Table-2.

Table 2. Shows that the number of clock cycles needed to

compute kP using linear multiplication and proposed
point multiplication for both (best case and worst case)
based on various k value and P in the unit of seconds.

calculates kP Clock pulses

i 2i Best Worst Linear

2 100 1 1 3

3 1000 2 3 4

4 10000 3 5 6

5 100000 4 6 13

6 1000000 5 7 24

7 10000000 6 9 46

8 100000000 6 10 91

9 1000000000 7 11 191

10 10000000000 7 11 380

11 100000000000 8 12 748

12 1000000000000 9 13 1503

13 10000000000000 9 14 3054

Then the proposed method is analyzed

with graph shown in Figure 3(a) and Figure 3(b). In
this graph, the y-axis denotes k values in the form
of 2i and x axis total number of execution time for
kP.

Figure. 3(a). This Graph shows that the total amount of
execution time needed to compute kP for Liner point

multiplication.

Figure. 3(b). This graph compares that the total amount
time needed to compute kp based on best & worst cases

of point multiplication.

The proposed strategy will reduce number
of dependence into log2N+1 for best case and
2log2N+1 for worst case dependent operations.
Beside the proposed technique is useful to
minimize the number of data dependences, control
dependences and loop carried dependences.

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 10th April 2013. Vol. 50 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

27

6. CONCLUSION AND APPLICATION

The ECDSA uses linear scalar point
multiplication to perform digital signature signing,
verification and key generation. The consequence
of using this approach takes more time for
execution, because these algorithms are
implemented in linear fashion. But the proposed
methodology which is implemented by using
polynomial basis decreases number of clock pulses
and power consumption for computing point
multiplication and also increases the performance
of ECDSA through for creating possibility to
support parallel computation. It is also to utilize
hardware units for minimum number of times to
find out point multiplication. So it increases the life
time of hardware units. Hence it is more suitable
for smart card based application and wireless based
authentication’s operation to perform financial
transactions and commercial applications using
embedded devices.

ACKNOWLEDGMENT
The authors would like to thank Adithya

Institute of Technology and its Research Centre for
Information Security and Cryptography to do this
work.

REFRENCES:
[1] Lo’ai Tawalbeh, Yaser Jararweh, and

Abidalrahman Mohammad, “An Integrated
Radix-4 Modular Divider/Multiplier Hardware
Architecture for Cryptographic Applications”,
The International Arab Journal of Information
Technology, Vol. 9, No. 3, May 2012.

[2] Adnan Abdul-Aziz Gutu, “Preference of
Efficient Architectures for GF(p) Elliptic
Curve Crypto Operations using Multiple
Parallel Multipliers”, International Journal of
Security (IJS), Volume (4) : Issue (4) , pp.46-
63. Feb. 2010.

[3] Arash Reyhani-Masoleh,“Efficient Algorithms
and Architectures for Field Multiplication
Using Gaussian Normal Bases”, IEEE
Transactions on computers, vol. 55,NO.
1,pp34-48, Jan 2006.

[4] Patrick Longa and Ali Miri, “Fast and Flexible
Elliptic Curve Cryptography point arithmetic
over Prime fields”, IEEE Transactions on

computers, vol.57,No.3, pp.289-302, May
2008.

[5] Pradeep Kumar Mishra, “Pipelined
Computation of Scalar Multiplication in
Elliptic Curve Cryptosystems”, IEEE
Transactions on computers, vol 55,No.8,
pp1000,Aug 2006.

[6] Gary Locke and Patrick Gallagher, “Federal
Information Processing Standards Publication
Digital Signature Standard (FIPS PUB 186-3)”,
Information Technology Laboratory, National
Institute of Standards and Technology, June,
2009.

[7] Sangook Moon, Jaemin Park and Yongsurk
Lee, “Fast VLSI Arithmetic Algorithms for
High-Security Elliptic Curve Cryptographic
Applications”, IEEE Transactions on
Consumer Electronics,Vol.47,No.3,pp. 700-
708, Aug 2001.

[8] E. Savas and C.K. Koc, “The Montgomery
Modular Inverse- Revisited”, IEEE
Transactions on Consumer Electronics, vol.
49, no. 7, pp 763-767, July 2000.

[9] Kenny Fong, Darrel Hankerson, Julio Lopez,
and Alfred Menezes, “Field Inversion and
Point Halving Revisited”, IEEE Transactions
on Consumer Electronics, vol. 53, no. 8,pp
1047 Aug 2004.

[10] Xiaoyu Ruan, and Rajendra S. Katti, “Left-to-
Right Optimal Signed-Binary Representation
of a Pair of Integers”, IEEE Transactions on
computers, vol 54,no.2, pp 124,Feb 2005.

[11] Erkay Savas and Çetin Kaya Koç “Finite Field
Arithmetic for Cryptography,” IEEE Circuuts
and Systems Magazine, Digital Object
Identifier 10.1109/MCAS.2010.936785, pp 40-
57, Second Quarter 2010.

[12] John L.Hennessy & David A. Pattersom,
“Computer Architecture a Quantitative
Approach”, Elsevier, 4th Edition, 2007.

http://www.jatit.org/

	1A. SAKTHIVEL, 2R. NEDUNCHEZHIAN
	2.1 Finite Field over GF(2n)
	2.2 ECDSA over GF (2n)

	ACKNOWLEDGMENT

