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ABSTRACT 
 

Several signal preprocessing methods used to correct near-infrared (NIR) spectra of different endometrial 
tissue sections have been evaluated in this paper.  The real tissues sections of normal, hyperplasia, and 
malignant samples were used.  To extract useful information and to remove the interference and 
background, some preprocessing methods have been compared.  Particularly, spectra of the tissues section 
samples were assembled together to construct a 2D data matrix, so that the 2D wavelet packet transform 
(WPT) could be used for feature extraction.  Partial least squares-discriminant analysis (PLS-DA) was used 
to distinguish the samples from different classes of disease states and was validated through bootstrapped 
Latin partition.  The results of PLS-DA demonstrate that 2D WPT was the best preprocessing method 
among those investigated.  With the decomposition level of 2 WPT, the accuracies of classification were 98 
± 2%, 99 ± 2%, and 98 ± 3%, for normal, hyperplasia, and malignant classes, respectively. The results 
demonstrate that NIR spectroscopy combined with 2D WPT preprocessing and proper classification 
methods could be a rapid, efficient, and novel means of diagnosing endometrial cancer in early stage. 

Keywords: Near-infrared Spectroscopy; Endometrial Cancer; Preprocessing Method; Bootstrapped Latin 
Partition; Partial Least Squares Discriminant Analysis; WaveletPpacketTtransform 

1. INTRODUCTION 
 

     Early diagnosis and screening of endometrial 
cancer are crucial for the effective treatment and 
reducing the mortality rate, therefore, efficient early 
diagnostic and screening methods are highly 
demanded. Current diagnostic methods of 
endometrial cancer include magnetic resonance 
imaging (MRI), serum CA125, endovaginal 
ultrasonography, hysteroscopy, and endometrial 
biopsy.  MRI plays an important role in staging and 
planning of therapy for endometrial cancer.  Several 
groups of researchers [1-3] have reported 
applications of MRI to diagnose and evaluate the 
stage of endometrial cancer.  The staging accuracy 
of MRI for endometrial cancer can reach from 83% 
to 92% [4].  MRI has been used in routine 
preoperative examination, even though some 
researchers reported that the MRI has a high 
sensitivity in diagnosis of endometrial carcinoma, 
but lack of specificity [5, 6].  MRI is expensive and 
not suitable for fast screening endometrial 
carcinoma in large scale.  A method for cheap and 
fast screening endometrial carcinoma is needed.  
CA-125 is used mainly for the diagnosis of primary 

and recurrent ovarian cancer.  A declining or rising 
CA-125 level is a useful indicator of disease and 
has been widely used in the detection of 
endometrial cancer.  Endovaginal ultrasonography 
is often used to evaluate the thickness of 
endometrium.  The sensitivity and specificity of this 
method can reach 93.5% and 99.4%, respectively 
[7, 8].  Compared with the methods mentioned 
above, hysteroscopy combined with directed 
endometrial biopsy or dilation and curettage (D&C) 
is a more standard diagnostic approach.  However, 
biopsy as a diagnostic routine of endometrial cancer 
has some limitations.  For example, it is difficult to 
distinguish between the endometrial cancer and 
atypical endometrial hyperplasia by biopsy [9].  
Hysteroscopy is considered to be an invasive 
diagnostic procedure [10].  To overcome the 
limitations of above methods, a novel and more 
efficient diagnostic procedure, particularly, a fast 
screening method is greatly needed.  

     Near infrared spectroscopy (NIRS) utilizes 
intrinsic optical absorption signals of blood, water, 
and lipid concentration available in the NIR 
window as well as a developing array of extrinsic 
organic compounds to detect and localize cancer.  
In earlier work, contents of oxyhemoglobin, 
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deoxyhemoglobin, total hemoglobin, tissue 
hemoglobin oxygen saturation, and bulk water 
based on wavelength-dependent absorption were 
used for diagnosing cancer.  For example, 
absorptions at various wavelength positions have 
been used for diagnoses of breast cancer [11-15], 
cervix cancer [16], prostate cancer [17].  In recent 
years, more work using whole spectrum have been 
reported.  For example, reflection spectra were 
collected between 700 nm and 1000 nm coupled to 
a detachable fiber optic reflectance bundle for 
prostate cancer diagnosis [18], spectra between 400 
nm - 900 nm were used to measure the 
microvascular oxygenation of histologically normal 
endobronchial mucosa and of neoplastic lesions 
[19], different ranges of spectra were compared in 
diagnosis of pancreas cancer [20], and diagnosis of 
colorectal cancer in resected human tissue specimen 
from hierachical cluster analysis based on spectral 
scans from 12,000 to 4000 cm-1 was reported [21].  

    The NIR spectra are complex and hard to 
interpret. Therefore, the key to the diagnosis of 
cancer based by NIRS is to extract important and 
latent information from the NIR spectra of the 
samples. Prior to classification model 
establishment, NIR spectra should be preprocessed, 
so that unrelated signals can be excluded and useful 
information can be enhanced. Some preprocessing 
methods, such as multiplicative scatter correction 
(MSC), standard normal variate (SNV), Savitzky-
Golay (S-G) filtering, detrend correction (DC), 
wavelet transform (WT)  and wavelet packet 
transform (WPT), and orthogonal signal correction 
(OSC)  have been used separately or in combination 
to improve the signal-to-noise ratio and eliminate 
background variations.    Relatively few reports on 
the diagnosis of early stage cancer using 
chemometric methods based on NIR spectroscopic 
data [21, 22] have been published.  Also, 2D data 
processing and modeling have been focused 
recently [23, 24]. Our group has been focusing on 
diagnosis of early stage endometrial cancer using 
NIR spectroscopy combined with chemometrics in 
recent years [25-30].  

     The aims of this work is to investigate the 
feasibility of 2D wavelet packet transform (WPT) 
as a preprocessing method for the NIR spectra for 
endometrial cancer diagnosis.  Partial least squares 
discriminant analysis (PLS-DA) was used to 
differentiate the NIR data of three types of 
endometrial tissues. The results demonstrated that 
three distinct groups can be discriminated after 
using the 2D WPT with accuracies of 98 ± 2%, 99 ± 
2%, and 98 ± 3%, respectively.  

2. THEORETICAL BASIS 
 

    Data preprocessing is an important procedure for 
feature extraction in NIR spectroscopy because NIR 
spectra are characteristically have broad bands and 
baseline fluctuations that are caused by instrumental 
conditions or particle sizes of the sample.  Noise 
and unwanted effects can often be removed by 
some mathematical transformations such as 
derivative calculation with polynomial fitting. 
Various spectral preprocessing methods have been 
widely used in NIR spectroscopy.  In this work, 
MSC, SNV, S-G derivative, DC, and WPT were 
used.  A comparative study of MSC, SNV, S-G 
derivative, and DC and their combinations was 
given in [30].  Therefore, description of above 
mentioned methods were not given here. 

     The wavelet packet transform (WPT) can be 
considered as a generalization of the wavelet 
transform (WT), which was introduced and 
developed by Coifman, et al. [31]. Compared with 
the WT, the WPT offers more flexibility for 
analytical signal representation and can be used for 
signal compression, feature extraction, and 
denoising [32]. 

     Investigation of using 2D WPT for compression 
of NIR spectra based on time-series measurement 
has been reported [33].  The method used in this 
work was based on the 2D WPT scheme proposed 
by Trygg, et al. [34].  The 2D data matrix was 
constructed combining the NIR spectra into rows of 
a data matrix so that each row was a sample and 
each column was a measured wavelength.  The 2D 
wavelet compression was applied to reduce the data 
matrix of spectra.  

     The 2D wavelet compression scheme consists of 
two major steps.  The first step applies wavelet 
compression to each row.  In the second step the 
columns are compressed by applying the wavelet 
transform.   

     The algorithm of WPT is similar to that of WT.  
The WPT performs a complete wavelet 
decomposition into smooth and detail parts.  Instead 
of the more common pyramid algorithm that 
decomposes only the smooth parts into detail and 
smooth subsets, both the smooth and detail parts are 
each composed at every level so that a tree is 
furnished. 

     Therefore, the WPT gives a complete description 
of phase and frequency at every level.  The WPT 
has advantages for applications where the signal is 
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enhanced by derivative transformations such as the 
case for NIRS [34].   

    The WPT algorithms are given in the following 
equations [35].  

     In the following equations, j represents the level 
of decomposition, p is an index of the component 
order, N represents the length of the decomposed 
signal 

1,
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     The two-dimensional wavelet packet transform 
(2D-WPT) uses four filters in the decomposition 
process, therefore V j+1 generates four frequency 
bands, containing a scale space V j and three wavelet 
subspaces 1

H
JW − ,

1
J

JW −
, and 1

D
JW − .  The 2D-WPT can 

be defined by the one-dimensional wavelet packet 
transform.  At first, all rows of spectral data are 
pretreated by one-dimensional wavelet packet 
transform, and subsequently all columns of the 
spectral data are pretreated.  The result is equivalent 
to that the raw spectral data preprocessed by a two-
dimensional wavelet packet transform because of 
the orthogonality of the wavelet filters.   

     Different from the binary tree structure of the 
one-dimensional wavelet packet transform, a 
quadtree structure is obtained from the two-
dimensional wavelet packet transform, which is 
composed of separable wavelet packet spaces. This 
method is called the square transform. 

     In two-dimensional wavelet packet 
decomposition, a quadtree derived from two-scale 
two-dimensional wavelet packet decomposition.  
Every node represents one decomposition step of 
the two-dimensional wavelet packet transform.  
There are three significant steps in wavelet packet 
transform. The first step is to select the best wavelet 
basis. The best basis can be defined as the basis 
giving the minimum entropy or maximum 
information of the signal energy distribution.  A 
simple method of selecting a basis from the full 
WPT is using the best-basis algorithm.  This 
method was developed by Coifman et al [33].  In 
this paper, the Daubechies wavelet with 8 vanishing 
moments was selected.  These wavelets have some 
beneficial characteristics including orthogonality, 
compact support, losslessness, biorthogonality, etc.   

     The second step is the selection of wavelet 
coefficients according to the energy values of 
different frequency bands [36]. The procedures of 
this step are as follows:  

(a).  The raw signal is split into frequency bands, 
and the energy of each frequency band is 
calculated.  

(b). According to the energy value E i,j of each 
frequency band, the wavelet coefficient ci,j is 
selected.  For equation (4), i and j represent the 
compression level and jth frequency band, 
respectively.  Ei,j is given by 

2

0
E ∑

=

=
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(c). The relative energy value (RE) is introduced.  
RE is given by 
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which E is the total energy in the decomposition 
level j.  To extract the feature of the spectra, the 
largest c i0 value corresponding to E i0 should be 
chosen. The third step is the selection of the optimal 
decomposition level of WPT, which is a key factor 
in the de-noising performance.  After the selection 
of the wavelet coefficients c i0, these wavelet 
coefficients are transformed back into the spectral 
matrix X, which is used in partial least squares 
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discriminant analysis (PLS-DA) to classify the 
spectra into one of the three types of endometrial 
tissue sections.  The decomposition level is selected 
by maximizing the accuracy of the PLS-DA results.  
The novelty of this work is to present a new 
application of 2D WPT as a preprocessing method 
for NIR spectra in diagnosis of endometrial 
carcinoma.  

     Latin-partition method has been frequently used 
in dividing training and testing data sets.  The 
whole data set is randomly partitioned into npart 
equally-sized groups. One group is left out for 
validation and the others are used for model 
building.  It is not until each group is used once for 
prediction and (npart-1) times for training that the 
validation becomes crossed and all the objects have 
been used once and only once for prediction.  This 
process was repeated for 20 times, so that the Latin-
partitions would be randomized among the different 
evaluations. This bootstrapping will construct 
multiple Latin-partitions.  These partitions will lead 
to an unbiased evaluation because the random 
sampling assures that the spectra in the training and 
prediction sets will be independent.  The observed 
variation characterizes model stability and data 
consistency within the collection.  If the data set is a 
representative sample then the variation 
characterizes the inherent variation of the method 
[37]. 

     Partial least squares discriminant analysis (PLS-
DA) is a discriminant analysis method based on 
partial least-squares regression.  It has been widely 
used in developing multivariate classification 
models based on spectroscopic measurements.  
Smart PLS-DA (sPLS-DA) was used to classify the 
three types of endometrial tissue samples based on 
the preprocessed NIR data.  It is an approach that 
automatically selects the optimal number of latent 
variables based on the average minimal prediction 
obtained from an internal bootstrap Latin partition 
(BLP) of the calibration set.  sPLS-DA 
classification accuracies were used for evaluating 
and comparing the spectral preprocessing methods. 

3. EXPERIMENTAL 
 

3.1 Samples 

     A total of 154 endometrial tissue sections from 
77 patients were provided by the Beijing Obstetrics 
and Gynecology Hospital, Affiliated to the Capital 
Medical University.  All together there were 36 
normal, 60 hyperplasia, and 58 malignant samples.  
The tissue sections were prepared as follows.  First, 
endometrial tissue sections were dissected and fixed 

in a 4% formaldehyde buffered solution, rinsed, and 
embedded in paraffin wax.  Each sample was sliced 
and dehydrated on a glass plate.  After the sample 
slices were dried, they were mounted on the plate, 
for measurement.  The thickness of each paraffin 
section was 4 µm approximately. 

3.2 Instrumentation and spectral data acquisition 

     NIR spectra of these 154 endometrial tissue 
sections were collected by using a Nicolet 6700 
Extended Fourier Transform Near Infrared (FT-
NIR) spectrometer (Thermo Electron, U.S.A.) with 
an integrating sphere diffuse reflectance system, an 
InGaAs detector, and an Omnic 7.3 spectrum 
collection system.  In this study, the reflectance 
mode was used and the samples were placed on an 
integrating sphere and directly measured by the 
NIR spectrometer.  The sample arangement for NIR 
measurement was given in [30].  The spectra were 
measured at room temperature with air as the 
standard reflectance material for the spectral 
background measurements.  Each spectrum was 
collected as an average of 64 scans for each sample.  
The range of spectral measurement was from 
10,000 to 4,000 cm-1 with a resolution of 4.0 cm-1 
with a data interval of 1.928 cm-1, resulting in 3111 
resolution elements (i.e., spectral variables).  NIR 
spectra were collected at five different spots for 
each sample, and the mean spectrum was used as 
the spectrum of the tissue section.   

     After the 2D-WPT denoising step, the data set 
was divided into calibration and prediction sets 
using the Latin partition method.  To validate the 
procedure, the Latin partitions were bootstrapped 
20 times.  The prediction data was pooled for the 4 
partitions and averaged heracross the 20 bootstraps.  
The average prediction results are reported with 
95% confidence intervals.  The computation was 
performed with MATLAB Toolbox. 

4. RESULTS AND DISCUSSION 
 

4.1 Spectral investigation 
      The unprocessed NIR spectra of the 154 
samples of the endometrium are given in Figure 1.  
From Figure 1, it can be seen that the raw spectral 
profiles of the three types of endometrial tissues are 
very similar and the reflectance characteristics have 
very minor differences by direct visualization.  The 
spectral profiles are complex because they are 
mixtures of the spectral signals of many tissue 
components including proteins, lipids, water, and 
carbohydrates, etc.  In addition, some interference 
factors such as baseline fluctuation and 
bandshifting, and measurement errors may also 
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manifest themselves in the spectra.  NIR spectra 
differ from some other spectra such as UV-Vis and 
MIR spectra, NIR spectra contain redundant 
information which may interfer the useful 
information.  It is necessary to select the appropriate 
preprocessing method to exclude redundancy and to 
extract useful information from the NIR spectra. 

 
Figure1.  Original spectra of endometrial tissues 

Various spectral preprocessing methods are 
available for extracting useful information, 
removing the noise and improving the model 
stability and predictability. These methods can be 
used separately or in combination.  In this work, 
MSC, SG-1D, SNV, DC, and 1D and 2D WPT 
were used.  To eliminate unrelated information and 
enhance the difference among samples from 
different classes, several preprocessing methods 
have been used and the processed spectra are given 
in Figure 2 (a)-(d), respectively.  MSC was used to 
correct the scatter light influence caused by 
differences in the tissue size and thickness.  The 
spectra pretreated by MSC are represented in Figure 
2 (a).  Calculation of derivatives is a commonly 
used method to eliminate a sloping background and 
baseline drift.  The derivative NIR spectra of the 
samples treated by using the SG-1D method are 
given in Figure 2 (b).  It can be seen from the figure 
that the background and signal shift have been 
effectively corrected.  The SNV corrected spectra 
are presented in Figure 2 (c).  This method is 
commonly applied to correcting for scatter effects 
due to the differences of particle size between 
samples.  The DC corrected spectra are represented 
in Figure 2 (d).  It models the background as a 
straight line and subtracts it from each spectrum.  In 
some cases, these methods are used in combination 
to achieve best performance. 

 
(a) Pretreated with MSC 

 

 
(b)  Pretreated with SG-1D 

 
(c) Pretreated with SNV 

 
(d) Pretreated with DC 

Figure 2. NIR Spectra Of Endometrial Tissue 
Samples Obtained  From Different Preprocessing 

Methods 
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4.2 Partial least squares discriminant analysis 
(PLS-DA) 

     For the PLS-DA classification, 154 samples 
were randomly split into two data sets using Latin 
partitions.  Each subset was used once for 
prediction and once for calibration.  Twenty 
bootstrapped Latin partitions (BLP) were conducted 
for the data set and the prediction errors were 
pooled for the two partitions and then averaged 
across the twenty bootstrap evaluations.   

     For sPLS-DA, the number of latent variables 
was chosen that furnished the lowest average 
prediction error.  This result was obtained from 2 
Latin partitions and 10 bootstraps of the calibration 
data set that occur internal to the sPLS-DA 
function.  Because the sPLS-DA occurs inside the 
outer BLP evaluation, the internal bootstrap was 
conducted 40 times (i.e., 2 Latin partitions for 20 
bootstraps) for each PLS model that was built.  BLP 
was used because this method can produce better 
statistacal results and more suitable for evaluating 
classification models. 

1) Classification accuracies by using PLS-DA with 
different preprocessing methods  

     The purpose of this work is to investigate the 
effectiveness of different preprocessing methods.  
Various wavelet compression methods are also 
preprocessing approaches, however, in this section 
only some commonly used preprocessing methods 
are discussed and the wavelet packet transform will 
be addressed in the following sections.   

     Sensitivity and specificity are statistical 
measures of the performance of a binary 
classification test, also known in statistics as 
classification function.  Sensitivity measures the 
proportion of actual positives which are correctly 
identified as such.  Specificity measures the 
proportion of negatives which are correctly 
identified. In practical result presentation, 
sensitivity relates to the test's ability to identify 
positive results, and specificity relates to the ability 
of the test to identify negative results.  In this work, 
acurracy was used to demonstarte classification 
results because we are coping with a three-class 
problem, i.e. identification of normal, hyperplasia, 
and malignant samples.  

     Classification results from sPLS-DA using 
different preprocessed spectra are given in TABLE 
I.  Accuracy is given as the ratio of TS/ET, where 
TS and ET are the numbers of the true samples and 
total samples of each class, respectively.  The total 
accuracy is given by the ratio of (TN+TH+TM)/T, 

where TN, TH, and TM are the numbers of 
correctly predicted samples from normal, 
hyperplaisa, and malignant tissue samples, 
respectively.  T is the total number of samples from 
the three classes.  It can be seen from TABLE I that 
the accuracies of classification using different 
spectral preprocessing methods are quite different.  
The highest accuracy was achieved by using the 
SG-1D algorithm as the preprocessing method.  The 
total accuracy of three classes by using SG-1D 
could reach as high as 94±5%. The lowest accuracy 
was achieved with the data preprocessed by using 
MSC, which was 84±8%.  

TABLE I.  The Results Of PLS-DA Obtained 
From Different Preprocessing Methods 

Preprocessing 
methods 

Accuracy 
of normal  

samples 
(%) 

Accuracy of 
hyperplasia 
samples (%) 

Accuracy of 
malignant 

samples (%) 

Total 
accuracy 

of samples 
(%) 

No-
preprocessing 86±10 94±3 92±4 91±6 

MSC 84±8 82±10 87±6 84±8 

SG-1D 91±7 95±3 95±5 94±5 

SNV 86±7 86±7 89±5 87±6 

DC 87±8 86±7 90±5 86±7 

2) The classification accuracies of PLS-DA with 
data preprocessed with 1D wavelet packet 
transform  

      Classification results of PLS-DA obtained from 
spectra pretreated by using 1D wavelet packet 
transform are given in TABLE II.  A matrix of 
wavelet coefficients ci0 was determined based on 
the energy of each frequency band and it was 
inversely transformed into the denoised spectral 
matrix.  From TABLE II, it can be seen that the 
classification results of PLS-DA corresponding to 
different c i0 coefficients are different.  The highest 
accuracies were obtained corresponding to c10, for 
which the accuracies were 90±5%, 87±6%, and 
91±4%, for normal, hyperplasia, and malignant 
classes, respectively.  The lowest accuracies were 
obtained corresponding to c30.  This result 
demonstrates that an optimal decomposition level is 
needed for optimal data compression and feature 
extraction. 

3) Classification accuracies of PLS-DA with data 
preprocessed with 2D wavelet packet transform  

    The classification results of PLS-DA by using 
two-dimensional wavelet packet transform are 
given in TABLE III.  The 2D wavelet packet 
transformation was performed as described in 
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section 3.3.  From TABLE III it can be seen that all 
the accuracies were over 90%.  The highest 
accuracies were corresponding to c20, which were 
98 ±2%, 99 ± 2%, and 98 ± 3%, for normal, 
hyperplasia, and malignant classes, respectively.  
The lowest accuracies were 97 ± 4%, 94 ± 4%, and 
92 ± 4%, for the normal, hyperplasia, and malignant 
classes, respectively, corresponding to c10.  The 
best results were obtained at a decomposition level 
of 2.  This level of accuracy can satisfy most 
practical applications.  By comparing the results 
between the 1D wavelet packet transform (TABLE 
II) and 2D wavelet packet transform (TABLE III), 
it can be concluded that the 2D wavelet packet 
transform as a preprocessing method gave better 
results.  

TABLE II.  The Results Of PLS-DA Obtained From 1D 
Wavelet Packet Transform 

Wavelet 
coefficients Normal Hyperplasia Malignant 

c10 

Normal 32±2 3±1 2±1 

Hyperplasia 2±2 52±3 4±3 

Malignant 2±2 5±3 53±3 

Accuracy 90±5 
% 87+6 % 91±5 % 

c20 

Normal 32±2 5±1 4±1 

Hyperplasia 3±1 48±3 10±4 

Malignant 1±1 7±3 44±4 

Accuracy 89±5 
% 80±5 % 77±6 % 

c30 

Normal 25±3 6±1 4±2 

Hyperplasia 10±3 41±4 13±2 

Malignant 2±1 13±3 40±3 

Accuracy 68±7 
% 68±7 % 70±5% 

c40 

Normal 26±3 7±2 3±2 

Hyperplasia 8±2 38±2 13±3 

Malignant 1±2 14±3 42±3 

Accuracy 73±8 
% 64±4 % 72±5 % 

c50 

Normal 26±2 6±2 3±2 

Hyperplasia 9±2 39±2 12±2 

Malignant 1±1 14±3 43±3 

Accuracy 71±6 
% 65±4 % 74±5 % 

5． CONCLUSION 
 

     In summary, a novel diagnosis application of 
154 endometrial tissue specimens by near infrared 
spectroscopy combined with chemometric methods 
is presented by using sPLS-DA classifiers based on 

preprocessed spectra with different methods.  The 
classification results demonstrate that 2D wavelet 
packet transform, as a preprocessing method, was 
more effective in spectral data compression and 
extracting useful features.  Based on the results of 
PLS-DA classification, it can also be concluded that 
the selection of appropriate preprocessing methods 
and decomposition levels are crucial for data 
analysis of NIR spectra.  Different from 1D wavelet 
packet transform, the 2D wavelet packet transform 
can generate a quadtree with more than two forks in 
the process of decomposition, so the data 
compression is more effective.  The results suggest 
that 2D wavelet packet transform is feasible as a 
data preprocess method for the development of a 
diagnostic approach of early stage endometrial 
cancer based on the NIR spectra of endometrial 
tissues.   
TABLE III.  The Results Of PLS-DA Obtained From 2D 

Wavelet Packet Transform 

Wavelet coefficients Normal Hyperplasia Malignant 

c10 

Normal 35±1 2±2 2±1 

Hyperplasia 1±2 56±3 3±2 

Malignant 0±0 2±2 53±2 

Accuracy 97±4 % 94±4 % 92±4 % 

c20 

Normal 35±1 0±0 0±0 

Hyperplasia 1±1 60±1 1±2 

Malignant 0±0 1±1 57±2 

Accuracy 98±2 % 99±2 % 98±3 % 

c30 

Normal 35±1 0±1 0±0 

Hyperplasia 1±1 59±1 1±1 

Malignant 0±0 1±1 57±1 

Accuracy 98±1 % 99±2 % 98±1 % 

c40 

Normal 36±1 2±1 0±0 

Hyperplasia 0±1 57±1 1±1 

Malignant 0±0 1±1 57±1 

Accuracy 99±2 % 95±2 % 98±2 % 

c50 

Normal 35±1 1±1 0±0 

Hyperplasia 1±1 58±1 1±1 

Malignant 0±0 0±1 57±1 

Accuracy 98±2 % 97±2 % 98±1 % 
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