
Journal of Theoretical and Applied Information Technology
 10th April 2013. Vol. 50 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

223

SOFTWARE AND HARDWARE PARTITIONING BASED ON
GENETIC ALGORITHM

1 YUE-MIN WANG

1Assoc. Prof., Computer Science Department, Suqian college, Suqian Jiangsu 223800, P. R. China

E-mail: 1 yuemin_wang01@163.com

ABSTRACT

Data stream-based multimedia application is studied and a software/hardware partitioning method is
proposed using both flexible granularity mechanism and extended mapping mechanism in this paper. This
partitioning method focuses on genetic algorithm (GA), considering flexible granularity mechanism and
extended mapping mechanism, designing special genetic coding method--double-link coding structure and
corresponding genetic operations, meanwhile, the method makes GA and the solving software/hardware
partitioning issue seamlessly connected, and the issue can be perfectly settled under the operation
framework of GA. This method can effectively improve the hardware/ software/hardware partitioning
quality, which has been proved by experiment.

Keywords: Multimedia Application, Software/hardware partitioning, Genetic Algorithm (GA)

1. INTRODUCTION

Software/hardware partitioning Method is based
on Genetic Algorithm to solve software/hardware
binary mapping, software/hardware extended
mapping, flexible particle and a series of related
problems. Because of the complexity of the
Software/hardware partition problems, basic
genetic algorithm can't meet the requirements, the
basic genetic algorithm can not meet the
requirements, so the basic algorithm needs to be
improved to adapt to the need to resolve
software/hardware partitioning problem and
seamlessly be integrated into the entire partition
process, which is the focus of this research [1]-[2].

2. BASIC GENETIC ALGORITHM

The basic genetic algorithm process is shown in
Figure 1.Genetic algorithm starts from a population
representing probable potential solution set. When
generating the initial population, the first step is to
realize from the phenotype to genotype mapping
namely coding work, usually with binary coding.
Initial population is produced in accordance with
the principle of survival of the fittest, and the
evolution of each generation to produce better and
better approximate solution. Each generation of
individuals are selected according to the size of
individual fitness in problem domain, and by means
of genetic operators to select a combination of
crossover and mutation a new population produce
[3].With the whole process, new population would

be more responsive than the previous generation,
and the last population the best individual can be
used as approximate optimal solution of the
problem when decoded. Genetic process contains a
chromosome coding, individual fitness evaluation,
selection operation, crossover operation and
mutation operation and several key operations [4].

Figure 1 Basic Genetic Algorithm
3. CODING SCHEME DESIGN

When using genetic algorithm to solve practical
problems, genetic coding should be considered at
first, which is the key to design genetic algorithm.
Genetic coding method not only determines the
individual chromosome arrangement form also
determines decoding methods from genetic type of
individual searching space of transformation to
representation type of the solution space, at the

Group P(t)

Reproduction

Crossover

Mutation

GroupP(t+1) decoding

Solution set

Individual
evaluation

http://www.jatit.org/
mailto:yuemin_wang01@163.com

Journal of Theoretical and Applied Information Technology
 10th April 2013. Vol. 50 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

224

same time ,which also directly affect the genetic
operation such as crossover, mutation operation
methods and operating efficiency For the
software/hardware partitioning problem, because of
the high complexity of the problem, many factors
considered, the genetic code design has so many
challenges. It is also the difficulty lying in this
study.

With the difference from the usually
Software/hardware partition problem,
Software/hardware partition problem has the
following features:

Flexible granularity rather than fixed granularity.
Based on this feature, hierarchical data flow
diagrams is introduced to meet the needs of the
design as shown in Figure 2, Where C, D.are
complex nodes, B,E are simple node, and source,
sink are start and end nodes separately, the last two
nodes are virtual nodes, which do not affect the
design.

Consider the software/hardware extensions
mapping problem rather than just binary mapping
of software/hardware .These characteristics need to
be taken into account in the design of genetic
encoding.

Figure 2 Hierarchical Data Flow Diagram
Considering all kinds of factors, coding scheme

is posed as Figure 3.

In nature, the forms of a simple biological
structure are usually haploid chromosome, but there
are also some of the diploid or polyploidy
chromosome structures, within which diploid
structure contain two homologous genome, wherein
each chromosome contain the gene information of
the same functions, usually with dominant and
recessive quality[5]. These two kinds of genes
showing the individual entry type is determined by
the following rules: In each locus, when one of two

homologous chromosomes is dominant, the gene
corresponding traits dominant; when two
homologous chromosomes in the corresponding
genes are recessive, the gene corresponding to the
trait is expressed as hidden [6].

Figure 3 Coding Design
Proposed coding scheme in this paper borrow the

diploid structure and concept with improvement:
similar to the double-stranded diploid chromosome
coding structure, in which one chain is a fixed-
length binary encoding, indicating whether the node
sub-graph is replaced, which is used to solve the
flexibility and granularity of exploring issues;
another chain uses fixed-length real number coding
node to indicate parameter selection for
software/hardware binary mapping and extended
mapping problem. Showed in Figure3, the value of
node TD as chromosome chain gene is 1, indicating
that the node is a complex node and will be
replaced by the corresponding sub-graph when
exploring the flexible granularity.

However, only the first chromosome chain can
not completely solve the a flexible granularity
exploration and node mapping including binary
mapping and the extension mapping problems,
which can be solved with the second chromosome
chain. The second chromosome chain is coded
using real-coded. For the same locus, according to
the value of the chromosome chain, the second
chromosome chain decoding function Decode (gi)
will be different : Assuming Ki is the number of
implement parameter table entries of node Ti ∈ Vt.
gi is the chromosomal locus, ri (1), ri

(2), respectively,

ds

de

d2

d1

ED

CB

ce

c1

cs

c2

 source

sink

 Nodet: TA TB TC TD TE

 Gene1: 0 0 0 1 0

 Gene2: 3 4 5 3 4

0

 1

2

3

 Num Num Num

 0

1

 2

 3

4

 0

 1

2

 3

 4

 5

...

0 1 1 3

DC DB DA subnode of D

 HS ... HS ...

sw

 hw

 sw

 hw

...

 TA

 TB

 TC

 TD

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 10th April 2013. Vol. 50 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

225

are the locus values at gi of the first chromosome
chain and the second chromosomal chain. When sgi
is the complex node, it correspondents to the
number of nodes of the corresponding sub-graph
(not including the sink / source node). Then the
decode functions Decode (gi) of the second

chromosome is:

Form the above expression, when ri (1) = 0, that
is, when the node is simple node or complicated
node but not replaced with sub-graph in the process
of software/hardware partition, the decode function
1 is used: the value some entry of a parameter table
is got when taking the real value of second
chromosome chain modulo the number of entries of
the implement parameter table. The process is as
the nodes TA, TB, TC showed in Figure 3.

When ri (1) = 1, i.e. when the node is a complex
node and is substituted with sub-graph in the
process of software/hardware partition, decoding
function 2 is used: This value is converted to binary
representation, according to the number of nodes in
sub-graph (not including the sink / source),
following the sequence of a pre-determined sub-
graph node, the value is matched with the binary
representation of the values from low to high. As
node TD Figure 3 showed, its sub-graph nodes is 3,
fixed sequence is DC, DB, DA form low to high.
The real value of its second chromosome at its
locus is 3→011. Matching from low to high, DA→

1, DB→1, DC→0 is obtained. According to the top
of the first assumption, without further hardware
implementation explore for the sub-graph node,
implement parameter table of sub-graph nodes has
only two entries, representing software
implementation and a hardware implementation
respectively. According to the result of matching
results, binary mapping values of
software/hardware are obtained directly. By this
treatment method, the process of a flexible
granularity of the software/hardware partition
exploration can be supported.

3.1. Genetic Operation Based on Double-link
Coding

In the basic genetic algorithm, the survival of the
fittest mechanism is implemented by selecting
operation [7]. Higher fitness individuals will also
have the opportunity to be inherited to the next
generation .While using the roulette wheel selection
method and optimal retention strategies, the best

individual in the previous generation are compared
with the worst contemporary individual. If the
former is better, the previous generation of the best
individual will replace the worst individual in the
present generation, which guarantees the best
individual will not be destroyed by genetic
operations[8]. In addition, the software/hardware
partitioning method can treat the target system
performance or hardware consumption as a
constraint, which can be selected depending on the
design requirements. Fi

A is the fitness function
when optimizing system performance (O (T)) as
hardware consuming for constraints (C (A)).

Assuming Ti is the system execution time value
of the individual i, A is the consumption value of
hardware resources of individual i. The
Tmax ,Amax ,a, b are sufficiently large constant value,

and b> a + 1> 2.

According to chromosome coding scheme in
Figure 3, genetic crossover operation of the
program is designed, as Figure 4 showed.

Crossover point

Individual1: 0 0 0 1 0 0 0 0 0 0
 3 4 5 3 4 3 4 5 2 1

Individual2:
 0 0 0 0 0 0 0 0 1 0

 2 3 1 2 1 2 3 1 3 4

Figure 4 Genetic Crossover Operation Programs

Using the method similar to the commonly used
in the single-point crossover in the binary-coded,
one locus on chromosome is randomly selected,
crossing over each other between two matching
individuals. Despite the use of double-linked
chromosome encoding method, which uses the
hierarchical structure, the length of double-linked
chromosome are equal, so simple cross can be
proceeded simultaneously for the double-link.

The local search capabilities can be improved
and the diversity of individuals is maintained by
genetic diversity operation [9]. For the double-
linked chromosome schema as Figure 2 showed,
genetic variation program is designed based on the
uniform mutation: pre-setting a minimum constant
value mp as the mutation probability of the genes in
the chromosome, for every locus on chromosome, a
random value rd is generated by the random

Decode(gi)=
 ri

(2)%ki , if ri
(1)==0

Binary(ri
(2))[sgi-1:0], if ri

(1)==1

 a-Ti/Tmax-(Ai-C(A))/Amax if Ai> C(A)
Fi=
 b- Ti/Tmax if Ai<= C(A)

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 10th April 2013. Vol. 50 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

226

number generator. Meanwhile, the gene of the locus
will be mutated when rd<mp. Special encoding
method using the double-stranded chromosome also
reflected in mutation operations, i.e. if the node
corresponding to the current loci is a simple node,
then the locus at the first chromosome chain value
does not participate in variation, the second
chromosome chain value will mutate: An random
generated integer value rk, taking this value modulo
the value ki of the parameters array item to the
corresponding node of related loci, i.e. rk%ki. By
the means of this way, simple node is mutated.
When the loci corresponding node is a complex
node and need variation to the loci according to the
gene mutation probability, make the mutation of the
first chromosome chain and the second
chromosome to the loci with 50% of the probability,
generating a random number in [0, 1] using random
generator. if this value is less than 0.5, then value to
the loci at the first chromosome chain
mutates(complementation), otherwise, the loci in
the second chromosome chain at the loci would
mutate with the mutation method as the simple
node. Variation process is as figure 5 showed.

Individual

0 0 0 1 0

3 4 5 3 4

Mutation-1

Mutation-2

0 0 0 0 0

2 4 5 3 4
Figure 5 Genetic Mutation Operation Program

3.2. Performance Estimation Method Based on
the Critical Path Scheduling

The genetic algorithm in running needs to decode
the individual to determine the individual
software/hardware binary mapping and extension
mapping problem. According to the design of
genetic coding, decoding method is obvious.
However, relying solely on individual decoding
does not completely determine the size of the
individual fitness, so it need obtain hardware area
of each individual resource consumption and
system performance[10]-[12], that is, to determine
Ti，Ai value in the fitness function. Since the
determination of these values is inside of the
algorithm loop, requiring repeated calls, so it’s
unrealistic to obtain these parameters based on the
actual circumstance. The precise values for these
parameters approximation obtained through the fast
and efficient estimation method is an effective
method.

Estimates of the values of Ai(Atotal) is relatively
simple, and by obtaining the type and number of
the system consumption of hardware resources, the

simple accumulation is able to obtain the hardware
resources consumed by the system area, as (3)
showed:

Atotal=∑rsi*nsi*aui

Assuming M for the number of the individual
consumed hardware resources, rsi for the i resource
type of system consumption, nsi for the number of
consumed resources, aui for the hardware area
value of such resources (from the library).

However, the determination of system
performance can not use this simple accumulation
to obtain, it needs to introduce the task scheduling
mechanism, obtained on the limited resources of
scheduling tasks (including communication tasks).

Through the individual decoding process,
software/hardware binary mapping of the node, the
implementation of the node selection information
and edge information abstracted from the graph
model can be obtained, which has been completely
satisfy the task scheduling condition[13]. Different
from the common in the field of scheduling
problem, through the decoding process, it has been
clearly determined which node will be mapped to
which execution unit and the implement parameters
of the node, so the scheduling mechanism mainly
confirms the two questions:

Node priority in the scheduling : Fcycle.

Node temporal position in the whole scheduling
graph.

Scheduling mechanism based on the critical path
used, the most critical nodes in the path are
assigned the highest priority to attain priority
scheduling of these key nodes, through this
mechanism to optimize the overall length of
scheduling and to optimize system performance.
Further, in order to reduce the difficulty of
scheduling, accelerating the whole scheduling
process, the design uses a non-preemptive
scheduling mechanism. That is to say, during
execution of a task, some task can not be
interrupted by other tasks (in addition to the
interrupt service routine (ISR)) until the task is
completed. A complete period of task execution
(Fcycle) includes obtaining the desired data (Rcycle)
from the external, internal execution (Icycle) and the
output (Wcycle). as shown in Figure 6, when the
communication unit to perform the same internal
communication, it can be ignored.

In this study, the fixed target architecture uses a
single CPU + the single ASIC + single bus structure
as the target architecture of the system. Such a

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 10th April 2013. Vol. 50 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

227

target architecture determines scheduling resources
available in the whole scheduling process with the
CPU, ASIC (for addition to communication node
scheduling) and the bus (for scheduling) of the
communications node, wherein the CPU and the
bus are a serial execution apparatus, the hardware
ASIC is a unit that can be executed in parallel.
Scheduling graph is as Figure 7 shown.

Rcycle Icycle Wcycle Rcycle Icycle WcycleRcycle Icycle Wcycle

 Fcycle Fcycle

Figu
re 6 diagram of task execution process

CPU
Ic1 Ic2

BUS Wc3Rc1 Wc1 Rc2 Wc2 Rc3 Rc4 Wc4

ASIC

Ic4
Ic3

Figure 7 Task Scheduling Diagram

Scheduling mechanism based on a critical path is
to calculate earliest start execution time (ASAP) of
the node (excluding the communication nodes)
involved in the scheduling and the latest start time
(ALAP) value. ALAP-ASAP value as the node
priority standard of judgment, the node is a key
node when ALAP = ASAP. All key nodes in the
path form the critical path. Since the introduction of
a flexible granularity in software/hardware
partitioning process, the whole scheduling process
is divided into two steps: firstly, schedule all the
complex nodes substituted with sub-graph among
the genetic individuals and obtain the scheduling
length. Secondly, schedule at the top-level, i.e.,
anti-sign complex nodes information replaced by
sub-graph from step one. The complex nodes exist
in the form of a single node in the scheduling
process. The genetic individual system performance
and system scheduling length value can be obtained
through the top layer scheduling.

3.3. Algorithm Process

The whole algorithm flowchart is as shown in the
following Figure 8. This algorithm flow path
integrated with the proposed coding scheme and
corresponding genetic method of operations, such
as selection, crossover and mutation. With the
different from the basic genetic algorithm, in
addition to special coding method and
corresponding genetic operation, repairing process
to the invalid solution is added.

In fact, because software/hardware partition is
constrained by C (), according to genetic coding
scheme, it can't guarantee all the produced
individuals can satisfy the system constraint C ()

according to this code rule and it may produce
some invalid individuals, including invalid
individuals of the randomly initial group at the
beginning stage and all the produced new
individuals throughout all of genetic operations.
Invalid proportion of individuals in the population
will increase with the tight constraints of system.
Although some invalid individual can provide
valuable gene fragment, they increase the space to
explore, affecting the operating efficiency of the
algorithm. Repairing operating to invalid
individuals changes the invalid into effective
individuals and it can greatly enhance the operating
efficiency of the algorithm and accelerate the
convergence of the algorithm.

Figure 8 Algorithm Running Processes

The system hardware overhead of C (A) as a
constraint, for example, when some individuals in
the population consume hardware resources is
greater than the C (A), the individual is considered
to be invalid individuals. In the process of patching
operations, it need reduce the usage of the
individual hardware, so that the hardware resource
overhead is less than or equal to C (A), which will
turn invalid individual into effective individual.

In this kind of situation, the invalid individual
repair plan is put forward: simple nodes and
complex nodes mapping to hardware
implementation among the individuals sort
according to the priority as the following definition
of ratioi. The smaller the value is, the higher
priority becomes.

ratioi=(Ti
sw-Ti

hw)/Ai
hw

Initial population
gen=0

Reproduction

Crossover

Mutation

RepairInvalid individual
exist?

Elitist Model

gen<maxgen

stop

Y

Y

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 10th April 2013. Vol. 50 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

228

As shown in above, when loci i corresponds to
simple node or complex node and not replaced by
sub-graph, Ti

sw, Ti
hw, Ai

hw represent respectively
software implementation parameters, selected
hardware implementation performance and area
parameters when hardware extended
mapping ;When the node is a complex node and
replaced by sub-graph node, Ti

sw represents the
software implementation parameters of the complex
node not replaced. Ti

hw, Ai
hw represent the

hardware performance parameters (sub-graph
scheduling) and hardware area value (sub-graph of
mapping to hardware sub-graph node consumption
sum of the hardware area) of the individual nodes
been replaced by the sub-graph.

In the repairing operations, according to node
priority from high to low, change the node
implementation form hardware execution unit into
implementation on CPU, especially, when the node
is complex node and be replaced by sub-graph,
recover implementation of the node to the state
without substituted, i.e. turn the loci value of the
first chromosome chain from 1 into 0, then the
entire complex nodes as a whole moves to
implementation on CPU. Through this method,
invalid individuals can be effectively repaired into
valid individuals.

In addition, a variable flaton and a parameter
value ITER_GE are added in algorithm. Flaton and
ITER_GE are used to control whether using enable
flexible granularity explore mechanism in the
Software/hardware partitioning process. In
software/hardware partitioning initialization
process, enable flexible granularity mechanisms is
not used, but to do the software/hardware binary
mapping and extended mapping. If you still do not
get individual fitness improvement after ITER_GE
generation, then enable flexible granularity
mechanism, finer partition granularity explore is
conducted to further improve the quality of
software/hardware partitioning, as shown in Figure
9.

In above methods, flexible granularity enabled
processes can play the flexible of granularity
mechanisms and the extended mapping mechanism,
thereby enhancing the quality of the
software/hardware partition final partition of
quality.

Partitioning results can be optimized after
iterations of the algorithm, including node binary
mapping as well as expansion mapping scheme.

Initialization process,
Shielding flexible granularity mechanisms,
Local genetic algebraic variables L = 0

Hardware/ Software partitioning iterative
process based on genetic algorithm

Open flexible granularity
enabled

Flaton=1

Local genetic algebra
variable L + +

 Best individual fitness
improvement?L=0

L==iter_ge?

N

Y

Y

N

Figure 9 Flexible Granularity Mechanism Enabled

Process

4. THE ALGORITHM VALIDITY TESTING
BASED ON RANDOM GRAPH

With software/hardware partitioning algorithm in

C / C + + language, a large number of random
graph test have been conducted in order to verify
the effectiveness of the algorithm. During the test,
the use of random graph TGFF (Princeton
University developed custom output random graph
generator) developed by Princeton produce a large
number of customized random graphs as the basis
on test.

Several random reference point given as below,
as shown in Table 1: From the table, it can be seen
the random reference number of nodes and edges of
the number and complexity of the number of nodes
increased gradually, which can test quality of the
partition method of the proposed software/hardware
partition method in the case of different reference
points.

Table 1 Random Benchmark Of Basic Situation

Name
Node

number

Edge

number

Complex node

number

Complex

node ratio

Rand11 11 19 0 0%

Rand42 42 77 4 9.5%

Rand88 88 160 10 11.36%

Rand124 124 230 14 11.3%

For stochastic input table reference point, the
following comparative test likes as follows:

Compared with partitioning method having no
flexible partition granularity mechanism

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 10th April 2013. Vol. 50 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

229

Compared with the situation without extended
binary mapping, i.e. not considering the hardware
design space exploration.

4.1. The Longitudinal Comparative Experiment
Flexible Partition Granularity Mechanism

In order to analyze the impact of the quality of
the software/hardware partition under the flexible
granularity mechanism, longitudinal comparative
experiments are proposed. Based on genetic
algorithm to implement software/hardware partition,
through the enable control to the flexible
granularity mechanism, the impact level to software
partition quality is got under the mechanism.

Based on the test result to the above provided
random datum point, the experimental results are
showed in figure 10. Analysis represents that due to
the random test chart Randll, complex node number
is 0, explaining whether to adopt a flexible partition
size mechanism, this mechanism is invalid. From
Figure 10, it can be seen that as constraint (area)
enhanced continuously, the system performance
declined gradually, which conforms to the real
design. Meanwhile, since the flexible granular
mechanism ineffective and the genetic algorithm
have a random uncertainty, therefore flexible
partition granularity can make the two curves
coincide roughly (but not completely coincide). For
random test chart Rand42 / ralld88 / rand124: The
number of complex nodes in random test chart
Rand42 is four, accounting for 9.5% of the total
number of the top node. Complex node number in
Rand88 is 10, accounting for 11.36% of the total,
complex node number in Randl24 is 14, accounting
for 11.3% of the total. Under these test input, using
the flexible granularity mechanism can improve the
final quality partition. It can be seen that, from the
figure, the introduction of the flexible granularity
mechanism improve the quality of the whole
partition compared with a fixed granularity,
especially in the case of very strict constraints.
Flexible granularity can meet a strong constraint.

Figure 10 Partition Granularity Mechanisms Impact

Analysis

4.2. Longitudinal Contrast Experiment
Extended Mapping Mechanism

In order to analyze the impact of the extended
mapping mechanism on the quality of
software/hardware partitioning, comparative
experiments of software/hardware partitioning
method based on genetic algorithm-based
longitudinal is conducted. According to random
reference point in the initialization phase of the
hardware/software partitioning process has been
randomly obtained from some hardware
implementation point in hardware expansion space
as the only hardware implantation representation in
the whole partition process, only hardware/software
binary mapping is conducted , ignoring the
extended mapping. Enable control of hardware
design space obtains early and later comparison
data, analysis of the impact of the extended
mapping mechanism on the quality of the

(a)

(b)

(c)

(d)

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 10th April 2013. Vol. 50 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

230

software/hardware partition. Random benchmark
points provided above are used to conduct
experiment, experimental results as shown in
Figure 11. From the figure, it can be seen that the
introduction of extension mapping mechanism
improved the quality of software/hardware partition
greatly, with the degree of improvement with
respect to the test input.

Figure 11 Extended Mapping Mechanism Impact

Analysis

5. CONCLUSION

In this study, a detailed analysis of the basic
questions need to be addressed in the

software/hardware partition, including floating-
point to fixed-point conversion, the system diagram
representation of the model, the software
parameters and hardware parameter extraction and
anti-sign issues, through the analysis of these
problems, the software/hardware partitioning
problem is refined to a mathematical combinatorial
optimization problems, making it possible to solve
the design problems of system software/hardware
partition by the introduction of mathematical
optimization.

Software/hardware partitioning method is
proposed in this paper, genetic algorithm as the
basic algorithm framework, combining flexible
partition granularity and extended mapping
mechanism and the double-linked coding genetic
algorithm is developed. According to this particular
duplexes encoding mechanism, the corresponding
genetic operations comprising selecting operations,
crossover operations, and mutation operations were
designed. For the arisen invalid solution in the
partition process, repairing operations were
proposed to improve the efficiency of the algorithm.
Compared with the successfully implemented
software/hardware partition method in the research
field, the proposed method including the flexible
granularity mechanisms and the extended mapping
mechanism and an enable process with flexible
granularity integrated these two mechanisms into
the operational framework of the genetic algorithm
seamlessly, which is the definite feature of the
software/hardware partitioning method.

ACKNOWLEDGMENT

This work is partially supported by science and
technology project of Suqian College (No. 0712
and 811314010422)

REFRENCES:

[1] Prakash G. Burade, Dr. J. B. Helonde, “By

Using Genetic Algorithm Method For Optimal
Location Of Facts Devices In The Deregulated
Power System”, Journal of Theoretical and
Applied Information Technology, Vol. 17. No.
1, 2010, PP. 64-71.

[2] YE Hua, Wu Jigang, “Computing Models and
Algorithms for Complex Co-design Systems”,
Journal of University of Electronic Science
and Technology of China, Vol. 03, 2011, PP.
333-345.

[3] LI Zheng-min, GUO Jin-jin, LV Ying-ying,
“Simulation Research on HW-SW Partitioning
of Embedded System Based on Ant Colony

(a)

(b)

(c)

(d)

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 10th April 2013. Vol. 50 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

231

Algorithm”, Computer Simulation, Vol. 10,
2011, PP. 204-207.

[4] Wang Lei, Kang Qi, XiaoHui, et al. “A
Modified adaptive particle swarm optimization
algorithm”, IEEE, Shanghai, 2005, PP. 209-
214.

[5] Ahmed A. A. Esmin, Germ Ano Lambert-
Torres, Antonio C. Zambronide Souza, “A
hybrid particle swarm optimization applied to
loss power minimization”, IEEE Transactions
on Power systems, Vol. 20, No. 2, 2005, PP.
859-866.

[6] Daniel W. Beranger, Douglas H. Werner,
“Particle Swarm Optimization Versus Genetic
algorithms for Phased Array Synthesis ”, IEEE
Transactions on Antennas and Propagation,
Vol. 52, No. 3, 2004, PP. 771-779.

[7] Sangwook Lee, Sangmoon Soak, Sanghoun
Oh, “Modified binary particle swarm
optimization”, Natural Science, 2008: PP.
1161-1166.

[8] Chatterjee A, Siarry P. Nonlinear, “inertia
weight variation for dynamic adaptation in
particle Swarm optimization”, Computers and
Operations Research, Vol. 33, No. 3, 2006,
PP. 859-871.

[9] LI Lan ying, Zhang Lei lei, Shi
Min, “Improved two-dimension enhanced
greedy hardware/software partitioning
algorithm”, Computer Engineering and
Applications, Vol. 21, 2009, PP. 64-67.

[10] SUSMI ROUTRAY, “An Enhanced Genetic
Algorithm For Dynamic Routing In ATM
Networks”, Journal of Theoretical and
Applied Information Technology, Vol. 16, No.
2, 2010, PP. 153-158.

[11] C. Zhang, “Comparisons of selection strategy
in genetic algorithm”, Computer Engineering
and Design, Vol. 30, 2009, PP.5471-5478.

[12] I. De, B. Chanda, B. Chattopadhyay,
“Enhancing effective depth- of- field by image
fusion using mathematical morphology”,
Image and Vision Computing, Vol. 24, No. 12,
2006, PP. 1278- 1287.

[13] Wu J. G., Srik anthan T., Jiao T., “Algorithmic
aspects for functional partitioning and
scheduling in hardware / softw arecodesign”,
Design Automation for Embedded Systems,
Vol. 12, No. 4, 2008, PP. 345-375.

http://www.jatit.org/

	1 YUE-MIN WANG

