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ABSTRACT 
 

In this article, an intelligent compensation control algorithm for low-speed robot joint with dynamic friction 
was proposed based on self-recurrent wavelet neural networks (SRWNN). It is not necessary to predict the 
dynamic model parameters, and the high-precision compensation of nonlinear friction is realized by using 
few neurons and iterations through only position feedback. Lyapunov stability analysis results show the 
bounded convergence of tracking error and network weights. The servo experimental results from a certain 
type of robot joint show that the positioning accuracy can be greatly improved by introducing the proposed 
intelligent algorithm. 

Keywords: Model-Free, Friction Compensation, Self-Recurrent Wavelet Neural Networks (SRWNN), 
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1. INTRODUCTION  
 

Friction is the bottleneck for low-speed servo 
drive system [1] to improve the dynamic and static 
performance, and it can cause some malpractices 
such as phase-lag, repeatability deterioration, stick-
slip motion, commutation error and waveform 
distortion, etc. Therefore, the study of friction 
compensation has been an important issue in the 
field of precision motion control. 

Friction compensation control method can be 
divided into model compensation and model-free 
compensation. The current research results have 
shown that the friction is a complex nonlinear 
function which has zero gap and piecewise 
continuous characteristics. The friction model 
parameters are related with shaft structure, 
lubrication condition, temperature, load type and 
servo speed, etc. Since the time-varying 
characteristic of influencing factors, it is difficult to 
directly use fixed friction model to compensate. 
Genetic algorithm is a kind of approach for 
nonlinear identification [2]. Jiao  proposed a 
genetic algorithm to identify the friction model 
parameters and to make the compensation term 
continuously approach the actual friction [3]. Zhou  
proposed an adaptive coulomb friction model based 

on the SVM (support vector machine) regression, 
and the inaccurate modeling problem caused by 
discontinuous friction torque at zero-speed was 
solved [4]. In [5], the online estimation and 
compensation for friction is realized through the 
fuzzy adaptive adjustment. A friction compensation 
method by using the friction state observer with 
time-varying gain is proposed in [6]. Model-free 
compensation method regards friction as a kind of 
nonlinear disturbance of the system，and uses the 
robust method to stabilize the output，thus it is not 
necessary to detect the friction parameters. The 
representative methods are as follows: high gain 
PID control (i.e., in [7]), friction estimation and 
compensation based on extended Kalman filter (i.e., 
in [8]), the robust control based on the disturbance 
observer (i.e., in [9]), etc. In recent years, the neural 
networks [10], such as BP, RBFN, Gauss, etc., has 
been successfully applied in the nonlinear domain 
for the capability of high precision approximation 
to the continuous functions. However, for the 
nonlinear functions with piecewise, discontinuous 
characteristics, the approximation ability is limited 
even if using more neurons and iterations. Rastko  
proposed a neural network structure with additional 
jump-neurons to approximate the piecewise 
continuous functions [11]. Kemal  established a 
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Sigmoid feed-forward neural network with only 
one speed-input node to compensate the friction 
[12]. An extension neural network with ogee jump 
activation function was designed to compensate 
friction in [13], but the neurons threshold of 
activation function must be set at the discontinuity 
point of approximated function. Seong  used a 
regression fuzzy neural network to compensate the 
dynamic friction, and realized the high precision 
positioning of the position servo system [14]. The 
CMAC neural network is employed to realize the 
local approximation and feed-forward 
compensation control of nonlinear friction in [15]. 
Wavelet neural networks  (WNN) is different from 
the above mentioned neural networks [16]. It is 
developed in the framework of multi-resolution 
analysis, and has the ability to extract the signal 
detail components. Hence, WNN can be used to 
approximate the discrete nonlinear functions. In this 
paper, an intelligent control algorithm for friction 
compensation based on self-recurrent wavelet 
neural network is proposed, and the experimental 
results are shown. 

2. STRUCTURE OF SELF-RECURRENT 
WAVELET NEURAL NETWORK 

 

 
 

Figure 1 Self-Recurrent Wavelet Neural Network  

Self-recurrent wavelet neural network is a 
dynamic feedback network, and it has the mapping 
function of the dynamic characteristics by storing 
internal state, thus the network has the time-varying 
characteristics. The compactly supported wavelet 
makes the self-recurrent wavelet neural network has 
superiority at approximation of the revulsion and 
discontinuous functions. 

Design a self-regression wavelet neural network 
structure with four layers, namely, input layer, the 
regression layer, the product layer and output layer, 

as shown in Figure 1. The variable symbols are as 
follows: 

k —Servo cycle number; 

( )kv —Input vector of the input layer; 

h ( )kv —Input vector of the regression layer; 

h ( )iv k —The i-th variable of the regression layer 
input vector; 

( )xψ —Activation function of the regression layer 
neurons; 

o ( )iv k —Output of the i-th neuron in the regression 
layer; 

p ( )jv k —Output of the j-th neuron in the product 
layer; 

( )jW k —Ideal weights of the j-th neuron of the 
product layer and output layer; 

( )y k —The network output. 

The network output is 

p
1

( ) ( ) ( )
jN

j
j

j
y k W k v k

=

= ⋅∑               (1) 

 
where jN  is the number of product layer neurons. 

The network product layer output is 

 p o
1

( ) ( )
iN

j i

i

v k v k
=

=∏                        (2) 

where iN  is the number of regression layer 
neurons. 

The network regression layer output is 

 ( )o h( ) ( )i iv k v kψ=                      (3) 

 
where the activation function of the regression layer 
neurons is the Mexican-Hat wavelet function 

 2 2( ) (1 ) exp( / 2)x x xψ = − ⋅ −             (4) 
 

The input vector of the regression layer is 

 h o( ) [ ( ) ( 1)]ik k v k= −v v                 (5) 
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The input vector ( )kv of the input layer can be 
defined in accordance with the control object and 
the measured state variable. 

3. INTELLIGENT CONTROL ALGORITHM 
BASED ON FRICTION COMPENSATION  
 
3.1 SYSTEM MODEL 
 

The dynamics equation of robot joint position 
servo system can be expressed as 

( ) ( , ) ( ) ( )M C K Fθ θ θ θ θ θ θ τ+ + + =     (6) 
 

where θ  is the actual position, M  is the positive 
definite inertia term, C  is the coupling term, K  is 
the positive definite stiffness term, F is the low-
speed nonlinear dynamic friction, and τ  is the 
input control law. 

Tracking error is 

de θ θ= −  
 
Error function is defined as 

r e e= + Λ  
 
where 0Λ >  is the filter coefficient, thus 

dr eθ θ= − + + Λ 
 

 
( )

( )

( )

( ) ( )

d

d

d

d d

Mr M e

M e M

M e C F K

M e Cr C e F K
Cr f

θ θ

θ θ

θ θ τ

θ θ τ
τ

= − + Λ

= + Λ −

= + Λ + + + −

= + Λ − + + Λ + + −

= − − +

  

 

 

 

 
       (7) 

 
where ( ) ( )d df M e C e F Kθ θ= + Λ + + Λ + +   is 
the uncertain item, and associated with the vector 

( ) [ ]d d dk e e θ θ θ=  v . f  contains the 
nonlinear friction term F , which is intermittent at 
zero and usually unknown in practical engineering, 
thus it is needed to be approximated by the control 
law. 

The control law is defined as 

 vf̂ k rτ = +                      (8) 

where f̂  is the approximation of f , vk  is the 
control gain. 

Combining (8) and (7) yields 

 v

v

ˆ

( )

Mr Cr f

Cr f k r f

C k r f

τ= − − +

= − − − +

= − + +





                  (9) 

 
where ˆf f f= − , that is the approximation 

accuracy of f̂  to f . 

Considering the convergence of tracking error, 
the Lyapunov function can be defined as 

21
2

V Mr=  

 
The first-order derivative is 

2
v( )V Mrr rf C k r= = − +   

 
As a result, when vk  is a constant, the stability of 

the control system will depend on the 
approximation precision f . Therefore, the 
identification and approximation of f  ultimately 
affects the control performance. 

 

3.2 THE SELF-RECURRENT WAVELET 
NEURAL COMPENSATION OF f  

 
The self-recurrent wavelet neural network shown 

in Figure 1 is used for the self-adaptive 
approximation of f . The input vector is 

( ) [ ]d d dk e e θ θ θ=  v , the nominal value of 
the network ideal weight ( )jW k  is defined as 

ˆ ( )jW k , and the weight error is 

ˆ( ) ( ) ( )j j jW k W k W k= − . Considering the actual 

situation, the true value of f  satisfies 

p
1

( ) ( )
jN

j
j

j
f W k v k ε

=

= ⋅ +∑ , where ε  is the network 

approximation error, and Nε ε≤ . 

The network nominal value output of f  
according to (1) is 

 p
1

ˆ ˆ( ) ( ) ( )
jN

j
j

j
f k W k v k

=

= ⋅∑              (10) 

 
The control law (8) is rewritten as 
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 vf̂ k rτ β= + −                        (11) 
 

where β  is the robust term used to overcome the 
network approximation error ε , it can be designed 
as 

sgn( )N rβ ε= −  
 

Combining (11) and (7) yields 

 v( )Mr C k r f ε β= − + + + +  (12) 
 

The self-recurrent rate of the network nominal 
weight ˆ ( )jW k  is defined as 

 p
ˆ ( ) ( )j

jW k v k rλ=        (13) 
 

where 0λ >  is the weight convergence coefficient. 
Weights obtained by the differential equation (13) 

( )jW k  is updated online through the position error 

( )e k  and the change rate of  the position error 
( )e k  in the k-th servo-cycle. The updating of the k-

th network weights ( )jW k  uses only the ( 1)k − -th 
servo-cycle data, and the adjustment of network 
weights can be done only in the k-th servo-cycle. 
There is no need to readjust the weights from the 
initial time, thus the adjustment time is greatly 
saved. 
 
3.3 STABILITY ANALYSIS OF THE 

PROPOSED ALGORITHMS 
 

Consider the uniform convergence of the 
tracking error and the network weights as the 
control objectives, the Lyapunov function can be 
redefined as 

2 21 1( ) ( )
2 2 jV k Mr W k

λ
= +   

 
The first-order derivative is 

2
v

p

2
v

1( ) ( ) ( )

( )
ˆ( ( ) ( )) ( )

( )

j j

j
j j

V k Mrr W k W k

rf C k r r r

W k W k v k r

C k r r r

λ
ε β

ε β

= +

= − + + +

− −

= − + + +

  

  

 

Since sgn( ) 0N Nr r r r r r rε β ε ε ε ε+ = − = − ≤ , 

thus ( ) 0V k ≤ , Lyapunov stability conditions can 
be satisfied, the tracking error and the network 
weights will remain UUB. Thus, the stability of the 
intelligent control algorithm is only related to the 
selection of Λ , vk  and λ , and independent of the 
system parameters, thus it is robust. In accordance 
with the above algorithm, the position control 
system block based on the friction compensation is 
designed as shown in Figure 2. 
 

Eq.(6)

+−

d
d
u
t

e

e

dθ
dθ
dθ

Eq.(10)

Λ ++ vkr

Nεsgn
Eq. 
(11)

θ

 
Figure 2 Self-Recurrent Wavelet Neural Friction 

Compensation Control System Block Diagram 

 
4. EXPERIMENTAL RESULTS  
 

Position control experiments are carried out 
under the low-speed conditions at a robot joint 
shown in Figure 3. The host computer is industrial 
PC, the hypogynous machine is Turbo PMAC servo 
card, MicroE2000 circular grating measures the 
actual joint position θ , CYB torque sensor 
measure the output torque, and CF-2 magnetic 
powder brake offer dummy load. 

Robot joint Circular grating

Torque sensor
Magnetic powder 
brake
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Figure 3 Robot Joint Position Control Experiment 
Bench 

 
The expectation trajectory is given as 

0.05 sin(2 / 6 )radd tθ π= × ⋅ , namely the sine 
function of the amplitude for 0.05rad, cycle for 6s. 
Without detecting system parameters, two position 
tracking experiments are employed. The first 
experiment is done by debugging control gain 

5Λ =  and v 40k =  to make position tracking error 

reduced into 34.8 10 rad−×  bounded range. The 
second experiment is performed on the basis of the 
control gain 5Λ =  and v 40k = , and then the self-
recurrent wavelet neural compensation algorithm 
shown in Figure 1 and Figure 2 is introduced. The 
neurons number of the regression layer is 2iN = , 
the neurons number in the product layer is 2jN = , 
the initial value of the network nominal weight 

ˆ ( )jW k  are all set to be zero, weight convergence 

coefficient is 1300λ =  in (13). 

The response curves of the two experiments are 
shown in Figure 4 for a comparison. (a) shows the 
position tracking results with and without the 
friction compensation, one can see that there is a 
clear phase lag and slightly flat-topped 
phenomenon of position tracking before 
compensating friction, the tracking performance is 
greatly improved after using self-recurrent wavelet 
neural network for friction compensation. The 
contrast curves of tracking error can be obtained by 
(b), the error peak from 34.8 10 rad−×  to 

43.8 10 rad−× , improved by about 12.6 times. (c) 
shows the output torque of the controller is 
maintained within a smaller range of variation with 
and without friction compensation, which indicates 
the friction compensation does not consume too 
much energy, and this method can save energy if it 
is compared with conventional high gain friction 
compensation. Furthermore, the boundedness of 
network weights in (d) also verifies the above 
conclusion. 

The above analysis shows that the proposed self-
recurrent wavelet neural network compensation 
algorithm not only do not need to predict the 
dynamic model parameters, but also only need one 
state variable, namely the actual positon. The 
complex nonlinear friction is approximated by the 
proposed network with a small number of neurons 
and simple weights iterative algorithm. Compared 
with the existing neural networks, such as BP, 

RBFN, Gauss, etc., it has several advantages, 
namely, the simple topological structure, small 
scale, easily realized, and high identification and 
approximation precision. 
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(c) Controller Output Torque 
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(d) L2 Norm Of Network Weights 
 

Figure 4 Experimental Result 

 

5. CONCLUSION 
 

The self-recurrent wavelet neural network has 
gradually refined description characterization of 
mutant function, and there is no requirement about 
the continuity of the function to be approximated. 
The self-feedback function of the network makes 
itself has a memory function, and it can map the 
dynamic characteristics of the mutation, thus it is 
suitable for approaching the discontinuous 
nonlinear dynamic friction at zero. There is no need 
to artificially separate zero for dynamic nonlinear 
friction function. Form the experimental results in 
this article, one can see that: for the low-speed 
position-servo system, the position tracking 
accuracy can be greatly improved just only by 
introducing the proposed self-recurrent wavelet 
neural network compensation algorithm on the 
basis of the conventional controller. 
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