
Journal of Theoretical and Applied Information Technology 
 10th April 2013. Vol. 50 No.1 

© 2005 - 2013 JATIT & LLS. All rights reserved.  
 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195 

 
152 

 

 THE FAST ANALYTICAL RESEARCH ON JPEG 
BITSTREAMS 

 
1JING GUO, 2 SHENGBING CHE, 2 XIAOLI LI 

1Postgraduate, Department of Computer & Information Engineering, Central South University of Forestry 
and Technology, Changsha 410004 China 

2 Prof., Department of Computer & Information Engineering, Central South University of Forestry and 
Technology, Changsha 410004 China 

2 Postgraduate, Department of Computer & Information Engineering, Central South University of Forestry 
and Technology, Changsha 410004 China 

E-mail:  1675011625@qq.com, 2cheshengbing727@163.com, 2anssa88@gmail.com 
 
 

ABSTRACT 
 

In this paper, JPEG bitstreams has been analysized through its rapid analytical algorithm. Its optimized 
algorithm which was based on optimized huffman table has been studied. The experimental research shows 
that optimized bitstreams can save 2.4% - 27.8% size of file. In order to obtain the specific decoding 
information of each MCU block, the fast positioning method has been proposed. Calculated with some 
correlation coefficients and the sampling parameters of image, the fast positioning method can get the 
position information of each MCU block. It can obtain MCU Block decoding information and present each 
of the MCU chrominance information of image respectively. Through the grid function showed on picture, 
more specific analysis of each MCU Block decoding information can be presented when the MCU block 
number has been given. 

Keywords: JPEG Bitstreams, Optimized Huffman Table, MCU Block Decoding Information, Fast 
Positioning Method 

 
1. INTRODUCTION  
 

JPEG file format, namely JFIF, it allows image 
compression quality and file compression size 
striking an average, so that it can produce high 
compression ratio at the same time without losing  
too much information. However, when using 
software to process JPEG images, which has 
belongs to secondary compressed files, usually 
abate picture quality greatly and also cause color 
distortion to the picture. So it is very important and 
necessary to obtain quantitative information, 
important documents parameters in order to study 
on image optimization  [1]. 

A JPEG image consists of a sequence of 
segments, each beginning with a marker, each of 
which begins with a 0xFF byte followed by a byte 
indicating what kind of marker it is. Some markers 
consist of just those two bytes; others are followed 
by two bytes indicating the length of marker-
specific payload data that follows. (The length 
includes the two bytes for the length, but not the 
two bytes for the marker.) Some markers are 
followed by entropy-coded data; the length of such 
a marker does not include the entropy-coded data. 

Note that consecutive 0xFF bytes are used as fill 
bytes for padding purposes, although this fill byte 
padding should only ever take place for markers 
immediately following entropy-coded scan data [1]- 
[2]. 

Within the entropy-coded data, after any 0xFF 
byte, a 0x00 byte is inserted by the encoder before 
the next byte, so that there does not appear to be a 
marker where none is intended, preventing framing 
errors. Decoders must skip this 0x00 byte. This 
technique, called byte stuffing, is only applied to 
the entropy-coded data, not to marker payload data. 
Note however that entropy-coded data has a few 
markers of its own; specifically the Reset markers 
(0xD0 through 0xD7), which are used to isolate 
independent chunks of entropy-coded data to allow 
parallel decoding, and encoders are free to insert 
these Reset markers at regular intervals (although 
not all encoders do this) [1]-[6]. Based on the above 
analysis, its standard and algorithm are always used 
in steganography method [3] , image transmission 
in WSNS [4]. Considering the wide spread of JPEG 
standard, the fast analytical research on JPEG 
bitstreams becomes has been proposed. 

http://www.jatit.org/
mailto:675011625@qq.com
mailto:2cheshengbing727@163.com


Journal of Theoretical and Applied Information Technology 
 10th April 2013. Vol. 50 No.1 

© 2005 - 2013 JATIT & LLS. All rights reserved.  
 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195 

 
153 

 

In this paper, JPEG bitstreams has been rapidly 
analysized according to JPEG JIFIF markers 
parsing. Its optimized algorithm is based on 
optimized huffman table has been studied [7]-[9]. 
The research shows that optimized bitstreams 
format can save 2.4% - 27.8% of the file size more 
than the original one. At the same time, this paper 
put forward to the rapid positioning method 
according to the JPEG decoding algorithm. The 
sampling coefficient parameters and pictures from 
the calculation of the correlation coefficient make it 
possible. Through the these pathways of grid 
function and inputting MCU block number 
function, we can see the piece of MCU more clearly 
and know the decoding process steps more deeply 
as well. 

2. THE FAST ANALYTICAL RESEARCH 
ON JPEG BITSTREAMS 

 
The fast analytical research on JPEG bitstreams 

is mainly based on the optimized Huffman table 
[5]-[9]. The optimization bitstreams analysis can 
carry the example of the blue_01.jpg image. As is 
shown in figure 1, figure 1(a) shows the original 
JPEG picture image, while figure1(b) is to show the 
optimized the JPEG bitstreams image. 

 
A. Original Image(130×100pixels) 

 
B. Optimized Bitstreams Image(130×100pixels) 

Figure 1. Blue_01.Jpg Original Image And Its 
Optimization Bitstreams Image 

2.1. Standard Huffman Tables 
The following tables are provided in the JPEG 

standard/specification as examples of "typical" 
huffman tables. The advantage of using these tables 
is that no compute-intensive second-pass analysis 
would then be required prior to encoding into the 
JPEG file format. 

You will note that the standard huffman tables 
provide lookups for all possible code word bytes. In 

the DC tables, the first nybble is always 0, and the 
size field can only be from 0 to 11 (0x0 to 0xB). 
Therefore, code words will run from x00 to x0B. 
Code word x00 is a special value that basically 
indicates the end of block. For the DC entry this 
simply means that there is no change in value from 
the previous block (MCU). So, the standard 
huffman tables for luminance and chrominance 
both include all 12 possible DC code words [1]-[2]. 

(1) Standard DC Luminance Huffman Table 

Table 1. Standard Dc Luminance Huffman Table 

Code Length Code Words 
2 00 
3 01 02 03 04 05 
4 06 
5 07 
6 08 
7 09 
8 0A 
9 0B 

Total number of code words in table: 12 code 
words. 

(2) Standard DC Chrominance Huffman Table 

Table 2. Standard Dc Chrominance Huffman Table 

Code Length Code Words 
2 00 01 02 
3 03  
4 04 
5 05 
6 06 
7 07 
8 08 
9 09 
10 0A 
11 0B 

Total  number of code words in table: 12 code 
words. 

For the AC tables, the first nybble encodes the 
run-length of zeros that precede the non-zero 
quantized DCT coefficient. This can be from 0 to 
15 (0x0 to 0xF). The second nybble in the code 
word indicate the size in bits of the non-zero 
coefficient that followed the run of zeros. This can 
be from 1 to 10 (0x1 to 0xA). Together, this would 
give 16 x 10 = 160 possible code words. However, 
there are two additional code words that are used in 
describing the AC scan entries: 0x00 and 0xF0. x00 

http://www.jatit.org/


Journal of Theoretical and Applied Information Technology 
 10th April 2013. Vol. 50 No.1 

© 2005 - 2013 JATIT & LLS. All rights reserved.  
 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195 

 
154 

 

represents an End of Block (EOB), which indicates 
that there are no more non-zero AC coefficients in 
this component, and that the decoder/encoder will 
move on to the next component. 0xF0 represents a 
Zero Run Length (ZRL) which indicates that there 
was a run of > 15 zeros. This code word represents 
a run of 15 zeros, and will be followed by another 
code word that indicates another ZRL or a normal 
run + size code word. So, there are in total 162 
possible AC code words. The standard huffman AC 
tables include all 162. 

(3) Standard AC Luminance Huffman Table 

Table 3. Standard Ac Luminance Huffman Table 

Code 
Length Code Words 

2 01 02 

3 03 

4 00 04 11 

5 05 12 21 

6 31 41 

7 06 13 51 61 

8 07 22 71 

9 14 32 81 91 A1 

10 08 23 42 B1 C1 

11 15 52 D1 F0 

12 24 33 62 72 

15 82 

16 

09 0A 16 17 18 19 1A 25 26 27 28 29 2A 34 
35 36 37 38 39 3A 43 44 45 46 47 48 49 4A 
53 54 55 56 57 58 59 5A 63 64 65 66 67 68 69 
6A 73 74 75 76 77 78 79 7A 83 84 85 86 87 
88 89 8A 92 93 94 95 96 97 98 99 9A A2 A3 
A4 A5 A6 A7 A8 A9 AA B2 B3 B4 B5 B6 B7 
B8 B9 BA C2 C3 C4 C5 C6 C7 C8 C9 CA D2 
D3 D4 D5 D6 D7 D8 D9 DA E1 E2 E3 E4 E5 
E6 E7 E8 E9 EA F1 F2 F3 F4 F5 F6 F7 F8 F9 
FA 

Total number of code words in table: 12 code 
words. 

(4) Standard AC Chrominance Huffman Table 

 

Table 4. Standard Ac Chrominance Huffman Table 

Code 
Length Code Words 

2 00 01 
3 02 
4 03 11 

5 04 05 21 31 
6 06 12 41 51 
7 07 61 71 
8 13 22 32 81 
9 08 14 42 91 A1 B1 C1 

10 09 23 33 52 F0 

11 15 62 72 D1 

12 0A 16 24 34 

14 E1 

15 25 F1 

16 

00 01 02 03 11 04 05 21 31 06 12 41 51 07 61 
71 13 22 32 81 08 14 42 91 A1-B1 C1 09 23 
33 52 F0 15 62 72 D1 0A 16 24 34 E1-25 F1 
17 18 19 1A 26 27 28 29 2A 35 36 37 38 39-
3A 43 44 45 46 47 48 49 4A 53 54 55 56 57 58 
59-5A 63 64 65 66 67 68 69 6A 73 74 75 76 
77 78 79-7A 82 83 84 85 86 87 88 89 8A 92 
93 94 95 96 97-98 99 9A A2 A3 A4 A5 A6 A7 
A8 A9 AA B2 B3 B4 B5-B6 B7 B8 B9 BA C2 
C3 C4 C5 C6 C7 C8 C9 CA D2 D3-D4 D5 D6 
D7 D8 D9 DA E2 E3 E4 E5 E6 E7 E8 E9 EA 
F2 F3 F4 F5 F6 F7 F8 F9 FA 

Total number of code words in table: 12 code 
words. 

2.2. The fast JPEG bitstreams analytical 
research based on the optimized Huffman table 

In contrast to the above tables that are provided 
in the ITU-T standard, the following is an example 
of the huffman tables when optimization is enabled 
for an image from the figure 1(b). 

When comparing this to the non-optimized 
tables, we can find that fewer code words are 
available. Not all combinations of runs and AC 
values are used.  

A few observations might be noticed: 

(1) For the DC Chrominance table: there are 
no 0A or 0B code words. This indicates that the 
image did not have any two adjacent MCUs (block) 
with extreme 10 or 11-bit swings in average color 
value. 

(2) For the DC Luminance table, the standard 
table places the 00 code word (marking the End of 
Block) with a 2-bit value. While this may be 
optimum for encoding images with wide areas of 
constant luminance. Instead, the EOB code is 
assigned to a 4 bit string. 

(3) Not all the code words are possibly 
included in each table. This is because the figure 
1(b) didn't need to use these run+size combinations 
and so they could be eliminated. By eliminating 

http://www.jatit.org/


Journal of Theoretical and Applied Information Technology 
 10th April 2013. Vol. 50 No.1 

© 2005 - 2013 JATIT & LLS. All rights reserved.  
 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195 

 
155 

 

these codes, other code words could occupy shorter 
variable-length codes and lead to decreased file 
size. 

So the fewer entries in the table, on average the 
fewer consumed entries bits will be encoded. 
Therefore, the end result is a more efficient 
representation of the code words in the final JPEG 
file (meaning a smaller file size). This method will 
preserve the original image content and 
quantization tables, allowing us to isolate the 
effects of huffman table optimization. 

The optimized Huffman tables are shown as 
follows: 

(1) Optimized example of DC Luminance 
Huffman Table of figure 1(b) 

Table 5. Optimized Example Of DC Luminance Huffman 
Table 

Code Length Code Words 

2 03 04 05 

4 01 02 06 

5 07 

6 00 

Total number of code words in table: 8 code 
words. Compared with the 12 number of code 
words in the standard DC Luminance Huffman 
Table, it saves 4 number of code words. 

(2) Optimized example of DC Chrominance 
Huffman Table of figure 1(b) 

Table 6. Optimized Example Of DC Chrominance 
Huffman Table 

Code Length Code Words 

2 02 03 04 
3 01  
4 00 
5 05 
6 06 

Total number of code words in table: 7 code 
words. Compared with the 12 number of code 
words in the standard DC Chrominance Huffman 
Table, it saves 5 number of code words. 

(3) Optimized example of AC Luminance 
Huffman Table of figure 1(b). 

 

 

Table 7. Optimized Example Of AC Luminance Huffman 
Table 

Code Length Code Words 

2 01  
3 11 02 03 
4 00 04 
5 21 31 12 05 
6 41 51 61 13 
7 22 32 14 
8 71 81 A1 15 06 
9 91 B1 C1 D1 42 62 
10 E1 F1 52 23 16 
11 F0 82 33 53 25 
12 55 

Total number of code words in table: 39 code 
words. 

The total code byte of this table are 39 bytes. 
Compared with the 162 number of code words in 
the standard AC Luminance Huffman Table, it 
saves 123 number of code words. 

(4) Optimized example of AC Chrominance 
Huffman Table of figure 1(b) 

Table 8. Optimized Example Of AC Chrominance 
Huffman Table 

Code Length Code Words 

2 00 01 
3 11 02 

4 03 
5 21 31 12 04 
6 41 13 

7 51 22 
8 61 
9 81 A1 32 

10 71 23 14 24 
11 C1 D1 05 

Total number of code words in table: 24 code 
words. Compared with the 162 number of code 
words in the standard AC Chrominance Huffman 
Table, it saves number of code words. Results show 
that: figure1(b) image can save 270 bytes more than 
figure1(a) image and the optimized code flow can 
save 17.8% of the original code flow. 

 

http://www.jatit.org/


Journal of Theoretical and Applied Information Technology 
 10th April 2013. Vol. 50 No.1 

© 2005 - 2013 JATIT & LLS. All rights reserved.  
 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195 

 
156 

 

2.3. Analytical experimental results of saving 
length of the optimization pictures 

JPEG bitstreams analytical research based on 
optimization huffman coding has been studied on 
the optimized bitstreams of image. This paper has 
operate its algorithm on the 32 bit system. Through 
the repeated experiments, optimized code words has 
been saving 2.4% - 27.8% of the file size more than 
the original one. Table 6 is the part of the test 
results. 

Table 9. Part Of Experimental Results 

Serial 
number 

Original file 
length 

Optimization file 
length 

1 8345 Bytes 6859 Bytes 

2 7948 Bytes 6337 Bytes 

3 9657 Bytes 6973 Bytes 

4 10815 Bytes 8561 Bytes 

5 10276 Bytes 8296 Bytes 

6 11373 Bytes 8252 Bytes 

7 10155 Bytes 9482 Bytes 

Table 10. Percentage Of The Saved File Length 

Serial number Percentage of the saved length 

1 17.8% 

2 20.3% 

3 27.8% 

4 20.8% 

5 19.3% 

6 25.1% 

7 6.7% 

3.  FAST POSITIONING BASED ON THE 
MCU BLOCK QUERY PARSING 
 

At present, in most commonly used image 
compression algorithm, a significant feature is that 
the algorithm always have uniform image 
segmentation first and then come into a series of 
transformation and coding processing. 

After subsampling, each channel must be split 
into 8×8 blocks. Depending on chrominance 
subsampling, this yields (Minimum Coded Unit) 
MCU blocks of size 8×8 (4:4:4 – no subsampling), 

16×8 (4:2:2), or most commonly 16×16 (4:2:0). In 
video compression MCUs are called macroblocks. 

If the data for a channel does not represent an 
integer number of blocks then the encoder must fill 
the remaining area of the incomplete blocks with 
some form of dummy data. Filling the edges with a 
fixed color (for example, black) can create ringing 
artifacts along the visible part of the border; 
repeating the edge pixels is a common technique 
that reduces (but does not necessarily completely 
eliminate) such artifacts, and more sophisticated 
border filling techniques can also be applied. 

JPEG algorithm is a typical algorithm that have 
the static images into 8*8 block division and every 
8*8 block will be transformed into entropy coding 
separately. Decoding program first read sample 
coefficient from JPEG file, when it conclude the 
size of MCU, it will figure out the whole MCU 
numbers of image. Decoding program will recycle 
every MCU block decoding until it check the EOI 
mark [10]-[11]. 

3.1. MCU block analysis 
This article has grab the information of MCU 

block through the decoding process and present 
each chrominance and luminance information of 
MCU block, which is convenient for us to come to 
the unified cognition of the decoding system and 
provides favorable information and help for the 
recovery process and the optimized work. Through 
the image shown in the program as well as the grid 
function and input MCU block number function, we 
can thoroughly see the coefficients of every MCU 
block and know the decoding process steps process 
more deeply. 

The steps it intend to perform are: 

(1) Huffman decoding of an MCU. 

(2) Fetch the DC & AC coefficients for each 
component. 

(3) Calculate the position of an MCU. 

(4) Perform DPCM on DC and RLE on AC 
coefficients. 

(5) Perform Huffman encoding per MCU. 

3.2. Fast positioning based on the MCU block 
query parsing 

The proposed fast positioning method is based on 
the calculation of the sampling coefficient 
parameters of JPEG fast decoding algorithm and 
correlation coefficient from pictures. The algorithm 
is mainly divided into two steps: 

http://www.jatit.org/


Journal of Theoretical and Applied Information Technology 
 10th April 2013. Vol. 50 No.1 

© 2005 - 2013 JATIT & LLS. All rights reserved.  
 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195 

 
157 

 

Step 1: calculate the physical relative 
displacement of the MCU block from the picture, 
namely MCU [Mcu_x, Mcu_y]. Then calculate the 
MCU block length according to the sampling 
coefficients. 

First of all, To find the MCU block width from 
the sampling coefficient of the code flow. Name 
sampling factor of X direction vfactor and sampling 
factor of Y direction hfactor. So the length of MCU 
block and the width of MCU block can be shown as 
follow:  

mcuHeight=8×hfactor, mcuWidth=8×vfactor. 

Secondly, the total MCU block numbers of 
picture which are named mcuNum, is differentiated 
according to the minimum 8x8 unit block. If the 
length of picture and width of picture can’t be exact 
division by 8, then the algorithm will automatically 
added length and width when decoding. So its 
length and width can adjust to a multiple of eight. 
Therefore, we must get MCU block numbers from 
length direction and the width direction before we 
get mcuNum, and then do an adjustment judgment 
of its length and width, if they cannot be divided by 
8, the algorithm will automatically added length 
and width spreading to a multiple of 8. We call 
num_x_line that MCU block numbers of X 
direction and the num_y_line that MCU block 
numbers of Y direction after adjustment judgment. 
So we can get num_x_line and num_y_line through 
the program. 

Calculate the total numbers of MCU blocks: 
mcuNum=num_x_line×num_y_line. 

Finally, calculate the physical relative 
displacement of MCU block from the picture 
according to the need of inquired input number of 
MCU block. Name the inquired input number for 
findMcuBlockNum, X direction physical 
displacement of MCU block for Mcu_x, Y direction 
physical displacement of MCU block for Mcu_y. 

So it comes to the following formula: 

Mcu_x=findMcuBlockNum/num_x_line; 

Mcu_y=findMcuBlockNum%num_y_line. 

Step 2: calculate the MCU block coordinate from 
the picture. Specific MCU block coordinate 
calculation has been shown in figure 2 below: 

Figure 2 is a specific coordinate calculation 
diagram of one MCU block: 

 
Figure 2. MCU Block Coordinate Setting Schematic 

Diagram 

3.3. The experimental results 
This paper tries to operate the optimized JPEG 

decoding algorithm in 32 bit system. Through  the c 
+ + language to develop the corresponding 
procedures, this paper analyze the decoding 
information of MCU block and add the grid 
drawing function, MCU block quick location 
function.  This paper use Microsoft Visual C++ 6.0 
for programming environment, use 32 bit Win7 
system, 2g memory of hardware, dual-core CPU of 
1.73 GHz. 

3.3.1. Display of MCU grid function 
JPEG algorithm is a typical algorithm that have 

the static images into 8*8 block division and every 
8*8 block will be transformed into entropy coding 
separately. The image is split into blocks of 8×8 
pixels, and for each block, each of the Y, CB, and 
CR data undergoes the Discrete Cosine Transform 
(DCT). Depending on chrominance subsampling, 
this yields (Minimum Coded Unit) MCU blocks of 
size may be 8×8 (4:4:4 – no subsampling), 16×8 
(4:2:2), or most commonly 16×16 (4:2:0). This 
paper firstly read the sampling coefficients, 
calculate the total numbers of MCU block, finally 
display it in the form of grid. 

Figure 3 and figure 4 are showing the grid 
function of JPEG block splitting. 

Figure 3 shows the 8×8 MCU block size 
decoding while figure 4 shows the 16×16 MCU 
block size decoding. 

 
Figure 3. Grid Display Of 8×8 MCU Block Size 

http://www.jatit.org/


Journal of Theoretical and Applied Information Technology 
 10th April 2013. Vol. 50 No.1 

© 2005 - 2013 JATIT & LLS. All rights reserved.  
 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195 

 
158 

 

 
Figure 4. Grid Display Of 16×16 MCU Block Size 

3.3.2. Results of fast positioning 
Using blue_01.jpg image for example, its basic 

situation are analyze by program which are shown 
below: 

Table 11. Image Basic Information Sheet Of Blue_01.Jpg 

Image：blue_01.jpg blue_01.jpg 

Image scale coefficient： 1.000000 

Sampling factor of Y direction： 1 

Sampling factor of X direction： 1 

Width of MCU block： 8 

Length of MCU block： 8 

Number of MCU block： 221 

According to the table, the fast positioning of 
the first MCU block are shown as below: 

 
Figure 5. Fast Positioning Display Of The First MCU 

Block 

Using the opening of the case of its first MCU 
block of blue_01.jpg as an example, the specific 
component coding coefficient information are 
shown in the list below: 

 

Table 12. Y Component Coding Coefficient Information 

-33 -11 1 0 1 0 0 0 
-6 -2 1 -1 0 0 0 0 
2 -1 0 0 0 0 0 0 
-1 1 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 

Table 13. Cb Component Coding Coefficient Information 

47 1 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

Table 14. Cr Component Coding Coefficient Information 

-32 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

The corresponding experimental results are 
shown as below: 

 
Figure 6. The First MCU Block Coding Coefficient 

Information 

http://www.jatit.org/


Journal of Theoretical and Applied Information Technology 
 10th April 2013. Vol. 50 No.1 

© 2005 - 2013 JATIT & LLS. All rights reserved.  
 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195 

 
159 

 

3.3.3. Display of detailed decoding information 
of MCU block 

At the same time, the corresponding detailed 
decoding can also be presented: 

(1) Y component coding coefficient 
information: 

Val=[ -33] Coef=[00=DC] Data=[0x E7 AD 21 73 
=10b(11100111  10---- - -  - - - - - - - -  - - - - - - - -) ]  
Val=[ -11] Coef=[01..01] Data=[0x AD 21 73 4A  
=  8 b( - -1 011 01  00 - - - - - -  - - - - - - - -  - - - - - - - - ) ]  
Val=[ -6] Coef=[02..02] Data=[0x 21 73 4A 80      
=  6 b ( - -1 0 0 0 0 1  - - - - - - - -  - - - - - - - -  - - - - - - - - ) ]  
Val=[  2] Coef=[03..03] Data=[0x 73 4A 80 A8     = 
5 b ( 0 1 1 1 0 - - -  - - - - - - - -  - - - - - - - -  - - - - - - - - ) ]  
Val=[ -2] Coef=[04..04] Data=[0x 4A 80 A8 6B    = 
5 b ( - - - - - 0 1 1  0 1 - - - - - -  - - - - - - - -  - - - - - - - - ) ]  
Val=[  1] Coef=[05..05] Data=[0x 80 A8 6B EB     
=  3 b ( - -0 0 1 - - -  - - - - - - - -  - - - - - - - -  - - - - - - - - ) ]  
Val=[  1] Coef=[06..06] Data=[0x 80 A8 6B EB     
=  4 b ( - - - - -0 1 0  1 - - - - - - -  - - - - - - - -  - - - - - - - - ) ]  
Val=[ -1] Coef=[07..07]  Data=[0x A8 6B EB D9  = 
8 b ( - 1 0 1 1 0 1 0  1 - - - - - - -  - - - - - - - -  - - - - - - - - ) ]  
Val=[ -1] Coef=[08..08] Data=[0x 6B EB D9 F3    
=  3 b ( -0 0 0 - - - -  - - - - - - - -  - - - - - - - -  - - - - - - - - ) ]  
Val=[  1] Coef=[09..09] Data=[0x 6B EB D9 F3    = 
4 b ( - - - - 0 1 0 1  - - - - - - - -  - - - - - - - -  - - - - - - - - ) ]  
Val=[ -1] Coef=[10..10] Data=[0x EB D9 F3 F2    = 
4 b ( 0 1 0 0 - - - -  - - - - - - - -  - - - - - - - -  - - - - - - - - ) ]  
Val=[  1] Coef=[11..11] Data=[0x EB D9 F3 F2     
=  3 b ( - - - -0 0 1 -  - - - - - - - -  - - - - - - - -  - - - - - - - - ) ]  
EOB         Data=[0x EB D9 F3 F2 
= 4b  (-------1 010-----  - - - - - - - -  - - - - - - - - ) ] 

(2) Cb component coding coefficient 
information: 

Val=[  47] Coef=[00= DC] Data=[0x D9 F3 F2 3C 
=12b(---11111 0101111- - - - - - - - - - - - - - - --) ]  
Val=[  1] Coef=[01..01]  Data=[0x F3 F2 3C F8     
=  3 b ( - - - - - - - 0  1 1 - - - - - -  - - - - - - - -  - - - - - - - - ) ] 
EOB                   Data=[0x F2 3C F8 C0                  
=  2 b ( - - 0 0 - - - -  - - - - - - - -  - - - - - - - -  - - - - - - - - ) ] 

(3) Cr component coding coefficient 
information: 

Val=[ -32] Coef=[00= DC] Data=[0x F2 3C F8 C0 
=12b(----1111 10011111 --- - - - - -  - - - - - -- -) ]  
Val=[  1] Coef=[01..01]  Data=[0x F8 C0 E0 98     
=  4 b ( 1 0 0 1 - - - -  - - - - - - - -  - - - - - - - -  - - - - - - - - ) ]  
EOB                               Data=[0x F8 C0 E0 98 
=  2 b ( - - - - 0 0 - -  - - - - - - - -  - - - - - - - -  - - - - - - - - ) ] 
4. CONCLUSION 
 

The fast analytical research on JPEG bitstreams 
has an important significance to optimized study of 
JPEG image. In this paper, JPEG bitstreams 

analytical research based on optimization huffman 
coding has been studied on the optimized bitstreams 
of image. Through the repeated experiments, 
optimized code words has been saving 2.4% - 
27.8% of the file size more than the original one. At 
the same time, this paper put forward to the rapid 
positioning method according to the JPEG decoding 
algorithm. Information of MCU block has been 
grabbed through the decoding process and each 
chrominance and luminance information of MCU 
block have been presented thoroughly, which is 
convenient for us to come to the unified cognition 
of the decoding system and provides favorable 
information and help for the recovery process and 
the optimized work. Through the image shown in 
the program as well as the grid function and input 
MCU block number function, we can thoroughly 
see the coefficients of every MCU block and know 
the decoding process steps process more deeply. 

5. ACKNOWLEDGMENT 
 

This paper was supported by the Graduate’s 
Scientific Research Foundation of Central South 
University of Forestry and Technology.  

REFRENCES: 
 

[1]  Eric Hamilton, “JPEG File Interchange Format”, 
www3.org/Graphics/JPEG/jfif.txt, 2005. 

[2]  Gregory K. Wallace, et al, “The JPEG Still 
Picture Compression Standard”, IEEE 
Transactions on Consumer Electronics, Vol. 38, 
No. 1, 1992, pp. xviii-xxxiv. 

[3]  YE XUEYI, LU GUOPENG, WANG YUNLU, 
ZHANG YAN, “A JPEG steganographic  
method based on syndrome-trellis codes”, 
Journal of Theoretical and Applied Information 
Technology, Vol. 47, No. 1, January 2013, pp. 
194-200. 

[4] A.KARTHIKEYAN, T.SHANKAR, 
V.SRIVIDHYA, SURYALOK.SARKAR, 
AKANKSHAGUPTE, “Energy efficient 
distributied image compression using 
JPEG2000 in wireless sensor 
networks(WSNS)”, Journal of Theoretical and 
Applied Information Technology, Vol. 47, No. 
3, January 2013, pp.  875-883. 

[5]  Pevny, T, “Estimation of primary quantization 
matrix in double compressed JPEG images”,  
Security, Forensics, Steganography, and 
Watermarking of Multimedia Contents X, 
Binghamton,  Vol. 6819, 2008, pp. 247-258. 

http://www.jatit.org/


Journal of Theoretical and Applied Information Technology 
 10th April 2013. Vol. 50 No.1 

© 2005 - 2013 JATIT & LLS. All rights reserved.  
 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195 

 
160 

 

[6]  Sanjit K, Mitra, “Digital signal processing: A 
computer-based approach”, the third Edition, 
New York : McGraw-Hill, 2006. 

[7]  Junfeng He, Zhouchen Lin, Lifeng Wang, 
Xiaoou Tang, “Detecting doctored JPEG 
images via DCT coefficient analysis”, 9th 
European Conference on Computer Vision, 
Graz, Austria, Vol. 3953, 2006, pp. 423-435.  

[8]  Weihai, Li Yuan Yuan, Nenghai Yu, “Passive 
detection of doctored JPEG image via block 
artifact grid extraction”, Signal Processing, Vol. 
89, No. 9, 2009, pp. 1821–1829. 

[9]  Matthias Stimer, Gerhard Seelmann, “Improved 
Redundancy Reduction for JPEG files”, Picture 
Coding Symposium, Portugal, 2007. 

[10]  Goyal, V. K, “Theoretical Foundations of 
Transform Coding”, IEEE SIGNAL 
PROCESSING MAGAZINE, Vol. 18, No. 5, 
2001, pp. 9-21. 

[11] Thomas M. Cover, Joy A. Thomas. Elements of 
information Theory. The Second Edition, New 
York: John Wiley & Sons, 2006. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

http://www.jatit.org/

	1JING GUO, 2 SHENGBING CHE, 2 XIAOLI LI

