
Journal of Theoretical and Applied Information Technology 
 10th April 2013. Vol. 50 No.1 

© 2005 - 2013 JATIT & LLS. All rights reserved.  
 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195 

 
84 

 

 SNOW SIMULATION IN TRANSPARENT FORM BASED ON 
DIRECTX 

 
1SONG XING-SHEN, 1QUAN JI-CHENG, 1ZHAO XIU-YING, 2WANG YU 

1 Dept. of Aeronautics &Astronautics Intelligence, Aviation University of Air Force, Changchun Jilin 
130022 

2 Dept. of Military Simulation Technology Institute, Changchun Jilin 130022 
E-

mail:  1songxingshen@126.com, 2querryj@sina.com, 3zxy780345@hotmail.com, 4wang2566968@126.com  
 
 

ABSTRACT 
 

Simulating the scenery of climate environment can consumedly enhance the reality of 3D GIS, which has 
been widely used in computer games, movies and visual simulation system, but until now there hasn’t been 
one effective solution to realize simulating climate environment when cruising the terrain in 3D GIS. In this 
paper, a simple method of climate environment emulating in transparent form based on DirectX is 
promoted. The basic concept of this method is imitating snowing by applying particle system, then updating 
the form using the graphics rendered and vitrifying the form utilizing Windows API. The result of the 
simulation shows that the method in this paper is simple to implement and can satisfy the requirement of 
real-time and reality. 

Keywords: Particle System, Snow Simulation, Transparent Form 
 
1. INTRODUCTION  
 

With the development of computer technology, 
the three-dimensional geographic information 
system function also gradually expands and 
improves, because of its powerful multidimensional 
information displaying, analysis and processing 
capacity, the system has a general application 
prospect. As its most prominent feature -- providing 
users a 3D realistic feeling, thus requiring the 
system can interact to realize terrain walkthrough 
and visual simulation. However, in many domestic 
and foreign excellent 3D GIS, such as Skyline, 
Google Earth, which can display terrain and object 
on it smoothly, but for climate environment 
simulation remains yet to achieve. Because these 
systems don’t open the corresponding API for users 
to get an access to modify its 3D scene, so using the 
form to achieve a transparent climate environment 
simulation, and superimposing on these systems 
becomes a kind of feasible solution. 

Windows GDI(Graphics Device Interface) has an 
efficient image processing ability, but it can only 
support a two-dimensional drawing, in order to 
improve the visual effects in 3D, we adopt the 
DirectX as scene rendering tool. Particle system is 
considered to be the most successful graphics 
generation algorithm for the simulation of irregular 

objects and movement, which gets widely use in 
rain, snow, fog and smoke simulation. 

2. DIRECT3D 
 

DirectX is a 3D game engine of Microsoft based 
on COM component, the latest version has been 
developed to DirectX11, Microsoft provides a 
software development kit(SDK) for programmers to 
design a wide variety of programs. Direct3D is a 
component of SDK for interactive media in real-
time 3D graphics, which can be used for the 
rendering of 3D graphics and utilizing hardware 
acceleration, with its good hardware compatibility 
and friendly way for programming, Direct3D has 
been generally recognized and most 3D graphics 
cards provide Direct3D support. Its core structure is 
a 3D rendering engine, providing coordinate 
transformation, illumination transform and pixel 
raster processing [1]. 

Between Direct3D and graphics device, there is a 
hardware abstraction layer(HAL), providing device 
independence for Direct3D. HAL is provided by 
the equipment manufacturer , which can be a 
portion of device driver, or special interface and 
dynamic link library(DLL). Direct3D uses the 
interface to get access to the graphics device, so 
that it can bypass the GDI and directly operate the 
hardware, the application does not directly interact 
with the HAL, thus realizing the device 

http://www.jatit.org/
mailto:songxingshen@126.com
mailto:querryj@sina.com
mailto:zxy780345@hotmail.com
mailto:wang2566968@126.com


Journal of Theoretical and Applied Information Technology 
 10th April 2013. Vol. 50 No.1 

© 2005 - 2013 JATIT & LLS. All rights reserved.  
 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195 

 
85 

 

independence. Fig.1 shows the relationship among 
Direct3D, GDI, HAL and hardware [2]. 

Fig.1 Relationship Between Direct3d And System 

From Fig.1 we can also find out that, both 
Direct3D and GDI can utilize hardware devices 
through driver software, but the difference is that, 
by using HAL, Direct3D can fully get the benefit of 
different hardware, because the hardware producers 
provide HAL specially for their own devices which 
support hardware acceleration for programmers. 
GDI can offer such function because of unity. 
When programming, we can use functions provided 
by Direct3D to obtain the characteristic information 
of different hardware and utilize them. 

3. PARTICLE SYSTEM 
 

Scenes like flame, smoke, rain and snow, 
traditional method of computer graphics geometric 
modeling cannot be used due to their irregular, 
because plane and polygon are unable to express 
these objects, the appearance of particle system 
successfully solve this problem. 

Particle system is first proposed in 1983 by 
Reeves [3], its basic idea is: using large, randomly 
distributed particles to represent the irregular fuzzy 
objects. Each particle has its shape, size, color, 
transparency, location, movement speed, direction, 
life cycle and other common properties. These 
particles are not static sets, they move as time goes 
by, in the process of change, we don't care single or 
local changes of particles, but the whole and global 
characteristics changes. New particles are produced, 
at the same time the old particles continuously 
death, showing the irregulation of objects. 
Therefore, the particle system can well simulate the 
irregular natural scenery. 

3.1 Model analysis 
 

As for virtual simulation, 3D GIS lay its focus on 
the observation and analysis of geography, snow 

simulation lies inferior to it, there is no need to 
completely simulate real snow in physical model, 
otherwise it will take up too much CPU time for 
calculation, inducing poor real-time performance, 
but also very complicated difficult to achieve. In 
this paper the physical properties of snow is 
simplified : ignoring the snow interactions between 
particles; using point model represent a snowflake; 
using texture mapping instead of complex model; 
regardless of the snowflake 's own rotation and 
acceleration. 

According to the principle of particle system, an 
instant screen steps are set as shown below [4]: 

(1)Define each particle’s initial attribute; 

(2)Produce new particles in the particle source; 

(3)Change the attribute value according to the 
former properties; 

(4)Perform judgment of particle life value one by 
one; 

(5)Remove those particles out of deadline; 

(6)Draw all the remaining particles. 

3.2 Model analysis 
 

When we are trying to create a three-dimensional 
scene, we can improve computer performance by 
rendering some two-dimensional objects with three-
dimensional visual effect. Billboard technology is 
put forward to realize such thought. 

Generally speaking, billboard refers to some of 
the roadside bulletin board. When programming in 
Direct3D applications, we can create such a 
billboard by setting a fixed rectangle and using 
texture mapping methodology. The three-
dimensional graphics expands its applications. 
Aiming at using fast rendering of images instead of 
3D solid models, which preserving the visual effect 
while reducing the burden of graphic devices, it 
applies an image texture to a rectangular primitive 
and fixes it to a point, drive this primitive to rotate 
as the observer perspective changes, by keep the 
normal vertical to the screen make it faces towards 
observer all the time. Furthermore, part of the 
billboard can become transparent according to 
requirement of programmers ,so that objects we 
don’t want to see become invisible[5]. 

Billboard is widely used in computer games and 
three-dimensional visual systems, such as rendering 
trees and cloud. This paper use the billboard 
technology to map the snow texture to particles, 
which improves the rendering speed and increases 

Win32 Application Win32 Application 

Direc3D API 

HAL API 

GDI 

Device Driver Interface 

Graphical Device 

http://www.jatit.org/


Journal of Theoretical and Applied Information Technology 
 10th April 2013. Vol. 50 No.1 

© 2005 - 2013 JATIT & LLS. All rights reserved.  
 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195 

 
86 

 

the sense of reality. According to human visual 
imaging principle, the distant snowflake looks 
small and blurry while near snowflake looks clear. 
Therefore we uses two snowflake textures, as 
shown in Fig.2. 

Fig.2 Texture Of Snowflake 
3.3 Model analysis 
 

According to the previous analysis, we design 
the data structure of particles as follows: 

struct ParticleAttribute 

{ 

D3DXVECTOR3 _position; 

D3DXVECTOR3 _velocity; 

D3DXVECTOR3 _acceleration; 

float           _lifeTime; 

float           _age; 

D3DXCOLOR  _color; 

bool          _isAlive; 

}; 

Each particle contains its position and velocity, 
acceleration vector, life cycle, the life value, color 
and identifier judging whether the particle is out of 
deadline or not. A bounding box as snowing area is 
set, restricted by the bottom left and up right two 
points. 

Each particle is produced in the top of bounding 
box. From the physical movement of snow particles, 
particles in the vertical direction are driven by their 
own gravities and air resistance effect, similar to 
uniform motion to fall, in the horizontal direction 
are driven by wind, whose direction may change at 
any time, therefore, the motion of the particle can 
be regarded as a composition of uniform motion in 
the vertical direction and variable motion in the 
horizontal direction [6]. Steps of generation of new 
particle are in the following: 

void AddParticle(ParticleAttribute *attribute) 

{ 

attribute->_isAlive = true; 

//set a random position of the particle in the top 
of bounding box 

D3D::SetRandomVector(&attribute-
>_position,&_boundingBox._min,&_boundingBox.
_max); 

Attribute->_position.y=_boundingBox._max.y; 

//velocity vector of snow particle 

attribute->_velocity.x = 
D3D::SetRandomFloat(0.0f, 1.0f) * -3.0f; 

attribute->_acceleration.x = 
D3D::SetRandomFloat(0.0f, 1.0f) * -1.0f; 

attribute->_velocity.y = 
D3D::SetRandomFloat(0.0f, 1.0f) * -10.0f; 

attribute->_velocity.z = 0.0f; 

} 

For every frame of the rendering process, record 
the data of position, speed and acceleration of each 
particle of the last frame, the current position of the 
snow particle is calculated by Eq.1. 

( ) ( ) ( )21111 2
1

−−−− −⋅+−⋅+−⋅+= iihiiihiiidownii ttattvttvPP


(1) 

Among which, 1−iP


 is the position in last frame, 
downv
  is vertical velocity, hiv

  is the 
horizontal velocity, hia

  is current level 
acceleration. 

At the same time, determine whether snow 
particle is moving out of the box one by one, if true 
the identifier is set to false and render the remaining 
particles. 

Before rendering a vertex buffer is filled first, 
then the buffer is sent into the graphics hardware 
for rendering, at the same time we lock another 
vertex buffer, begin to prepare the desired vertex 
for the next frame. The benefits of such steps are 
keeping CPU and GPU efficiently utilized. 

As found in this experiment, the number of 
particles will directly affect the simulation speed 
and quality: the more particles are generated, the 
larger the snow is and vice versa. Small amount is 
fast to render, but the visual effect is not obvious, 
however, large amount may lead to screen blocked 
by snow and rendering speed dramatically slow 
down. Especially when the particle amount 
excesses 10000,human eyes can realize the 
hysteresis obviously, which is unacceptable. Table 
1 shows the relationship between the amount of 
particles and frame rate. 

 

http://www.jatit.org/


Journal of Theoretical and Applied Information Technology 
 10th April 2013. Vol. 50 No.1 

© 2005 - 2013 JATIT & LLS. All rights reserved.  
 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195 

 
87 

 

 

 

Table 1. Frame Rate And Particle Amount 
Particle 
amount Framerate/(s-1) 

100 
200 
400 
800 
1000 
2000 
4000 
8000 

10000 
20000 

92.11 
88.30 
84.65 
76.33 
68.38 
48.14 
34.74 
20.62 
18.46 
8.29 

 

While simulating, we can inform the system to 
asynchronously response to keyboard or mouse 
operation, realize roaming in the scene of snow, 
improve the sense of reality. Fig.3 is a common 
form of snow simulation. 

Fig.3 Snow Simulation 

4. REALIZATION OF TRANSPARENT 
FORM 

 
Windows API provides a function 

UpdateLayeredWindow(), which is the foundation 
of transparent form, the function is used to update 
the window of its location, size, shape, content and 
transparency. Thus, in each frame updating the 
form content after rendering can realize 
transparency. 

4.1. Specific implementation 
 

When creating a new form, first of all set up the 
extended window style values for 
WS_EX_TRANSPARENT, WS_EX_LAYERED, 
so as to make the form when covering other forms 
does not affect their responses to operation, only 
when the form is declared as layered window, can it 

be transparent or semi-transparent [7], the function 
of SetWindowPos() can set form on the top of 
desktop. The following shows implementing codes: 

SetWindowLong(g_hMainWnd,GWL_EXSTYLE,
WS_EX_TRANSPARENT|WS_EX_LAYERED); 

SetWindowPos(g_hMainWnd,HWND_TOPMOS
T,0,0,WIDTH,HEIGHT,SWP_SHOWWINDOW); 

Next, create a Render Target before rendering, 
on which all the graphics will be drawn, completing 
the rendering, an Offscreen Surface is created as a 
carrier of image converted from graphics. In order 
to achieve a transparent form, a bitmap is needed 
for the alpha blending. Finally the handle of the 
bitmap is transited to a device context (DC) by 
UpdateLayeredWindow(). Implementation methods 
are as follows: 

Next, create a Render Target before rendering, 
on which all the graphics will be drawn, completing 
the rendering, an Offscreen Surface is created as a 
carrier of image converted from graphics. In order 
to achieve a transparent form, a bitmap is needed 
for the alpha blending. Finally the handle of the 
bitmap is transited to a device context (DC) by 
UpdateLayeredWindow(). Implementation methods 
are as follows: 

Device->CreateRenderTarget(Width,Height, 
D3DFMT_A8R8G8B8,D3DMULTISAMPLE_NON
E,0, false, &d3dSurface, NULL) 

MySnow.Display(Device, g_hMainWnd); 

//Create Offscreen Surface 

Device-
>CreateOffscreenPlainSurface(Width,Height,D3D
FMT_A8R8G8B8,  

D3DPOOL_SYSTEMMEM, &offscreenSurface, 
NULL); 

//Pass the content of Render Target on to 
Offscreen Surface 

Device->GetRenderTargetData(d3dSurface, 
offscreenSurface); 

bitmap.Create(Width, Height); 

//copy the pixels to bitmap 

memcpy(bitmap.GetBits(), lockedRect.pBits,4* 
Width * Height); 

UpdateLayeredWindow(g_hMainWnd, hdcWnd, 
&ptWinPos, &szWin, bitmap.GetSafeHdc(), &ptSrc, 
0, &stBlend, ULW_ALPHA); 

http://www.jatit.org/


Journal of Theoretical and Applied Information Technology 
 10th April 2013. Vol. 50 No.1 

© 2005 - 2013 JATIT & LLS. All rights reserved.  
 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195 

 
88 

 

The testing computer is equipped with NVIDIA 
Geforce GTX580 graphics card, screen resolution is 
1920*1080 and the particle number is 8000. As a 
result, the frame rate can only be maintained at 
about 21 FPS. After research, the step of copying to 
bitmap occupy too much time, resulting in 
decreased efficiency. 

4.2. Further Improvement 
 

The particles are generated in the world 
coordinate system, after projection transformation, 
only part of them falls in the view frustum. But the 
system still update all the particles regardless of 
their visibilities, thus occupy many resources, 
especially when the particle number is very large, 
there is an obvious delay. 

To improve this, the particle generation is 
defined in screen coordinate system, only rendering 
visible particles, thus can solve the efficiency 
problem, but it can easily cause inconsistent 
phenomenon when the viewpoint moves, due to 
viewpoint change frequently on the terrain, so the 
improvement scheme is limiting the number of 
particles and reset the dead particles for another life 
cycle [9]. 

A particle moves outside of the current bounding 
box after a period of time, changing from a visible 
particle to a completely invisible particle. As 
designed in previous system, particles that moves 
outside of the bounding box will be judged to death 
and removed from the system, at the same time new 
particles are created at the top of the bounding box. 
Such operations of releasing and allocating 
memories in computer iteratively seem a little 
clumsy. To improve this, when a particle moves 
outside, we don’t remove it immediately, but reset 
its properties and relocate it to the top of the 

bounding box, thus no memory changes occur and 
particle system gets updated still. As Fig.4 shows, 
the cube represents the bounding box, black points 
represent the snowflake inside and white points 
represent the snowflake that move outside [9,10]. 

The research also finds that, there is redundancy 
between snow rendering and form updating, so a 
multi-threaded operation is put up, while copying 
bitmap to update the form, next frame is being 
rendered simultaneously. Still one thing to be noted 
that Render Target is iteratively used for rendering 
and duplication, a critical region should be set up to 
avoid corruption in program. 

Fig.5 Snow Simulation In Transparent Form 

Implementation codes are as follows: 

HANDLE hThread= CreateThread( NULL, 0, 
ThreadProcRender, NULL, 0, &dwThreadID); 

//Create a new thread, wait until rendering is 
finished, then update the form 

WaitForSingleObject(hThread,INFINITE); 

EnterCriticalSection(&CriticalSection); 

g_psysSurface->LockRect(&lockedRect, 
&rectSurface, D3DLOCK_READONLY); 

memcpy(g_dcSurface.GetBits(), lockedRect.pBits, 
4 * Width * Height); 

UpdateLayeredWindow(g_hMainWnd,hdcWnd,&
ptWinPos,&szWin,g_dcSurface.GetSafeHdc(),&ptS 
rc,0,&stBlend,ULW_ALPHA); 

LeaveCriticalSection(&CriticalSection); 

After the improvement, frame rate retains at 
around 32 FPS, which generally meet the 
requirements of visual continuity, Fig.5 is the final 
result. 

 

Fig.4 Snowflake And The Bounding Box 

http://www.jatit.org/


Journal of Theoretical and Applied Information Technology 
 10th April 2013. Vol. 50 No.1 

© 2005 - 2013 JATIT & LLS. All rights reserved.  
 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195 

 
89 

 

5. CONCLUSION 
 

After the test of covering the transparent window 
of snow simulation on Google Earth, the window 
could response to operation and work smoothly; 
although a sudden mouse drag will produce a 
certain delay, but basically meet the visual effect of 
the continuity requirement. However, as the particle 
model constraints, snow particles do not rotate and 
collide, the next step of the research will focus on 
resolving the model design flaws. 

REFRENCES: 
 

[1] Hao Jinliang, Chen Lei, Lou Gaoming: Cloud 
simulation based on DirectX. Computer 
Technology and Development. Vol. 19 (2009), 
p.195 

[2] Liao Xuejun, Wang Rongfeng: Digital 
Battlefield Visualization and Employment. 
(National Defense Publications, Beijing, China 
2010). 

[3] Reeves W T.: Particle System: a Technique for 
Modeling a Class of Fuzzy Object, Vol. 17 
(1983), p.359. 

[4] MSDN Library Visual Studio 9.0 release 
on http://www.msdn.microsoft.com 

[5] Zhang Qian. Realistic shape modeling and real-
time rendering of snow scene. Clem: submitted 
to Ynashan University (2009) 

[6] He Liang, Ba Lideng. Dynamic simulation of 
snowscape based on particle system. submitted 
to Journal of Northwest University. Vol. 
40(2010), p.603 

[7] Antonio Olvarez, Gustavo Martonez Romero, J 
Correa-Basurto.Trends, Performance and 
general operation of the graphic processing unit. 
Journal of Theoretical and Applied Information 
Technology.Vol.7(2009), p.129 

[8] R. Shankar Naik, K. ChandraSekhar, K. Vaisakh. 
Adaptive PSO Based optimal fuzzy controller 
for AGC equipped with SMES and SPSS. 
Journal of Theoretical and Applied Information 
Technology.Vol.7(2009), p.8 

[9] Zhuo Minhui, Wang Weiming, Zhou Jingjing. 
Routing optimization for forces based on traffic 
matrix. Journal of Theoretical and Applied 
Information Technology.Vol.44(2012), p.7 

[10] Takeshita D ,Shin OTA ,et al . Particle2based 
Visual Simulation of Explosive 
Flames[C].Proceedings of the 11th Pacific 
Conference on Computer Graphics and 
Applications. USA, New York: IEEE, 
2003 :p.482 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

http://www.jatit.org/
http://www.msdn.microsoft.com/

	1SONG XING-SHEN, 1QUAN JI-CHENG, 1ZHAO XIU-YING, 2WANG YU

