
Journal of Theoretical and Applied Information Technology
 31st March 2013. Vol. 49 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

955

A COMPREHENSIVE FRAMEWORK FOR MANAGING
CONFLICTS/ANOMALIES BETWEEN XACML POLICIES:

MATHEMATICAL BASIS AND ARCHITECTURE

1MOHAMED YAHIAOUI, 2AHMED ZINEDINE, 3MOSTAFA HARTI,
1,2,3 UFR INTIC Département d'Informatique Faculté des sciences DharMehraz Fès Maroc

E-mail: 1yahiaoui.med@gmail.com, 2ahmedzinedine@yahoo.com , 3mharti@rocketmail.com

ABSTRACT

In this work we address the problem of detection and resolution of conflicts/anomalies between XACML
(eXtensible Access Control Markup Language) policies of access control. We mean here by
conflict/Anomaly the case where several policies give conflicting answers (deny, allow) to a same access
request. Indeed, this problem is foreseeable in access control systems based on policies in general.
We give more attention to the mathematical formalism of the problem. We introduce the notion of the
canonical representation of the query space. This is a partition of the query space formed by authorization
classes. Each authorization class regroups queries that are intercepted by the same policies. This
classification provides a natural way to handle interferences between policy targets (in other words
conflicts/anomalies). Then we bring the study of the problem from the whole query space to elements of its
canonical representation.
The final result of this work is a Framework for detection and resolution of conflicts/anomalies between
XACML policies. This Framework, which is located in the PAP (Policy Administration Point), is
responsible for generating a conflicts-free representation from the initially provided policies. This
representation is dynamically maintained and updated by the Framework following the addition, deletion or
modification of policies.
Keywords: Access Control; XACML; Policy; Anomaly; Conflict; Anomaly Detection And Resolution; FIA

Algebra; Canonical Representation

1. INTRODUCTION

The control of access to resources of a computer
system is often implemented through a set of rules
and policies that reflect the desired level of
restriction. These rules and policies are written in
specific languages.

Among these languages there is the OASIS
standard eXtensible Access Control Markup
Language (XACML). XACML is mainly based on
attributes. These are associated with users,
resources, actions and environment and they
constitute the inputs to the decision system. On the
basis of these attributes, the system decides when a
given user can perform a given action on a given
resource.

One of the problems of policy-based approach is
how to ensure coherence between policies. Indeed,
the situation where multiple policies are applicable
to the same query is possible. We may end up in a
conflict scenario where some policies allow access
and others deny it.

This topic has taken considerable attention lately.
Several approaches have been proposed to solve the
problem of detection and resolution of
conflicts/anomalies in access control systems. In [2]
the authors introduced a technique of segmentation
to identify anomalies and to derive resolutions
based on XACML standard combining algorithms.
The paper [3] proposed a unified framework for
policy analysis, detection and resolution of
anomalies. The framework is based on a generic
approach to capture common semantics of policies.
The authors of [5] introduced a formal model that is
compatible with the Alloy language for specifying
access control policies and then they used this
model for automatic detection of anomalies using
the Alloy analyzer.

However, the following points require further
investigation:

• How to represent in a clear and unified manner
the conflicts/anomalies in an access control
system. This representation should be
understandable by humans, and it should be a

http://www.jatit.org/
mailto:ahmedzinedine@yahoo.com

Journal of Theoretical and Applied Information Technology
 31st March 2013. Vol. 49 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

956

support for decision making about conflict
resolution.

• The dynamic aspect of the representation of
conflicts/ anomalies: we mean here the
monitoring of the impact of adding, modifying
and deleting policies on the representation of
conflicts/anomalies in the access control system.
The administrator must have at any moment a
clear view on the situation of conflict/anomalies
in the system.

• The integration of the component of detection
and resolution of conflicts/anomalies in a
comprehensive system of access control. For
example in the case of XACML, the integration
consists in defining and then locating the
component of detection and resolution of
conflicts/anomalies relative to other standard
components: PEP, PDP, PIP and PAP.

In this work we propose a comprehensive
Framework for conflicts/anomalies management.
We give special attention to the mathematical
formalism of the problem. To do this, and in order
to express formally the notion of conflict between
policies and interference between different
authorization spaces, we introduced an equivalence
relation in the query space. We show that the
quotient space with respect to this relation is exactly
what we call "canonical representation of the query
space". From this canonical representation, we
derive a conflict-free representation of the policies.

Indeed, the proposed representation is a
segmentation of the query space into subsets
(authorization classes). Each class can be seen as
the target of a policy (in a future conflict-free
system). It only remains to calculate the decision of
this policy by combining different active policies on
each authorization class. To this end, we use policy
integration expressions introduced by the FIA
algebra [1]. These expressions provide a
mechanism richer than the standard XACML
combining algorithms. Then we give a method for
calculating the projection of the FIA policy
integration expression on the different authorization
classes. This allows bringing the study of conflict
resolution from the query space to its canonical
representation.

Also, we study the impact of the dynamic aspect
of the policy repository. So we study the evolution
of the canonical representation of the query space
following the addition, modification and deletion of
policies from the policy repository. In fact, this
dynamic aspect of the policy repository is one of

the concerns of the access control system
administration that requires suitable decision-
making support. Hence the importance of
integrating the canonical representation as a part of
a Framework for conflict detection and resolution in
XACML access control systems.

We also show the validity of the Framework and
the feasibility of implementation by detailing the
most important algorithms. The user orientation is
one of the strengths of this Framework. Indeed, the
proposed architecture promotes interactions
between the access control system and its
administrators.

The rest of this paper is organized as follows: in
section 2 we give some general notions that we
estimate necessary to understand the paper,
especially on the XACML language and the FIA
algebra. We prove in section 3 the mathematical
basis of our approach and finally, in section 4, we
describe the architecture of the Framework and we
detailed the most important algorithms for the
implementation.

2. PRELIMINARIES

2.1. Extensible access control markup language
(xacml)

XACML, as defined in the OASIS standard [6],
allows the implementation of an access control
system compatible with service-oriented
environments (SOA). The XACML standard
provides:

• An XML language for expressing access control
policies,

• A language to express authorization requests,

• A language to express authorization decisions
(responses),

• An architecture that defines the main
components of an implementation and an
information-flow model.

2.1.1. Policy

The access control policies are used to define
system behavior against access requests. Indeed, a
policy is a set of rules on the attributes of subjects,
resources, actions and environment. These rules are
combined using logical operators to determine the
rights of users on system resources.

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 31st March 2013. Vol. 49 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

957

Figure 1. XACML data-flow diagram [6]

2.1.2. Request

XACML requests are written in an XML
encoding that allows expressing the attributes of the
user, the requested resource, the desired action and
other environmental information. The requests are
sent to the PDP (see next section). This last extracts
the attributes of the request and compares them
with the targets of policies to determine XACML
policies that are applicable to this request and then
determines the decision.

The XACML policy language defines three
different decisions: (i) Permit, (ii) Deny, (iii) Not
applicable.

2.1.3. XACML Data-flow Model

The XACML data-flow model defines a modular
and distributed architecture of the access control
system. It defines the various components and their

roles. It defines also the possible exchanges of
messages between these components and the
structure of these messages. The figure below
illustrates this architecture.

PAP: The Policy Administration Point is the point
of administration of policies. It allows
administrators to maintain the policy repository.

PEP: The Policy Enforcement Point is the
component that receives access requests to
resources. It is responsible for transforming these
requests to XACML format, and then it transmits
them to the PDP. Depending on the response of the
PDP, the PEP allows or denies access to the
resource. In case of error a feedback can be raised.

PDP: The Policy Decision Point is the component
that handles XACML requests received from the
PEP and then gives the appropriate XACML
response. This is an authorization decision
(Permit/Deny) based on the policies stored in the
PAP.

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 31st March 2013. Vol. 49 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

958

Figure 2. XACML data-flow diagram [6]

2.2.The Fine-Grained Integration Algebra
(FIA)[1]

The XACML standard policy combining
algorithms allow the implementation of strategies
for policy integration. But they do not give enough
flexibility to support the requirements of
applications and involved parties.

To resolve this problem the FIA algebra was
introduced in [1]. It provides an efficient
mechanism for policy integration. It can support a
strategy of flexible and granular policy integration.
Among the advantages of the FIA algebra we quote
the following:

• It supports policies expressed in rich languages
like XACML;

• It allows to solve the problems related to the
integration of heterogeneous and fine-grained
access control policies;

• This algebra is able to support the specification
of a wide variety of integration constraints;

• The algebra is highly expressive.

We give below a quick overview of the FIA algebra
and its main concepts.

2.2.1. The semantics of queries and policies

The formalism of queries is based on the finite
set ‘A’ of attribute names. A is composed of
attributes characterizing the subjects, resources,
actions and environment. Each element of ‘A’ has a
domain, denoted dom(a), consisting of all possible
values of the attribute a.

Definition 1 A request r is defined as follows: r ≡
{(a1, v1), (a2, v2), · · ·, (ak, vk)}, where a1, a2, ...,
ak are attribute names, and vi ∈ dom(ai) (1 ≤i≤ k).

Definition 2 let P be an access control policy. The
semantics of P is defined as a 2-uplet 〈𝑅𝑌𝑃 ,𝑅𝑁𝑃〉4T,
where 𝑅𝑌𝑃 4T (resp. 𝑅𝑁𝑃) is the set of allowed (resp.
denied) requests. Note that 𝑅𝑌𝑃 4T ∩ 𝑅𝑁𝑃 4T =∅.

2.2.2. The operators of the FIA algebra

The fine-grained integration algebra (FIA) is
given by 〈∑, PY, PN,+, &,¬,∏dc〉, where ∑ is a
vocabulary of attribute names and their domains,
PY and PN two policy constants, + and & are two
binary operators, and ¬ and ∏dc are two unary ones.

To illustrate the operators and constants of the FIA
algebra let P1, P2 and PI be three policies such that

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 31st March 2013. Vol. 49 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

959

P1 ≡ 〈𝑅𝑌𝑃1,𝑅𝑁𝑃1〉,
P2 ≡ 〈𝑅𝑌𝑃2,𝑅𝑁𝑃2〉4T and PI ≡ 〈𝑅𝑌𝑃𝐼,𝑅𝑁𝑃𝐼〉.

Permit policy (PY). PY is a policy constant that
permits everything.

Deny policy (PN). PN is a policy constant that
denies everything.

Addition (+) : the addition of two Policies P1 and
P2 is a policy that allows all requests authorized by
P1 or P2, and refuses requests that are denied by
one of the two policies and not authorized by the
other. More precisely:

PI = P1+P2 ⇔ 𝑅𝑌𝑃𝐼 4T=𝑅𝑌𝑃1 ∪ 𝑅𝑌𝑃2 4T ∧ 𝑅𝑁𝑃𝐼 4T= (𝑅𝑁𝑃1 4T\𝑅𝑌𝑃2 4T)

∪ (𝑅𝑁𝑃2 4T\𝑅𝑌𝑃1 4T)

Intersection (&):

PI = P1 & P2 ⇔ 𝑅𝑌𝑃𝐼 4T = 𝑅𝑌𝑃1 4T ∩ 𝑅𝑌𝑃2 4T ∧ 𝑅𝑁𝑃𝐼 4T = 𝑅𝑁𝑃1 4T

∩ 𝑅𝑁𝑃2

Negation (¬): PI = ¬P ⇔ 𝑅𝑌𝑃𝐼 4T = 𝑅𝑁𝑃 4T ∧ 𝑅𝑁𝑃𝐼 4T =
𝑅𝑌𝑃 4T.

Domain projection (∏dc):

Definition 3 A domain constraint dc takes the form
{(a1, plage1), (a2, range2), … , (ak, rangek)}, where
a1,a2, …ak are attribute names, and rangei (1 ≤i≤
k) are sets of values from the vocabulary ∑. Given
a request r = {(ar1, vr1), (ar2, vr2), · · ·, (arm, vrm)}.
We say that r satisfies dc if the following condition
holds: for each (arj, vrj) ∈ r (1 ≤j≤ m), if there exists
(arj, rangei) ∈ dc, then vrj ∈ rangei.

The semantics of (∏dc) is given by

PI = ∏dc (P) ⇔ 𝑅𝑌𝑃𝐼 4T = {r| r ∈ 𝑅𝑌𝑃 and r satisfies dc
}, 𝑅𝑁𝑃𝐼 4T = {r| r ∈ 𝑅𝑁𝑃 and r satisfies dc }.

Not-applicable policy (PNA) PNA is a policy
constant that is not applicable for every request. It
is defined as PNA = PY &PN.

Effect projection (ΠY and ΠN) ΠY (P) restricts the
policy P to the requests allowed by it. It is defined
as: ΠY (P) = P &PY. Similarly, ΠN(P) restricts the
policy P to the requests denied by it; it is defined as
ΠN(P) = P &PN.

Subtraction (−) Given two policies P1 and P2. The
subtraction operator is defined as: P1 − P2 = (PY
&(¬(¬P1 + P2 + ¬P2))) + (PN &(P1 + P2 + ¬P2)).

Precedence (): Given two policies P1 and P2, P1
 P2 is the policy that gives the same decision as
P1 for all queries applicable to P1 and gives the

same decision as P2 for all other queries. It can be
easily shown that P1  P2 = P1 + (P2 - P1).

2.2.3. The expressions of the FIA algebra

A FIA expression is recursively defined as follows:

• If P is a policy, then P is a FIA expression.

• If f1 and f2 are FIA expressions so are (f1) +
(f2), (f1)&(f2), and ¬(f1).

• If f is a FIA expression and dc is a domain
constraint then Πdc(f) is a FIA expression.

The FIA algebra can express not only the
standard algorithms for combining XACML
policies, but also other more complex integration
constraints. We give below some examples:

Let P1, P2,..., Pn be access control policies. The
standard algorithms permit-overrides, Deny-
overrides, first-one-applicable and only-one-
applicable can be expressed respectively by the
following FIA expressions: P1+P2+ ... +Pn,
¬((¬P1) + (¬P2) + ... + (¬Pn)), P1  P2  … 
Pn and (P1 - P2 - P3 - … - Pn) + (P2 - P1 - P3 - …
- Pn) + … + (Pn - P1 - P2 - … - Pn−1).

Now we give an example of a more specific and
more complex integration constraint. Let P1, P2 and
P3 be three policies. We aim to express the
following integration constraint: For a given query
r1, if P1 allows r1 then the final decision will be that
of the policy P2, if not the final decision will be that
of P3. This integration constraint can be expressed
by the following FIA expression:

ΠY(P1 & P2) + ΠN(¬P1 & P2)) + ΠY(¬P1 & P3) +
ΠN(P1 & P3))

2.3. Representation of XACML policies by
compound Boolean expressions over request
attributes [1] :

XACML policies can be transformed into
compound Boolean expressions over request
attributes where each compound Boolean
expression consists of atomic Boolean expressions
(AE) combined using the logical operations "∨" and
"∧". Atomic Boolean expressions that appear in
most policies fall into one of two categories:

i. Constraints of equality to a constant: a = c, a ≠ c,
where a is an attribute name and c is a constant.

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 31st March 2013. Vol. 49 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

960

ii. Constraints of inequality to a constant: c1 rel1 a
rel2 c2, where a is an attribute name, c1 and c2 are
two constants and rel1, rel2 ∈{<,≤, >,≥}.

So a policy can be expressed as follows:

𝑃(𝑥) = �𝑌, 𝑖𝑓 𝑓1(𝑥1, 𝑥2, … , 𝑥𝑛)
𝑁, 𝑖𝑓 𝑓2(𝑥1, 𝑥2, … , 𝑥𝑛) 3T

Where x is a query and x1, x2 … xn are the values
of attribute names of the query x and f1 and f2 are
two Boolean expressions.

3. MATHEMATICAL BASIS OF THE
FRAMEWORK

3.1. Motivation example

We illustrate the issues of conflicts/anomalies
between policies through an example in a
geographic information system of a city that is open
to General Public and Town Planners groups. The
system consists of three layers: buildings, roads and
population. The access control requirements are as
follows:

• The General Public group has read access to the
road layer.

• The group Town Planners accesses all levels for
reading and writing.

The implementation of these requirements is
made by the following policies:

P1:

(Role = General Public, resource = all features of
road layer, action = read, decision = Permit)

(Role = General Public, resource = all features of
all layers, action = write, decision = Deny)

P2:

(Role = Town Planners, resource = all features of
all layers, decision = Permit)

Suppose now that the administrator of access
control system decides to ban access to features of
layers located near a sensitive infrastructure (the
aim is not to reveal the presence of this last). This
requirement can be implemented via the following
policy:

P3: (Resources = all features of all layers,
feature.geom ∩ polygon1 ≠ φ, decision = Deny),
where Polygon1 is a polygon containing the
sensitive infrastructure.

It is obvious that P3 is in conflicts/anomalies
with existing policies.

To eliminate these conflicts/anomalies, the
administrator of the access control system has two
solutions:

i. Use of standard policy combining
algorithms.

ii. Redesign of all existing policies to build a
system without conflicts/anomalies.

It is clear that the last solution is not practical,
because of existing policies may be quite numerous
and complex to the point where the redesign is
almost impossible. While the first option, the
following question is obvious: what policy
combining algorithm should be used to meet the
above requirements? The following example shows
that, sometimes, none of the standard combining
algorithms produces the intended result.

3.1.1. Case study

Let Polygon2 be another polygon such that
Polygon2 ∩ Polygon1 = φ. Consider the following
requests:

R1: (role = General Public, resource = road layer,
action = read, extent = Polygon2). It is clear that
this request will be intercepted only by policy P1.

R2: (role = Town Planners, resource = building
layer, action = read, layer extent = Polygon2). This
request will be intercepted only by policy P2.

R3: (role = General Public, resource = population
layer, action = read, extent = Polygon1). This
request will be intercepted only by policy P3.

R4: (role = Town Planners, resource = road layer,
action = write, extent = Polygon2). This request
will be intercepted by policies P1 and P2,

R5: (role = General Public, resource = road layer,
action = read, extent = polygon1). It is clear that
this request will be intercepted by policies P1 and
P3,

R6: (role = Town Planners, resource = building
layer, extent = Polygon1). This request will be
intercepted by policies P2 and P3,

R7: (role = Town Planners, resource = road layer,
action = read, extent = Polygon1) It is clear that this
request will be intercepted by policies P1, P2 and
P3.

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 31st March 2013. Vol. 49 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

961

R P1 P2 P3

in
te

nd
ed

R
es

ul
t

pe
rm

it-

ov
er

ri
de

s

D
en

y-

ov
er

ri
de

s

fir
st

-o
ne

-

ap
pl

ic
ab

le

on
ly

-o
ne

-

ap
pl

ic
ab

le

R1 Y NA NA Y Y Y Y Y
R2 NA Y NA Y Y Y Y Y
R3 NA NA N N N N NA N
R4 N Y NA Y Y N N Y
R5 Y NA N N Y N Y NA
R6 NA Y N N Y N NA NA
R7 Y Y N N Y N Y NA

The previous table shows that none of the
traditional combining algorithms can integrate all
three policies by producing the intended decisions
that meets the previously specified requirements.
Indeed each request in the previous example
reflects a particular conflict situation. Each situation
is characterized by the set of policies applicable to
the request. But the standard combining algorithms
lack the necessary mechanisms to customize the
resolution of conflict.

In order to build an efficient solution for dealing
with conflicts/anomalies, we include some
requirements derived from the above example:

• A method of segmenting the query space into
zones of conflicts/anomalies, able to give us an
advanced understanding of policy interference.

• Tools and algorithms able to identify policy
interference zones by a set of conditions on the
attributes of subjects, resources and
environment.

• The ability to use more efficient algorithms for
policy integration.

The solution we propose to meet this needs is to
implement a Framework for detection and
resolution of anomalies. This framework must meet
the following specifications:

• The Framework will be an extension of the PAP.

• It automates the detection of conflicts/anomalies
and provide a clear representation,

• It updates the list of conflicts/anomalies after the
addition, deletion and modification of policy,

• It Provides automatic resolutions based on
customized combination algorithms (expressed
using FIA expressions),

• It provides the possibility for administrators to
manually implement the resolutions,

• It makes available to the PDP an error-free
representation of the set of policies. This

representation must be updated automatically
following addition or deletion of policies.

3.2. Definitions and mathematical formalism
Definition 4 [2] (Authorization Space) let P be a
policy. The authorization space of P is defined as
the set of requests Qp for which the policy P is
applicable, i.e. QP = 𝑅𝑌𝑃 4T ∪ 𝑅𝑁𝑃 4T. It can be given by:

Qp = {x ∈ R∑/ f(𝑥1, 𝑥2, … , 𝑥𝑛)3T}, where f = f1 ∨ f2
is the Boolean expression that defines P and x1, x2
… xn are the attributes of x.

An anomaly is defined as a situation where
several policies intercept a same query to give
access decisions (allow / deny). If, moreover, these
decisions are contradictory, this is said to be a
conflict. This situation is interpreted by the
intersection of several authorization spaces.

Definition 5 (conflict/anomaly) let P1 and P2 be
two policies. We say that there is a
conflict/anomaly between P1 and P2 if Qp1 ∩ Qp2
is not empty.

In the following we propose a method to classify
queries so that derived classes include queries that
can be processed by the system in similar ways. A
class corresponds to the queries intercepted by
exactly the same policies. Then we give the
following definition of an authorization class:

Definition 6 (authorization class) let E’ ={P’1, …
,P’m} be a given subset of policies. The
authorization class of E’ is defined as the set of all
requests to which P’1, … ,P’m -and only P’1, …
,P’m- are applicable. We note this set AC(E’).

3.2.1. The canonical representation of the query
space

Let E be a finite set of policies, ∑ is a
vocabulary of attribute names and their domains.
The query Space R∑ has a canonical representation
that reflects the behavior of policies against
requests. We introduce below this canonical
representation.

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 31st March 2013. Vol. 49 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

962

Let r1 and r2 be two requests of R∑. We denote
by ℜ the relationship in R∑ defined by r1 ℜ r2 if,
and only if, for each policy P in E, r1 ∈ QP ⇔ r2 ∈
QP. In other words, the set of applicable policies to
r1 is exactly the set of those applicable to r2.

One can easily show that the relationship «ℜ» is
an equivalence relation. We denote by rE� the
equivalence class of the request r relatively to E.

Definition 7 The quotient space R∑/ℜ that is
constituted of all equivalence classes is called the
canonical representation of R∑.

Since the set E is finite, the set ℘(E) of subsets
of E is also finite. And since by definition each
equivalence class rE� is associated with an element
of ℘(E) (we denote it P(rE�)) then the set of all
equivalence classes is finite. Therefore there exist
r1, … , rn ∈R∑ such that (rıE� 3T)(1 ≤i≤ n) is a partition of
R∑. From the well-known properties of equivalence
relations this partition is unique. Hence the
following result:

Proposition 1 There exists a finite set of requests
r1, … , rn ∈R∑ such that (rıE� 3T)(1 ≤i≤ n) constitute the
canonical representation of R∑.

Let E’ ={P’1, … ,P’m} be a subset of the set E of
all policies in the access control system. Then for
each request r in AC(E’) (see definition 6) we have
AC(E’) = rE� 3T.

The following result allows calculating, more
explicitly, authorization classes using Boolean
expressions.

Proposition 2 Let E = {P1,P2, …, Pn} be the set of
all policies in the access control system. For each P
in E denote fP the Boolean expression defining the
authorization space of the policy P (see [1]) and let
P(rE�) = b. One can easily show that:

rE� = {r ∈ R∑/(� fP(x1, x2, . . . , xm))∧
P∈b

(� ¬fP(x1, x2, . . . , xm))}
p∈bc

3.2.2. Illustration example

Let E = {P1, P2, P3, P4}, where P1, P2, P3 and P4
are XACML policies and r is a request.

Figure 3. Illustration Of The Authorization Spaces In R∑

In the figure above R∑ represents the query
space. Each rectangle represents requests that are
intercepted by a given policy. For example the

rectangle P1 surrounds all requests to which the
policy P1 applies. Note that the request r is
intercepted by P1 and P3 (and only by P1 and P3).

 R∑

P1
P2

P3

 P4

. r

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 31st March 2013. Vol. 49 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

963

Figure 4. Illustration Of The Canonical Representation Of R∑

In the figure above R∑ is divided into 10 zones
(deduced from Figure 5): {P1}, {P2}, {P3}, {P4},
{P1,P2}, {P1,P3}, {P2, P3}, { P3,P4}, {P1,P2,P3 }
and φ.

Each zone represents all requests intercepted
exactly by a given set of policies. For example the
zone {P1, P3} represents requests intercepted by,
and only by, P1, P3. {P4} represents requests
intercepted by, and only by, P4. The zone denoted φ
represents queries that do not match any policy.

Indeed, each zone corresponds to an equivalence
class of the canonical representation of R∑. In the
example above the zone {P1,P3} is the equivalence
class of r.

We note that these classes correspond to possible
interferences between the policies of E. We also
note that.

• By definition each authorization class rE� is
generated by an element of ℘(E). Denote this
element P(rE�). (in the previous figure P(rE�)=
{P1,P3}),

• There exists an equivalence class represented by
φ. It includes queries that belong to no
authorization space.

• We note that an element of ℘(E) may not
correspond to an authorization class. For
example {P1,P4}, {P2,P4}, {P1, P3,P4} et
{P1,P2,P3,P4}.

• One can deduce from the remarks above that
there is a subset B of ℘(E) such that for each
element r ∈ R∑, there exists b ∈ B and P(rE�)=
b.

• Authorization classes rE� with card(P(rE�))
equals to 1 or 0 are not included in any
conflict/anomaly.

In the following we study the impact of changing
the initially provided set of policies on the
canonical representation of the query space.

3.3. Impact of the modification of initialy
provided policy set on the canonical
representation

3.3.1. Policy addition

When adding a new policy to the policy
repository, the canonical representation must be
updated. Here we give some necessary results to
this end:

Proposition 3 Let E = {P1,P2, …, Pn} and E’ = E ∪
{Pn+1}. Then ∀ r∈R∑ :

• 𝑟𝐸���= 𝑟𝐸′���� ∪ 𝑟1𝐸′���� with r1∈ (𝑟𝐸���\ 𝑟𝐸′����) if (𝑟𝐸���\ 𝑟𝐸′����)≠φ

• or 𝑟𝐸��� = 𝑟𝐸′���� otherwise.

In other words, an element of the canonical
representation of R∑ in E is equal either:

• to the union of two elements of the canonical
representation of R∑ in E ∪ {Pn+1} or,

• to an element of the canonical representation of
R∑ in E ∪ {Pn+1},

Proof

Let P(𝑟𝐸���) = {P’1, … ,P’m}. By definition ∀ r ∈ 𝑟𝐸���
{P’1, … ,P’m} are the only applicable policies to r
in E.

{P1,P2}

{P2,P3}

{P1,P3}

{P1,P2,P3}

 {P4}

{P3,P4}

φ R∑

{P1}
{P2}

{P3}

. r

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 31st March 2013. Vol. 49 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

964

To determine authorization classes in E’ we must
study the applicability of Pn+1 to requests in 𝑟𝐸���.
Indeed, we have three cases depending on whether
the policy Pn+1 is applicable or not to requests in the
authorization class 𝑟𝐸���:

Case 1: Pn+1 is applicable to all requests in 𝑟𝐸���

Let r’ ∈ 𝑟𝐸���. Then {P’1, … ,P’m, Pn+1} are
applicable to r’. To prove that r’ ∈ 𝑟𝐸′���� it suffices to
prove that {P’1, … ,P’m, Pn+1} are the only
applicable policies to r’ in E'.

Suppose that there exists Pj in E∪{Pn+1}\{P’1, …
,P’m, Pn+1} such that Pj is applicable to r '. Then
there exists Pj in E\{P’1, … ,P’m} such that Pj is
applicable to r’. This contradicts the assumption r’
∈ 𝑟𝐸���. Therefore r’∈ 𝑟𝐸′����.

Hence 𝑟𝐸��� = 𝑟𝐸′����.

Case 2 : Pn+1 is not applicable to any queries in 𝑟𝐸���

In the same way as case 1 we can show that 𝑟𝐸��� =
𝑟𝐸′����.

Case 3: Pn+1 is applicable to a strict subset of 𝑟𝐸���

Let r1, r2 ∈ 𝑟𝐸��� such that Pn+1 is applicable to r1
and not applicable to r2. Then P(𝑟2𝐸′�����) = {P’1, …
,P’m} and P(𝑟1𝐸′�����) = {P’1, … ,P’m, Pn+1}. It is clear
that 𝑟1𝐸′���� ∪ 𝑟2𝐸′���� ⊆ 𝑟𝐸���.

Inversely, let r’ ∈ 𝑟𝐸���. Then {P’1, … ,P’m} are
applicable to r’. If Pn+1 is applicable to r’ then r’ ∈
𝑟1𝐸′���� otherwise r’ ∈ 𝑟2𝐸′����. Therefore 𝑟𝐸��� ⊆ 𝑟1𝐸′���� ∪ 𝑟2𝐸′����.

Proposition 4 let E = {P1,P2, …, Pn}, Pi and Pj are
two policies of E, fi (resp. fj) is the atomic Boolean
expression of Pi (resp. of Pj) on the attribute name
a. Then, if for each value v in the domain of a, fi(v)
∧ fj(v) = false then P1 and P2 can not belong to the
same policy set defining an element of the
canonical representation.

The proof is obvious.

 3.3.2. Deleting a policy

The canonical representation must also be
updated after the deletion of a policy from the
policy repository.

Let E = {P1,P2, …, Pn} and E’ = E ∪ Pn+1 two
policy sets. Let CR (resp. CR’) the canonical
representation of R∑ with respect to E (resp. E’).
One can deduce from Proposition 3 above that to
reconstruct CR from CR’, it suffices to combine

each two elements of CR that have respective
applicable policies of the form {P’1, … ,P’m, Pn+1}
and {P’1, … ,P’m}.

Note that we did not deal here with the policy
modification because it is equivalent to deleting a
policy and then replacing it by a new one.

3.3.3. Calculation of the policy integration
expression on canonical representation elements

In the above we have segmented the query space
into subsets (authorization classes). Each class can
be seen as the target of a policy (in a future conflict-
free system). It remains to calculate the decision of
this policy by combining different active policies on
each authorization class.

Policy integration expressions introduced by the
FIA algebra [1] provide a mechanism richer than
the standard XACML combining algorithms. In the
next proposition we calculate the projection of the
FIA policy integration expression on the different
authorization classes (that we call the resultant
policy integration expression). The final goal is to
bring the study of conflict resolution from R∑ to its
canonical representation.

Proposition 5 Let E = {P1,P2, …, Pn} be a set of
policies and dc a domain constraint. Let (∏dc(E) be
the set of policy projections on dc defined as
follows : ∏dc(E) = {∏dc(P)| P ∈E}. let f be a FIA
policy integration expression in E. Then there exists
a policy integration expression fdc in ∏dc(E) such
that ∏dc(f(P1,P2, …, Pn)) = fdc(∏dc(P1), ∏dc(P2),
… , ∏dc(Pn))

Proof

According to the “minimum set of operators”
theorem (see [1]), it suffices to prove the
proposition for the following operators {¬ , PY, &,
+, ΠdC}.

Suppose that f consists of a single monomial then f
can be written in one of the following formats:

f(P1,P2, …, Pn) = Pi,

 f(P1,P2, …, Pn) = ¬Pi,

f(P1,P2, …, Pn) = ∏dc1(Pi),

f(P1,P2, …, Pn) = PY

Then fdc will be defined respectively as follows:

fdc (∏dc(P1), ∏dc(P2), … , ∏dc(Pn)) = ∏dc(Pi),

 f(∏dc(P1), ∏dc(P2), … , ∏dc(Pn)) = ¬∏dc(Pi),

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 31st March 2013. Vol. 49 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

965

f(∏dc(P1), ∏dc(P2), … , ∏dc(Pn)) = ∏dc1(∏dc(Pi)),

f(∏dc(P1), ∏dc(P2), … , ∏dc(Pn)) = PY.

It is clear that in all cases:

∏dc (f (P1, P2, …, Pn)) = fdc(∏dc(P1), ∏dc(P2), … ,
∏dc(Pn)).

Suppose now that the result is true for an
expression of m monomials and show that this
remains true for an expression of a (m+1)
monomials:

Let f be an expression of (m+1) monomials.
Then there exists an expression f’ of m monomials
such that:

f(P1,P2, …, Pm, Pm+1)=f’(P1,P2, …, Pm)
<binary_opetrator> (<unary_ opetrator > Pm+1)

We define fdc as follows fdc=f’dc
<binary_opetrator> (<unary_ opetrator > ∏dc
(Pm+1))

∏dc(f(P1,P2, …, Pm, Pm+1))= ∏dc(f’(P1,P2, …, Pm)
<binary_opetrator > (<unary_ opetrator > Pm+1))

∏dc(f(P1,P2, …, Pm, Pm+1))= ∏dc(f’(P1,P2, …, Pm))
<binary_opetrator > ∏dc (<unary_ opetrator >
Pm+1)

According to the recurrence hypothesis :
∏dc(f’(P1,P2, …, Pm)) = f’dc(∏dc(P1), ∏dc(P2), … ,
∏dc(Pm))

∏dc(f(P1,P2, …, Pm, Pm+1))= f’dc (∏dc(P1),
∏dc(P2), … , ∏dc(Pm)) < binary_opetrator >
(<unary_ opetrator> ∏dc (Pm+1))

∏dc(f(P1,P2, …, Pm, Pm+1))= fdc (∏dc(P1), ∏dc(P2),
… , ∏dc(Pm) , ∏dc(Pm+1)).

4. DESCRIPTION AND
IMPLEMENTATION OF THE FRAMEWORK

4.1. Architecture of the Framework

Our Framework is designed for access control
systems based on XACML. This type of systems is
characterized by a finite number of policies. The
Framework supports a mechanism for policy
integration based on FIA expressions.

The Framework of anomalies detection and
resolution will be an extension of the PAP
component which is a part of the standard
architecture of XACML. To illustrate the
integration of this Framework into the XACML
architecture, we present in the figure below the PAP
architecture with and without the component of
detection and resolution of anomalies.

Figure 5. PAP Standard Architecture

Policy Repository

PAP
 GUI PAP

Add / Delete / Update Policy

PDP
Interface with other
XACML components

Request

Policies

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 31st March 2013. Vol. 49 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

966

Figure 6. The PAP Architecture After Integration Of The Framework Of Detection And Resolution Of

Conflicts/Anomalies

4.1.1 Policy Analyzer

This module is responsible for maintaining up-to-
date the canonical representation of the query space.
It implements the algorithms for updating the
canonical representation following the addition or
deletion of policies. It can be invoked, if necessary,
in an iterative manner to reconstruct the canonical
representation of the query space.

4.1.2. Canonical representation of the query space

This is the collection of the canonical
representation elements. For each element 𝑟𝐸��� of the
canonical representation the following data are
recorded:

• P(rE�),

• The set of all used attribute names (to simplify
algorithms),

• The Boolean expression that define rE� ,

• The resultant policy integration expression in
rE� .

4.1.3 Conflict-free policy set

This is a conflict-free representation of policies.
It is constructed by the Solver from the canonical
representation of the query space. In fact, each

element 𝑟𝐸���of the canonical representation will be
translated into a policy such that:

• The policy target is derived from the Boolean
expression defining rE� ,

• The policy will be calculated by the Solver in the
basis of the resultant policy integration
expression in rE� .

4.1.4. Conflicts/anomalies Solver

This module builds the "Conflict-free policy set"
from the "Canonical representation of the query
space" by calculating a resultant policy on each
element rE� . The calculation is based on the
following steps:

• Calculate the projection of policies P(rE�) on rE� .
The aim of this step is to restrict the target for
each policy in rE� ,

• Calculate the projection of the policy integration
expression on rE� that we call in the following
“The resultant policy integration expression” on
rE� . This can significantly reduce the complexity
of the integration expression. Indeed, a policy
which is not defined on rE� will have PNA as
projection. Note that PNA possesses some
arithmetic properties which simplify expressions
(e.g.: ∀ P, PNA & P = PNA et PNA + P =P)

 Request

 Policy

 PAP PAP GUI

Add / delete /
Update Policy

 Policy
Repository

Interface with
other XACML
components

PDP

Conflicts Management GUI

Display anomalies
Suggest automatic correction
Manual Correction

Policy
Analyzer

Conflicts/
anomalies Solver

 Conflict-free policy set

 Canonical
 representation
 of the query
 space

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 31st March 2013. Vol. 49 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

967

• Evaluate the “resultant policy integration
expression” in rE� to find the final policy.

Remark We chose to save the policy projections
and integration expressions used by the Solver
because these policies and these expressions will
help to improve the visibility of administrators and
allow them to analyze the interference between
policies. Indeed, to resolve anomalies,
administrators can experience scenarios of the
following actions:

(a) Modify an initial policy;

(b) Act directly on a projected policy;

(c) Modify the initial integration expression;

(d) Alter the resultant integration expression.

4.1.5. Conflict Management GUI

The graphical interface for managing
conflicts/anomalies will allow administrators to
view the authorization classes with card(P(rE�)) > 1.
These are authorization classes that correspond to
conflicts/anomalies in the access control system.
All information which could assist in the analysis of
conflicts should be displayed:

• The list of policies that generate the
authorization class,

• The resultant policy integration expression in rE� ,

• the Boolean expression defining rE� ,

• …

4.2. Algorithms

In this section we implement the results of
section III by detailing the most important
algorithms necessary for the Framework.

4.2.1. Policy addition

This algorithm will be invoked after the addition
of a policy. Its role is to update the canonical
representation. It is based on the following results:

Algorithm 1 updating the canonical representation
following the addition of a policy
/* structure of an element of the canonical representation
R∑ */
 listAttrib // list of used attributes

 listPolicies // list of policies
 exprBool // the Boolean expression defining the
element

/* algorithm start */
Input: P //policy
 RC // initial canonical representation of R∑
Output: RC // the new canonical representation.
Variable : as, \\ Boolean expression
 listAttrib, \\ list of attributes
 tempRC \\ temp canonical representation of R∑
 rc1 \\ element of the canonical representation

tempRC ← RC
as ← expressionBoolen(P);

listAttrib ← listOfUsedAttrib(P)

/* removal of elements that are not impacted by the
addition of P */
foreach attrib ∈ listAttrib do
 foreach rc ∈ tempRC do
 if domainValue((rc.exprBool & as) , attrib) = φ
 then tempRC.remove(rc)
 Else RC.remove(rc)
 End if
 End foreach
End foreach

/* the remaining elements in tempRC will either split
into two */
/* or just add the policy P in their definition*/

foreach rc ∈ tempRC do
 test = false
 foreach attrib ∈ listAttrib do
 /* the domain values of as is not a subset of rc rc*/
 if not(domainValue(rc, attrib) ⊂
 domainValue(as, attrib))
 Then test =true
 Break
 End if
 End foreach

 /* the element will be divided in two */
 If test then
 /* creation of the second element */
 rc1.listeAttrib = rc.listAttrib
 rc1.listPolicies = rc.listPolicies
 rc1.exprBool = rc.exprBool ∧ (¬ as)
 RC.add(rc1)
 /* modification of the first element */
 rc.listAttrib.add (listeAttrib)
 rc.listPolicies.add(P)
 rc.exprBool= rc.exprBool ∧ ¬ as
 RC.add(rc)
 /* the element will just modified by adding P to the
policies */
 Else
 rc.listPolicies.addPolicy(p)
 RC.add(rc)

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 31st March 2013. Vol. 49 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

968

 End if
End foreach

return RC

 4.2.2. Deleting a policy

Algorithm 2 : updating the canonical representation
following the deletion of a policy
Input: P // policy
 RC //canonical representation
Variable : poliSetTemp //set of policies,
 asSetTemp //authorization space

foreach rc ∈ RC do
 If (p ∉ rc.getAppPolicies()) then
 asSetTemp.append(rc)
 rc.remove(rc)
 End if
End foreach

foreach rsTemp ∈ asSetTemp do
 foreach rc ∈ RC do
 If (rsTemp.getAppPolicies()\{P}
 = rc.getAppPolicies())
 then
 rc.exprBool = rc.exprBool ∨
 rsTemp.exprBool
 Break
 End if
 End foreach
 rsTemp.setAppPolicies(rsTemp.setAppPolicies()\{P})
 RC.append(rsTemp)
End foreach

Return RC

4.2.3. Calculation of the policy integration
expression on canonical representation elements

To evaluate the resultant policy integration
expression in an element of the canonical
representation, we propose an algorithm based on
binary expression trees. It will comprise two steps:

• Step 1: This step can be performed by one of
the classical algorithms of construction of
binary expression trees from an arithmetic
expression (so we skip it here). Then it will
have as input the FIA policy integration
expression and the result will be the binary
expression tree.

• Step 2: the input of this step is the binary tree
constructed in Step 1. The algorithm
substitutes policies by their projections in the
binary tree and then reduces this tree by
exploiting the arithmetic properties of the

policy PNA (such as: ∀ P, PNA & P = PNA, P +
PNA =P …). The output of this step is the
resultant policy integration expression.

Algorithm 3 Step 2
/* node structure */
 char Operator;
 policy myPolicy;
 Node fg, fd;

/* algorithm start */
Input: arbInteg // The binary tree of the integration
 // expression,
 Rc // canonical representation element.
Output: expR // The resultant policy integration
 // expression on rc.

Variable : expRg, expRd // policy integration expression

Express_Proj (arbInteg)

/* the node is a leaf then myPolicy is not null */
if arbInteg.Operator = 'c'
Then expR := myPolicy
/* non-leaf node then we make a recursive call */
Else
 expRg := Express_Proj(arbInteg.fg)
 expRd := Express_Proj (arbInteg.fd)
End if

If arbInteg.Operator = '+' then
 If expRg = PNA then
 If expRd = PNA then
 expR := PNA
 Else expR := expRd
 End if
 Else
 If expRd = PNA then
 expR := expRg
 Else expR := expRg + expRd
 End if
 End if
Else
 if arbInteg.Operator := '&' then
 If expRg = PNA then
 expR := PNA
 Else
 If expRd = PNA then
 expR := PNA
 Else expR := expRg + expRd
 End if
 End if
 End if
End if

Return expR

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 31st March 2013. Vol. 49 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

969

5. CONCLUSION

In this work we proposed a comprehensive
Framework for conflicts/anomalies management.
We gave special attention to the mathematical
formalism of the problem. The canonical
representation of the query space proposed in this
paper is used to construct an anomaly-free set of
policies derived from the initial policy set. This
component constitutes the core of the Framework.
We also showed the validity of this Framework and
the feasibility of implementation by detailing the
most important algorithms. The user orientation is
one of the strengths of this framework. Indeed, the
proposed architecture promotes interactions
between the access control system and its
administrators.

REFERENCES

[1] P. Rao, D. Lin, E.Bertino, N. Li, and J. Lobo,

“An algebra for fine-grained integration of
XACML policies,” SACMAT 09: Proceedings
of the 14th ACM symposium on Access
control models and technologies, pp.63-72, 2
New York, NY, USA, ACM, 2009.

[2] H. Hu, G.-J. Ahn, and K. Kulkarni, “Anomaly
Discovery and Resolution in Web Access
Control Policies,” Proceedings of the 16th
ACM Symposium on Access Control Models
and Technologies, pp.165-174, SACMAT,
2011.

[3] H. Hu, G.-J Ahn and K. Kulkarni, “Ontology-
based Policy Anomaly Management for
Autonomic Computing,” Proceedings of 7th
International Conference on Collaborative
Computing, Orlando, Florida, USA, pp.487-
494, October 15-18, 2011.

[4] E. Bertino, B. Catania, E. Ferrari and P.
Perlasca, “A Logical Framework for Reasoning
about Access Control Models,” ACM
Transactions on Information and System
Security, vol. 6, No. 1, February 2003, pp.71–
127.

[5] G. Hughes and T. Bultan, “Automated
verification of access control policies,”
Technical Report 2004-22, Department of
Computer Science, University of California,
Santa Barbara, Sept. 2004.

[6] OASIS, “Extensible access control markup
language (xacml)” version 2.0. OASIS
Standard, 2005.

[7] P. Bonatti, S. D. C. D. Vimercati, and P.
Samarati, “An algebra for composing access
control policies,” ACM Transactions on
Information and System Security (TISS), vol.
5, No. 1, February 2002, pp. 1–35.

[8] A. Anderson, “Evaluating xacml as a policy
language,” Technical report, OASIS, 2003.

[9] M. Abedin, S. Nessa, L. Khan, and B. M.
Thuraisingham, “Detection and resolution of
anomalies in firewall policy rules”, 20th
Annual IFIP WG 11.3, Working Conference on
Data and Applications Security (DBSec), 2006.

[10] Q. Ni, E. Bertino, J. Lobo, “D-algebra for
composing access control policy decisions”,
Proceedings of ACM Symposium on
Information, Computer and Communication
Symposium (ASIACCS 2009), 10-12 March.

http://www.jatit.org/

	1MOHAMED YAHIAOUI, 2AHMED ZINEDINE, 3MOSTAFA HARTI,
	Conflict-free policy set

