
Journal of Theoretical and Applied Information Technology
 31st March 2013. Vol. 49 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1013

ASSOCIATIVE CLASSIFICATION WITH KNN
ZAIXIANG HUANG, ZHONGMEI ZHOU, TIANZHONG HE

Department of Computer Science and Engineering, Zhangzhou Normal University, Zhangzhou 363000,

China

E-mail: huangzaixiang@126.com

ABSTRACT

Associative classification usually generates a large set of rules. Therefore, it is inevitable that an instance
matches several rules which classes are conflicted. In this paper, a new framework called Associative
Classification with KNN (AC-KNN) is proposed, which uses an improved KNN algorithm to address rule
conflicts. Traditional K-Nearest Neighbor (KNN) is low efficient due to its calculation of the similarity
between the test instance and each training instance. Furthermore, the accuracy of KNN is largely depended
on the selection of a “good value” for K. AC-KNN generates for each test instance a specific training set
composed of instances covered by best n rules which match the test instance. Thus, the nearest neighbors
from the specific training set are not only similar to but also associative with the test instance. As a result,
such nearest neighbors will make better decision on classifying a conflict instance. Our experiments on 12
UCI datasets show that AC-KNN outperforms both AC and KNN on accuracy. Compare with KNN, AC-
KNN is more efficient and more stable to the number of nearest neighbors.

Keywords: Data Mining; Classification; Association Rule; KNN; Rule conflicts

1. INTRODUCTION

As one of the most important task in data
mining and machine learning, classification aims
to predict the class of an unseen instance as
accuracy as possible. In recent years, associative
classification (AC), which integrates association
rule with classification, has been proposed [1, 2].
Because of easy interpretation and high accuracy,
associative classification has become one of hot
topics in data mining [3, 4, 5, 6, 7].

Most associative classification consist of two
major stages, a class association rules (CARs)
mining stage and a classification stage. During the
first stage, a set of CARs is generated from the
training set by using association rule mining
algorithms, such as Apriori [8] or FPgrowth [9]. A
class association rule is a specific type of
association rule where the consequent is a class
value. AC algorithms normally derive a large set
of rules. As a result, pruning techniques are
necessary to reduce redundant or misleading rules.
The removal of such rules can make the
classification process more effective and accurate.

During the classification stage, one of key issues
is rule conflicts, i.e., several rules that match a test
instance often predict different class values. To
deal with this rule conflicts, there exist three
different approaches: (1) using the best rule; (2)

using best n rules; (3) using all rules. For example,
CBA [1] uses the single highest ranking rule that
matches an instance to classify it. This method has
two shortcomings: (1) different rule ranking
approaches have impact on accuracy; (2) ignoring
a large number of high ranking rules that might
agree with each other and disagree with the highest
ranking rule. CPAR [10] uses the best n rules, and
CMAR [2] uses all matched rules to classify an
unseen instance. This method divides the rules into
groups according to class value. The difficulty of
this method is how to calculate the predict power
of each group of rules. CMAR uses a chi-square
weighting to combine the class predictions of a
group of rules. ARC [11] predicts class value
based on the average confidence of a group of
rules.

Lindgren et al. [12] proposed a new approach to
resolve rule conflicts by double induction. The
idea of double induction is to induce new rules
based on the instances that are covered by the rules
in conflict. Antonie et al. [3] introduce a new
technique to solve rule conflicts. The rules are
used to transform the feature space. Then a neural
network in this new feature space is used as a
classifier. Depaire et al. [4] also use the learned
CARs to transform the feature space. But their
classification is done through case-based
reasoning.

http://www.jatit.org/
mailto:%20huangzaixiang@126.com

Journal of Theoretical and Applied Information Technology
 31st March 2013. Vol. 49 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1014

K-Nearest Neighbor (KNN) [13] is a type of
lazy learning where all computation is deferred
until classification. It classifies objects based on
closest training instances in the feature space. An
object is classified by a majority vote of its
neighbors. However, it suffers from two major
deficiencies: (1) it is high computation cost
because it needs to calculate the distance between
the test data and each training instances; (2) it is
sensitive to the number of nearest neighbors. If the
K is set to small, it is easily interfered by noises. If
the K is set to large, the nearest neighbors will
contain many instances with other class.

In this paper, a new framework called
Associative Classification with KNN (AC-KNN)
is proposed, which combines the advantages of
both associative classification and KNN. AC-KNN
adopts an AC algorithm to generate a set of
classification rules. Then it also selects the best n
rules to predict the class value of new instances.
Instead of computing the scores of each group of
rules, AC-KNN applies an improved KNN
algorithm to address the rule conflicts. It selects
the K nearest neighbors from these instances
covered by the best n rules rather than from all
training instances. The K nearest neighbors vote to
assign a class value to the test instance.

AC-KNN has three major advantages:

(1) More accurate. The K nearest neighbors
selected by AC-KNN is both similar to and
associative with the test instance. These nearest
neighbors will make better decision on classifying
the test instance. As a result, AC-KNN is better at
solving rules conflicts and improves classification
accuracy.

(2) More efficient than KNN. These instances
covered by the best n rules are usually much
smaller than training set. As a result, AC-KNN is
faster than KNN to find K nearest neighbors.

(3) More stable than KNN. The K nearest
neighbors is from these training instances which
are associated with the test instance. Therefore, the
accuracy is less sensitive to the number of the
nearest neighbors.

2. PREREQUISITES AND CONCEPTION

2.1 Associative Classification
In associative classification, the training data set

T has m distinct attributes A1, A2, …, Am and a list
of classes c1, c2, …, cn. An attribute can be
categorical or continuous. For a categorical
attribute, all the possible values are mapped to a
set of consecutive positive integers. For a

continuous attribute, its value range is discretized
into intervals, and the intervals are also mapped to
consecutive positive integers.

In general, we call each attribute-value pair an
item. An itemset),...,(

1 kii aaX = is a set of values
of different attributes. K-itemset is an itemset that
contains k values. An instance is said to match an
itemset),...,(

1 kii aaX = , if and only if

for)1(kj ≤≤ , the instance has value
jia in

attribute
jiA .

The number of instances in T matching itemset
X is called the support of X, denoted as s(X). An
itemset is called frequent itemset when the support
of the itemset passes the minimum support
threshold (minsup).

Given a training data set T, let Ci is a class
label. A class association rule (CAR) is of the
form: iCX → , where X is an itemset. The support
count of the rule (denoted as s(XCi)) is the number
of objects in T that match X and belong to Ci. The
support of a rule is %100*)(TXCs i , where |T| is
the size of the data set, and the confidence of a rule
is %100*)()(XsXCs i .

2.2 KNN
The K Nearest Neighbors (KNN) is a simple but

effective method for classification. It is a case-
based learning method, which keeps all the
training data for classification. For an instance to
be classified, its K nearest neighbors are retrieved
based on some similarity measures. For discrete
attributes, the similarity between a training
instance i and a new instance j is measured as
follows:

pmpjiD)(),(−= (1)

where p is the number of attributes, m is the
number of share attribute values of instance i and j.

Once the K nearest neighbors is retrieved, the
test instance is classified based on the majority
class of its nearest neighbors.

In the majority voting approach, every neighbor
has the same impact on the classification. This
makes the algorithm sensitive to the choice of K.
One way to reduce the impact of K is to weight the
influence of each nearest neighbor according to its
distance [14].

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 31st March 2013. Vol. 49 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1015

3. ASSOCIATIVE CLASSIFICATION
WITH KNN

AC-KNN proposed in this paper consists of two
phases: (1) Rule generation based on AC
algorithm; (2) classification with KNN.

In the first phase, the difference of AC-KNN
from other ACs is that AC-KNN mines such
frequent itemsets in which items are associated
with each other. The frequent and associated
itemsets contribute to classification.

In the second phase, AC-KNN adopts an
improved KNN algorithm to classify new
instances. The difference from other KNN is that
AC-KNN finds nearest neighbors from these
instances covered by best n rules. Therefore, these
nearest neighbors are not only similar to but
associative with the test instance. As a result, these
nearest neighbors will classify it better.

3.1 Rule Generation based on AC Algorithm
Rule generation based on AC algorithm consists

of tree phases: (1) discover frequent and associated
itemsets; (2) Rule ranking; (3) Rule pruning.

3.1.1 Discover frequent and associated itemsets
Our algorithm finds frequent and associated

itemsets to generate class association rules
(CARs). Frequent and associative itemsets are
those itemsets whose support and all-confidence
are greater than threshold, respectively.

All-confidence [15] of itemset),...,(
1 kii aaX = ,

denoted as allconf(X), is defined as follows:
))(),...,(max()()(

1 kii asasXsXallconf = (2)
It represents the minimum confidence of all

association rules extracted from an itemset. We
use all-confidence to measure the degree of mutual
association in an itemset.

Once a frequent and associative itemset has
been identified, the confidence of all rules with
that frequent and associative itemset as condition
is calculated. Only the rule with the largest
confidence is considered as a CAR.

3.1.2 Rules ranking
To select the appropriate rule for classifying

new instances, most associative classifications
usually rank rules firstly. Rule ranking plays an
important role in associative classification [16].
CBA ranks the rules mainly according to
confidence and support. When several rules have
the same confidences and supports, CBA randomly

chooses one of the rules, which may degrade
accuracy.

To addressing this issue, we rank rules
according to not only confidence but also mutual
association between itemsets and predictive class
which is measured by all-confidence. All-
confidence of a rule r: X→ci is defined as follows:

))(),(max()()(icsXsrsrallconf = (3)

A total order on the generated rules is defined as
follows:

Given two rules, ri: Xi→ci and rj :Xj→cj, ri
precedes rj if:

1. the confidence of ri is greater than that of rj,
or

2. their confidences are the same, but the all-
confidence of ri is greater than that of rj, or

3. the confidence and all-confidence of ri and rj
are the same, but all-confidence of Xi is greater
than that of Xj, or

4. the confidence, all-confidence of ri and rj and
all-confidence of Xi and Xj are the same, but the
support of ri is greater than that of rj, or

5. all above criteria are identical for ri and rj,
but ri has fewer conditions in its left hand side
than that of rj.

3.1.3 Rules Pruning

The number of CARs can be huge. To make the
classification effective and also efficient, we need
to prune rules to delete redundant and noisy
information.

Our algorithm employs the following methods
for rule pruning.

First, we delete these single items with high
information entropy. Information entropy of item
X, denoted as E(X) is defined as follows [17]:

)|(log)|(
log

1)(2
12

XCpXCp
k

XE i

k

i
i∑−=

=
 (4)

where k is the number of classes, and)|(XCp i is
the probability that an object matching X belongs
to Ci.

The rationale is that these itemsets carry little
information for classification when its information
entropy is approximately 1.

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 31st March 2013. Vol. 49 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1016

Second, we use general rule to pruning more
specific rule. A rule r1 : iCX → is said a general

rule with respect to rule r2: jCX →' , if and only

if 'XX ⊂ .

Given two rules ri and rj, where ri is a general
rule with respect to rj. We prune rj if the
confidence of ri is greater than that of rj. Thus
more specific rules with low confidence should be
pruned. The pruning strategies are pursued when
the class association rules are inserted into the set
of rules.

Third, we prune rules based on database
coverage just like used in CBA. This pruning is
pursued when the rule mining process is finished.

3.1.4 Rule generation based on AC algorithm
The detail of Rule generation based on AC

(RGAC) algorithm is shown in Algorithm 1.

Algorithm 1 RGAC(T)
Input: Training data set T; Minimum Support

threshold (minsup); Minimum all-confidence
threshold (minallconf); Maximum entropy
threshold (Maxentropy).

Output: A set of rules R.

1: C1←init_pass(T);
2: ruleGen(C1; L1;R);
3: for (k = 2;Lk-1≠Φ ; k ++) do
4: Ck ← candidateGen(Lk-1);
5: supportCalculation(Ck);
6: ruleGen(Ck; Lk;R);
7: end for
8: Sort(R);
9: DatabaseCoverage(R, 1);
10: return R;

Function ruleGen(Ck; Lk; R)
1: for all X ∈ Ck do
2: compute allconf(X);
3: if (s (X)≥ minsup and allconf(X) ≥ minallconf)
4: calculates the confidence of all rules

with X as condition, and selects the rule
with the largest confidence ri : X→C i;

5: find all general rules of ri in R
6: if (the confidence of each general rules

of ri is less than the confidence of ri)
7: push ri into R;
8: end if
9: push X into Lk;
10: end if
11: end for

In this algorithm, Ck is the set of candidate k-
itemset. Lk is the set of frequent and associative k-

itemset. R is the set of rules. Line 1 represents the
first pass of the algorithm. In this pass, RGAC
records the occurrences (rowIds) of each single
item inside fast access data structures. It is
convenience to get the class distribution of an
itemset. Then the function ruleGen is executed,
also done in each subsequent pass (line 6).

For each subsequent pass, the algorithm
performs 3 major operations: candidate itemset
generation (line 4), support calculation (line 5) and
rule generation (line 6). When rules generation is
finished, RGAC sorts rules (line 8), then uses
database coverage method to prune rules (line 9).

Function candidateGen uses the frequent itemset
in Lk-1 found in the (k-1) th pass to generate the
candidate itemset pushed into Ck, which is similar
to the function apriori-gen in algorithm Apriori.

Function supportCalculation is executed to
calculate the support of each itemset in Ck by
intersecting the rowIds of two (k-1)-itemset which
are joined into k-itemset.

In Function ruleGen, RGAC calculates the all-
confidence of each candidate itemset (line 2), and
only selects these itemsets which pass minimum
support and all-confidence threshold (line 3). Once
a frequent and associative itemset has been
identified, RGAC algorithm calculates the
confidence of all rules with that item set as
condition. Only the rule with the largest
confidence is considered as a class association rule
(line 4).

If the confidence of any general rule of ri is less
than that of ri, we regard ri as a CAR. Otherwise,
we discard it (line 5-8).

3.2 Classification based on KNN
The distinction between AC-KNN and other

associative classification is that AC-KNN uses
KNN to address the rule conflicts. When the
matched rules is conflicted, AC-KNN makes a
decision by k nearest neighbors which are selected
from these training instances covered by the best n
rules. The k nearest neighbors is not only similar
to but also associative with the test instance.
Therefore, the k nearest neighbors will make better
decision to classify the test instance.

The Classification based on KNN algorithm is
shown in algorithm 2.

Algorithm 2 Classification based on KNN
Input: Training data set T; a set of rules R, Test

instance O.
Output: class value assigned to O.

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 31st March 2013. Vol. 49 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1017

1: select best n rules that matched test instance
O from R;

2: if the best n rules predict the same class
value C

3: assigned C to O;
4: else
5: collect all training instances TT ⊆1

covered by the best n rules;
6: for all 1Tt∈ do
7: calculate the distance between t and O;
8: end for
9: sort T1 by distance in ascending order;
10: select k nearest neighbors with lowest

distance;
11: divides k nearest neighbors into groups

according to class value;
12: calculate average distance for each

group;
13: assign the class value C of the group

with the lowest average distance to O;
14: end if

To classify a new instance, AC-KNN selects best n
rules the matched that new instance (line 1). If the
best n rules consistently predict the same class
value, this class value is assigned to the new
instance (line 2-3). If the best n rules are conflict, a
KNN algorithm is applied (line 5-13). We select k
training instances with lowest distance and divide
these instances into groups according to class
value. The class value of a group with the
minimum average distance is assign to the new
instance.

4. EXPERIMENTAL RESULTS

To evaluate the accuracy and efficiency of AC-
KNN, we have performed an extensive
performance study. In this section, we report our
experimental results on comparing AC-KNN
against AC and KNN. It shows that AC-KNN
outperforms AC and KNN in terms of average
accuracy. And we also evaluate the impact of the
number of nearest neighbors on accuracy. The
results show AC-KNN has more stable
performance than traditional KNN.

All the experiments are performed on a 3GHz
Core i5 PC with 4G main memory, running
Microsoft Windows XP. We test 12 data sets from
UCI Machine Learning Repository. We adopt
CBA's discretize utility to discretize continuous
attributes. The characteristics of 12 datasets are
summarized in Table 1. In this table, inst, attr, cls
are representative of instances, attributes and
classes, respectively.

Table 1: UCI Dataset Characteristics
datasets inst attr cls datasets inst attr cls

Anneal 898 38 6 Diabetes 768 8 2

Austral 690 14 2 Heart 270 13 2

Auto 205 25 7 Horse 368 22 2

Breast 699 10 2 Sonar 208 60 2

Cleve 303 13 2 Votes 435 16 2

Crx 690 15 2 Wine 178 13 3

A 10-fold cross validation is performed. The
results are given as average of the accuracy
obtained for each fold.

For associative classification, we select best n
(n=3) rules to classification new instances. We
design three different methods to address rule
conflicts respectively: (1) using the best rule
(donated AC-BR); (2) using average confidence of
group of rules (donated AC-AC); (3) using KNN
(donated AC-KNN). We set support threshold to
1%, all-confidence threshold to 10% and Entropy
information threshold to 0.95.

For KNN, we select 5 nearest neighbors to
predict the class value of the test instance. The 5
nearest neighbors are divided into groups
according to class value. We assign the class value
of the group with the lowest average distance to
the test instance.

The accuracy results achieved by the three
algorithms are shown in table 2. As we can see
from the table, AC-KNN outperforms both AC-BR
and AC-AC on accuracy. Furthermore, out of the
12 datasets, AC-KNN achieves the best accuracy
in 8 ones. In some datasets, e.g. Auto, Horse,
Sonar, AC-KNN wins the second place over 3% in
accuracy. In conclusion, it is more effective to
address the rule conflicts by using KNN.

Table 2: The Comparison of AC-BR, AC-AC, AC-
KNN and KNN on Accuracy

datasets AC-BR AC-AC AC-KNN KNN

Anneal 96.1 96.0 97.5 96.9

Austral 86.4 86.5 86.5 79.6

Auto 77.0 77 81.5 83.5

Breast 94.5 94.5 95.2 95.1

Cleve 83.3 83 82.0 75.7

Crx 85.1 85.1 86.1 78.4

Diabetes 71.1 73.4 73.4 65.9

Heart 81.9 81.9 83.0 74.1

Horse 83.6 83.3 86.4 82.8

Sonar 80.5 80.5 84.0 76.0

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 31st March 2013. Vol. 49 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1018

Votes 94.4 94.2 92.6 90.9

Wine 95.9 92.4 96.5 97.6

Average 85.8 85.6 87.1 83.0

Compare column 4 with column 5, we can draw
a conclusion that AC-KNN also outperforms KNN
on accuracy. Out of the 12 datasets, AC-KNN
achieves the best accuracy in 10 ones. In some
datasets, e.g. austral, crx, diabetes, Heart, Sonar,
AC-KNN wins KNN over 7% in accuracy.

Table 3: The Comparison of KNN and AC-KNN on
Test Time

datasets KNN AC-KNN datasets KNN AC-KNN

Anneal 2.88 0.59 Diabetes 1.02 0.86

Austral 1.10 0.23 Heart 0.14 0.07

Auto 0.13 0.03 Horse 0.38 0.12

Breast 0.93 0.37 Sonar 0.23 0.05

Cleve 0.20 0.10 Votes 0.46 0.19

Crx 1.14 0.26 Wine 0.07 0.01

 Average 0.72 0.24

Table 3 compares the test time of KNN with
AC-KNN. For all datasets, AC-KNN is more
efficient than KNN. On average, the test time of
AC-KNN is nearly 1/3 of that of KNN. The reason
is that AC-KNN finds the K nearest neighbors
from these instances coved by best k rules which is
much smaller than training set.

The number of nearest neighbors plays an
important role on accuracy For KNN. We also
compare the performance of KNN and AC-KNN
on the number of nearest neighbors. The results are
shown in Figure 1. From these figures, one can see
that the accuracy achieved by KNN declined over
10% with the number of nearest neighbors
increasing from 5 to 23. However, the accuracy
results rise and fall within 2% for AC-KNN. Thus
AC-KNN is less sensitive to the number of nearest
neighbors than KNN.

60

65

70

75

80

85

90

5 7 9 11 13 15 17 19 21 23

K

a
c
c
u
r
a
c
y

KNN

AC-KNN

(a) Austra

60

65

70

75

80

85

5 7 9 11 13 15 17 19 21 23

K

a
c
c
u
r
a
c
y

KNN

AC-KNN

(b) Cleve

60

65

70

75

80

85

90

5 7 9 11 13 15 17 19 21 23

K

ac
cu

ra
cy

KNN

AC-KNN

(c) Crx

55

60

65

70

75

80

85

90

5 7 9 11 13 15 17 19 21 23

K

ac
cu

ra
cy

KNN

AC-KNN

(d) Heart

60

65

70

75

80

85

90

5 7 9 11 13 15 17 19 21 23

K

ac
cu

ra
cy

KNN

AC-KNN

(e) Horse

60

65

70

75

80

85

90

5 7 9 11 13 15 17 19 21 23

K

ac
cu

ra
cy

KNN

AC-KNN

(f) Sonar

Figure 1: The Effect of the Number of Nearest
Neighbors on Accuracy

5. CONCLUSIONS

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 31st March 2013. Vol. 49 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1019

The rule conflicts are inevitable in classification
stage for associative classification. The rule
conflicts are addressed better, the prediction for
new instances is more accuracy. In this paper, a
new approach called AC-KNN is proposed, which
adopts a improved KNN algorithm to address rule
conflicts. AC-KNN retrieves the K nearest
neighbors from the subset of training instances
covered by best n rules. Therefore, the K nearest
neighbors is not only similar to but associative
with the test instance. Our experiments on UCI
datasets show that AC-KNN outperforms both AC
and KNN, and AC-KNN is less sensitive to the
number of nearest neighbors than KNN.

ACKNOWLEDGEMENT

This work is funded by China NSF program

(No.61170129).

REFRENCES:

[1] B.Liu, W.Hsu, and Y.Ma, “Integrating

classification and association rule mining”,
KDD, 1998, pp.80-86.

[2] W.Li, J.Han, and J.Pei, “CMAR: Accurate and
efficient classification based on multiple class-
association rules”, ICDM, 2001, pp.369-376.

[3] M.L.Antonie, O.R.Zaïane, and R.C.Holte,
“Learning to use a learned model: A two-stage
approach to classification”, ICDM, 2006,
pp.33-42.

[4] B.Depaire, K.Vanhoof, and G.Wets,
“ARUBAS: An Association Rule Based
Similarity Framework for Associative
Classifiers”, ICDM, 2008, pp. 692-699.

[5] Y.Jiang, Y.Liu, and X.Liu, “Integrating
classification capability and reliability in
associative classification: A β-stronger model”,
Expert Systems with Applications, vol. 37,
2010, pp.3953-3961.

[6] G.Simon, V.Kumar, and P.Li, “A Simple
Statistical Model and Association Rule
Filtering for Classification”, KDD, 2011, pp.
823-831.

[7] K.Yu, X.Wu, and W.Ding, “Causal Associative
Classification”, ICDM, 2011, pp.914-923.

[8] R.Agrawal, and R.Srikant, “Fast algorithms for
mining association rules”, VLDB, 1994, pp.
487-499.

[9] J. Han, J. Pei, and Y. Yin, “Mining frequent
patterns without candidate generation”,
SIGMOD, 2000, pp.1-12.

[10] X. Yin and J. Han, “CPAR: classification
based on predictive association rules”, SDM,
2003, pp.331-335.

[11] M.L.Antonie, and O.R.Zaïane, “Text document
categorization by term association”, ICDM,
2002, pp.19-26.

[12] T.Lindgren, and H.Boström, “Resolving rule
conflicts with double induction”, Proceedings
of the 5th International Symposium on
Intelligent Data Analysis, 2003, pp.60-67.

[13] T.M. Cover, and P.E. Hart, “Nearest neighbor
pattern classification”, IEEE Transactions on
Information Theory, Vol. 13, No.1, 1967, pp.
21-27.

[14] P.N.Tan, M.Steinbach, and V.Kumar,
“Introduction to data mining”, Addison-Wesley,
2006, pp.225-226.

[15] E.Omiecinski, “Alternative interest measures
for mining associations”, IEEE Transactions
on Knowledge and Data Engineering, Vol.15,
No 1, 2003, pp. 57-69

[16] F.A.Thabtah, “A review of associative
classification mining”, The Knowledge
Engineering Review, Vol.22, No.1, 2007, pp.
37-65.

[17] Y. Zhao, and G. Karypis, “Criterion functions
for document clustering: Experiments and
analysis”, Machine Learning, 2002.

http://www.jatit.org/

	ZAIXIANG HUANG, ZHONGMEI ZHOU, TIANZHONG HE

