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ABSTRACT 
 

Associative classification usually generates a large set of rules. Therefore, it is inevitable that an instance 
matches several rules which classes are conflicted. In this paper, a new framework called Associative 
Classification with KNN (AC-KNN) is proposed, which uses an improved KNN algorithm to address rule 
conflicts. Traditional K-Nearest Neighbor (KNN) is low efficient due to its calculation of the similarity 
between the test instance and each training instance. Furthermore, the accuracy of KNN is largely depended 
on the selection of a “good value” for K. AC-KNN generates for each test instance a specific training set 
composed of instances covered by best n rules which match the test instance. Thus, the nearest neighbors 
from the specific training set are not only similar to but also associative with the test instance. As a result, 
such nearest neighbors will make better decision on classifying a conflict instance. Our experiments on 12 
UCI datasets show that AC-KNN outperforms both AC and KNN on accuracy. Compare with KNN, AC-
KNN is more efficient and more stable to the number of nearest neighbors. 
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1. INTRODUCTION  
 

As one of the most important task in data 
mining and machine learning, classification aims 
to predict the class of an unseen instance as 
accuracy as possible. In recent years, associative 
classification (AC), which integrates association 
rule with classification, has been proposed [1, 2]. 
Because of easy interpretation and high accuracy, 
associative classification has become one of hot 
topics in data mining [3, 4, 5, 6, 7]. 

Most associative classification consist of two 
major stages, a class association rules (CARs) 
mining stage and a classification stage. During the 
first stage, a set of CARs is generated from the 
training set by using association rule mining 
algorithms, such as Apriori [8] or FPgrowth [9]. A 
class association rule is a specific type of 
association rule where the consequent is a class 
value. AC algorithms normally derive a large set 
of rules. As a result, pruning techniques are 
necessary to reduce redundant or misleading rules. 
The removal of such rules can make the 
classification process more effective and accurate. 

During the classification stage, one of key issues 
is rule conflicts, i.e., several rules that match a test 
instance often predict different class values. To 
deal with this rule conflicts, there exist three 
different approaches: (1) using the best rule; (2) 

using best n rules; (3) using all rules. For example, 
CBA [1] uses the single highest ranking rule that 
matches an instance to classify it. This method has 
two shortcomings: (1) different rule ranking 
approaches have impact on accuracy; (2) ignoring 
a large number of high ranking rules that might 
agree with each other and disagree with the highest 
ranking rule. CPAR [10] uses the best n rules, and 
CMAR [2] uses all matched rules to classify an 
unseen instance. This method divides the rules into 
groups according to class value. The difficulty of 
this method is how to calculate the predict power 
of each group of rules. CMAR uses a chi-square 
weighting to combine the class predictions of a 
group of rules. ARC [11] predicts class value 
based on the average confidence of a group of 
rules. 

Lindgren et al. [12] proposed a new approach to 
resolve rule conflicts by double induction. The 
idea of double induction is to induce new rules 
based on the instances that are covered by the rules 
in conflict. Antonie et al. [3] introduce a new 
technique to solve rule conflicts. The rules are 
used to transform the feature space. Then a neural 
network in this new feature space is used as a 
classifier. Depaire et al. [4] also use the learned 
CARs to transform the feature space. But their 
classification is done through case-based 
reasoning. 
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K-Nearest Neighbor (KNN) [13] is a type of 
lazy learning where all computation is deferred 
until classification. It classifies objects based on 
closest training instances in the feature space. An 
object is classified by a majority vote of its 
neighbors. However, it suffers from two major 
deficiencies: (1) it is high computation cost 
because it needs to calculate the distance between 
the test data and each training instances; (2) it is 
sensitive to the number of nearest neighbors. If the 
K is set to small, it is easily interfered by noises. If 
the K is set to large, the nearest neighbors will 
contain many instances with other class.  

In this paper, a new framework called 
Associative Classification with KNN (AC-KNN) 
is proposed, which combines the advantages of 
both associative classification and KNN. AC-KNN 
adopts an AC algorithm to generate a set of 
classification rules. Then it also selects the best n 
rules to predict the class value of new instances. 
Instead of computing the scores of each group of 
rules, AC-KNN applies an improved KNN 
algorithm to address the rule conflicts. It selects 
the K nearest neighbors from these instances 
covered by the best n rules rather than from all 
training instances. The K nearest neighbors vote to 
assign a class value to the test instance. 

AC-KNN has three major advantages: 

(1) More accurate. The K nearest neighbors 
selected by AC-KNN is both similar to and 
associative with the test instance. These nearest 
neighbors will make better decision on classifying 
the test instance. As a result, AC-KNN is better at 
solving rules conflicts and improves classification 
accuracy. 

(2) More efficient than KNN. These instances 
covered by the best n rules are usually much 
smaller than training set. As a result, AC-KNN is 
faster than KNN to find K nearest neighbors. 

(3) More stable than KNN. The K nearest 
neighbors is from these training instances which 
are associated with the test instance. Therefore, the 
accuracy is less sensitive to the number of the 
nearest neighbors.  

2. PREREQUISITES AND CONCEPTION  

2.1 Associative Classification 
In associative classification, the training data set 

T has m distinct attributes A1, A2, …, Am and a list 
of classes c1, c2, …, cn. An attribute can be 
categorical or continuous. For a categorical 
attribute, all the possible values are mapped to a 
set of consecutive positive integers. For a 

continuous attribute, its value range is discretized 
into intervals, and the intervals are also mapped to 
consecutive positive integers. 

In general, we call each attribute-value pair an 
item. An itemset ),...,(

1 kii aaX = is a set of values 
of different attributes. K-itemset is an itemset that 
contains k values. An instance is said to match an 
itemset ),...,(

1 kii aaX = , if and only if 

for )1( kj ≤≤ , the instance has value
jia in 

attribute
jiA .  

The number of instances in T matching itemset 
X is called the support of X, denoted as s(X). An 
itemset is called frequent itemset when the support 
of the itemset passes the minimum support 
threshold (minsup).  

Given a training data set T, let Ci is a class 
label. A class association rule (CAR) is of the 
form: iCX → , where X is an itemset. The support 
count of the rule (denoted as s(XCi)) is the number 
of objects in T that match X and belong to Ci. The 
support of a rule is %100*)( TXCs i , where |T| is 
the size of the data set, and the confidence of a rule 
is %100*)()( XsXCs i .  

2.2 KNN  
The K Nearest Neighbors (KNN) is a simple but 

effective method for classification. It is a case-
based learning method, which keeps all the 
training data for classification. For an instance to 
be classified, its K nearest neighbors are retrieved 
based on some similarity measures.  For discrete 
attributes, the similarity between a training 
instance i and a new instance j is measured as 
follows: 

pmpjiD )(),( −=                             (1) 

where p is the number of attributes, m is the 
number of share attribute values of instance i and j.  

Once the K nearest neighbors is retrieved, the 
test instance is classified based on the majority 
class of its nearest neighbors. 

In the majority voting approach, every neighbor 
has the same impact on the classification. This 
makes the algorithm sensitive to the choice of K.  
One way to reduce the impact of K is to weight the 
influence of each nearest neighbor according to its 
distance [14].  
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3. ASSOCIATIVE CLASSIFICATION 
WITH KNN 
 

AC-KNN proposed in this paper consists of two 
phases: (1) Rule generation based on AC 
algorithm; (2) classification with KNN.  

In the first phase, the difference of AC-KNN 
from other ACs is that AC-KNN mines such 
frequent itemsets in which items are associated 
with each other. The frequent and associated 
itemsets contribute to classification. 

In the second phase, AC-KNN adopts an 
improved KNN algorithm to classify new 
instances. The difference from other KNN is that 
AC-KNN finds nearest neighbors from these 
instances covered by best n rules. Therefore, these 
nearest neighbors are not only similar to but 
associative with the test instance. As a result, these 
nearest neighbors will classify it better. 

3.1 Rule Generation based on AC Algorithm 
Rule generation based on AC algorithm consists 

of tree phases: (1) discover frequent and associated 
itemsets; (2) Rule ranking; (3) Rule pruning. 

3.1.1 Discover frequent and associated itemsets 
Our algorithm finds frequent and associated 

itemsets to generate class association rules 
(CARs). Frequent and associative itemsets are 
those itemsets whose support and all-confidence 
are greater than threshold, respectively. 

All-confidence [15] of itemset ),...,(
1 kii aaX = , 

denoted as allconf(X), is defined as follows: 
))(),...,(max()()(

1 kii asasXsXallconf =         (2) 
It represents the minimum confidence of all 

association rules extracted from an itemset. We 
use all-confidence to measure the degree of mutual 
association in an itemset. 

Once a frequent and associative itemset has 
been identified, the confidence of all rules with 
that frequent and associative itemset as condition 
is calculated. Only the rule with the largest 
confidence is considered as a CAR. 

3.1.2 Rules ranking 
To select the appropriate rule for classifying 

new instances, most associative classifications 
usually rank rules firstly. Rule ranking plays an 
important role in associative classification [16]. 
CBA ranks the rules mainly according to 
confidence and support. When several rules have 
the same confidences and supports, CBA randomly 

chooses one of the rules, which may degrade 
accuracy. 

To addressing this issue, we rank rules 
according to not only confidence but also mutual 
association between itemsets and predictive class 
which is measured by all-confidence. All-
confidence of a rule r: X→ci is defined as follows: 

))(),(max()()( icsXsrsrallconf =              (3) 

A total order on the generated rules is defined as 
follows: 

Given two rules, ri: Xi→ci and rj :Xj→cj, ri 
precedes rj if: 

1. the confidence of ri is greater than that of rj, 
or 

2. their confidences are the same, but the all-
confidence of ri is greater than that of rj, or 

3. the confidence and all-confidence of ri and rj 
are the same, but all-confidence of Xi is greater 
than that of Xj, or 

4. the confidence, all-confidence of ri and rj and 
all-confidence of Xi and Xj are the same, but the 
support of ri is greater than that of rj, or 

5. all above criteria are identical for ri and rj, 
but ri has fewer conditions in its left hand side 
than that of rj.  

 
3.1.3 Rules Pruning 

The number of CARs can be huge. To make the 
classification effective and also efficient, we need 
to prune rules to delete redundant and noisy 
information. 

Our algorithm employs the following methods 
for rule pruning. 

First, we delete these single items with high 
information entropy. Information entropy of item 
X, denoted as E(X) is defined as follows [17]: 

)|(log)|(
log

1)( 2
12

XCpXCp
k

XE i

k

i
i∑−=

=
   (4) 

where k is the number of classes, and )|( XCp i  is 
the probability that an object matching X belongs 
to Ci. 

The rationale is that these itemsets carry little 
information for classification when its information 
entropy is approximately 1. 
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Second, we use general rule to pruning more 
specific rule. A rule r1 : iCX → is said a general 

rule with respect to rule r2: jCX →' , if and only 

if 'XX ⊂ . 

Given two rules ri and rj, where ri is a general 
rule with respect to rj. We prune rj if the 
confidence of ri is greater than that of rj. Thus 
more specific rules with low confidence should be 
pruned. The pruning strategies are pursued when 
the class association rules are inserted into the set 
of rules. 

Third, we prune rules based on database 
coverage just like used in CBA. This pruning is 
pursued when the rule mining process is finished. 

3.1.4 Rule generation based on AC algorithm 
The detail of Rule generation based on AC 

(RGAC) algorithm is shown in Algorithm 1. 

Algorithm 1 RGAC(T) 
Input: Training data set T; Minimum Support 

threshold (minsup); Minimum all-confidence 
threshold (minallconf); Maximum entropy 
threshold (Maxentropy). 

Output: A set of rules R. 

1:   C1←init_pass(T); 
2:   ruleGen(C1; L1;R); 
3:   for (k = 2;Lk-1≠Φ ; k ++) do 
4:        Ck ←  candidateGen(Lk-1); 
5:        supportCalculation(Ck); 
6:        ruleGen(Ck; Lk;R); 
7:   end for 
8:   Sort(R); 
9:   DatabaseCoverage(R, 1); 
10: return R; 
 
Function ruleGen(Ck; Lk; R) 
1: for all X ∈ Ck do 
2:     compute allconf(X); 
3:     if (s (X)≥ minsup and allconf(X) ≥ minallconf)  
4: calculates the confidence of all rules 

with X as condition, and selects the rule 
with the largest confidence ri : X→C i; 

5: find all general rules of ri in R 
6:  if (the confidence of each general rules 

of ri is less than the confidence of ri ) 
7:   push ri into R; 
8:  end if 
9:  push X into Lk; 
10:    end if 
11: end for 

In this algorithm, Ck is the set of candidate k-
itemset. Lk is the set of frequent and associative k-

itemset. R is the set of rules. Line 1 represents the 
first pass of the algorithm. In this pass, RGAC 
records the occurrences (rowIds) of each single 
item inside fast access data structures. It is 
convenience to get the class distribution of an 
itemset. Then the function ruleGen is executed, 
also done in each subsequent pass (line 6). 

For each subsequent pass, the algorithm 
performs 3 major operations: candidate itemset 
generation (line 4), support calculation (line 5) and 
rule generation (line 6). When rules generation is 
finished, RGAC sorts rules (line 8), then uses 
database coverage method to prune rules (line 9).   

Function candidateGen uses the frequent itemset 
in Lk-1 found in the (k-1) th pass to generate the 
candidate itemset pushed into Ck, which is similar 
to the function apriori-gen in algorithm Apriori. 

Function supportCalculation is executed to 
calculate the support of each itemset in Ck by 
intersecting the rowIds of two (k-1)-itemset which 
are joined into k-itemset. 

In Function ruleGen, RGAC calculates the all-
confidence of each candidate itemset (line 2), and 
only selects these itemsets which pass minimum 
support and all-confidence threshold (line 3). Once 
a frequent and associative itemset has been 
identified, RGAC algorithm calculates the 
confidence of all rules with that item set as 
condition. Only the rule with the largest 
confidence is considered as a class association rule 
(line 4). 

If the confidence of any general rule of ri is less 
than that of ri, we regard ri as a CAR. Otherwise, 
we discard it (line 5-8). 

3.2 Classification based on KNN 
The distinction between AC-KNN and other 

associative classification is that AC-KNN uses 
KNN to address the rule conflicts. When the 
matched rules is conflicted, AC-KNN makes a 
decision by k nearest neighbors which are selected 
from these training instances covered by the best n 
rules. The k nearest neighbors is not only similar 
to but also associative with the test instance. 
Therefore, the k nearest neighbors will make better 
decision to classify the test instance. 

The Classification based on KNN algorithm is 
shown in algorithm 2.  

Algorithm 2 Classification based on KNN  
Input: Training data set T; a set of rules R, Test 

instance O. 
Output: class value assigned to O. 

http://www.jatit.org/
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1: select best n rules that matched test instance 
O from R; 

2: if the best n rules predict the same class 
value C  

3:       assigned C to O; 
4: else 
5:       collect all training instances TT ⊆1  

covered by the best n rules; 
6:        for all 1Tt∈  do 
7:        calculate the distance between t and O; 
8:        end for 
9:        sort T1 by distance in ascending order; 
10:      select k nearest neighbors with lowest 

distance; 
11:      divides k nearest neighbors into groups 

according to class value; 
12:      calculate average distance for each 

group; 
13:      assign the class value C of the group 

with the lowest average distance to O; 
14: end if 

To classify a new instance, AC-KNN selects best n 
rules the matched that new instance (line 1). If the 
best n rules consistently predict the same class 
value, this class value is assigned to the new 
instance (line 2-3). If the best n rules are conflict, a 
KNN algorithm is applied (line 5-13). We select k 
training instances with lowest distance and divide 
these instances into groups according to class 
value. The class value of a group with the 
minimum average distance is assign to the new 
instance. 

4. EXPERIMENTAL RESULTS 
 

To evaluate the accuracy and efficiency of AC-
KNN, we have performed an extensive 
performance study. In this section, we report our 
experimental results on comparing AC-KNN 
against AC and KNN. It shows that AC-KNN 
outperforms AC and KNN in terms of average 
accuracy. And we also evaluate the impact of the 
number of nearest neighbors on accuracy. The 
results show AC-KNN has more stable 
performance than traditional KNN. 

All the experiments are performed on a 3GHz 
Core i5 PC with 4G main memory, running 
Microsoft Windows XP. We test 12 data sets from 
UCI Machine Learning Repository. We adopt 
CBA's discretize utility to discretize continuous 
attributes. The characteristics of 12 datasets are 
summarized in Table 1. In this table, inst, attr, cls 
are representative of instances, attributes and 
classes, respectively. 

Table 1: UCI Dataset Characteristics 
datasets inst attr cls  datasets inst attr cls 

Anneal 898 38 6  Diabetes 768 8 2 

Austral 690 14 2  Heart 270 13 2 

Auto 205 25 7  Horse 368 22 2 

Breast 699 10 2  Sonar 208 60 2 

Cleve 303 13 2  Votes 435 16 2 

Crx 690 15 2  Wine 178 13 3 

A 10-fold cross validation is performed. The 
results are given as average of the accuracy 
obtained for each fold. 

For associative classification, we select best n 
(n=3) rules to classification new instances. We 
design three different methods to address rule 
conflicts respectively: (1) using the best rule 
(donated AC-BR); (2) using average confidence of 
group of rules (donated AC-AC); (3) using KNN 
(donated AC-KNN). We set support threshold to 
1%, all-confidence threshold to 10% and Entropy 
information threshold to 0.95.  

For KNN, we select 5 nearest neighbors to 
predict the class value of the test instance. The 5 
nearest neighbors are divided into groups 
according to class value. We assign the class value 
of the group with the lowest average distance to 
the test instance. 

The accuracy results achieved by the three 
algorithms are shown in table 2. As we can see 
from the table, AC-KNN outperforms both AC-BR 
and AC-AC on accuracy. Furthermore, out of the 
12 datasets, AC-KNN achieves the best accuracy 
in 8 ones. In some datasets, e.g. Auto, Horse, 
Sonar, AC-KNN wins the second place over 3% in 
accuracy. In conclusion, it is more effective to 
address the rule conflicts by using KNN. 

Table 2: The Comparison of AC-BR, AC-AC, AC-
KNN and KNN on Accuracy 

datasets AC-BR AC-AC AC-KNN KNN 

Anneal 96.1 96.0 97.5 96.9 

Austral 86.4 86.5 86.5 79.6 

Auto 77.0 77 81.5 83.5 

Breast 94.5 94.5 95.2 95.1 

Cleve 83.3 83 82.0 75.7 

Crx 85.1 85.1 86.1 78.4 

Diabetes 71.1 73.4 73.4 65.9 

Heart 81.9 81.9 83.0 74.1 

Horse 83.6 83.3 86.4 82.8 

Sonar 80.5 80.5 84.0 76.0 
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Votes 94.4 94.2 92.6 90.9 

Wine 95.9 92.4 96.5 97.6 

Average 85.8 85.6 87.1 83.0 

Compare column 4 with column 5, we can draw 
a conclusion that AC-KNN also outperforms KNN 
on accuracy. Out of the 12 datasets, AC-KNN 
achieves the best accuracy in 10 ones. In some 
datasets, e.g. austral, crx, diabetes, Heart, Sonar, 
AC-KNN wins KNN over 7% in accuracy. 

Table 3: The Comparison of KNN and AC-KNN on 
Test Time 

datasets KNN AC-KNN  datasets KNN AC-KNN 

Anneal 2.88 0.59  Diabetes 1.02 0.86 

Austral 1.10 0.23  Heart 0.14 0.07 

Auto 0.13 0.03  Horse 0.38 0.12 

Breast 0.93 0.37  Sonar 0.23 0.05 

Cleve 0.20 0.10  Votes 0.46 0.19 

Crx 1.14 0.26  Wine 0.07 0.01 

    Average 0.72  0.24 

Table 3 compares the test time of KNN with 
AC-KNN. For all datasets, AC-KNN is more 
efficient than KNN. On average, the test time of 
AC-KNN is nearly 1/3 of that of KNN. The reason 
is that AC-KNN finds the K nearest neighbors 
from these instances coved by best k rules which is 
much smaller than training set. 

The number of nearest neighbors plays an 
important role on accuracy For KNN. We also 
compare the performance of KNN and AC-KNN 
on the number of nearest neighbors. The results are 
shown in Figure 1. From these figures, one can see 
that the accuracy achieved by KNN declined over 
10% with the number of nearest neighbors 
increasing from 5 to 23. However, the accuracy 
results rise and fall within 2% for AC-KNN. Thus 
AC-KNN is less sensitive to the number of nearest 
neighbors than KNN. 
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Figure 1: The Effect of the Number of Nearest 
Neighbors on Accuracy 

5. CONCLUSIONS 
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The rule conflicts are inevitable in classification 
stage for associative classification. The rule 
conflicts are addressed better, the prediction for 
new instances is more accuracy. In this paper, a 
new approach called AC-KNN is proposed, which 
adopts a improved KNN algorithm to address rule 
conflicts. AC-KNN retrieves the K nearest 
neighbors from the subset of training instances 
covered by best n rules. Therefore, the K nearest 
neighbors is not only similar to but associative 
with the test instance. Our experiments on UCI 
datasets show that AC-KNN outperforms both AC 
and KNN, and AC-KNN is less sensitive to the 
number of nearest neighbors than KNN. 
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