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ABSTRACT 
 

Extended Kalman Filter (EKF) algorithm is widely used in GPS positioning and velocity measurement. As 
for EKF algorithm, the approximate initial position of the receiver is indispensable; otherwise the time 
consumption of the first positioning is too high because of the filter’s low convergence rate. A modified 
EKF algorithm named delayed update EKF (DU-EKF) algorithm for GPS point dynamic positioning and 
velocity measurement is proposed in this paper, which can speed up the convergence rate of the filter 
without the receiver’s approximate initial position. Furthermore, it can improve the accuracy of positioning 
and velocity measurement. Three kinds of algorithms are used in the simulation of this paper to compare 
with the modified EKF algorithm: iterative least square (ILS) algorithm, EKF algorithm with the Zero 
initial state vector (ZEKF) and EKF algorithm with the initial state vector which is Close to the actual 
situation (CEKF). 
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1. INTRODUCTION  
 

GPS point dynamic positioning and velocity 
measurement, with its excellence of only requiring 
a single frequency receiver, is widely used in 
vehicle navigation, marine positioning and field 
exploration for its low cost and high efficiency [1, 
2]. Least Square (LS) algorithm [2] and Extended 
Kalman Filter (EKF) algorithm [3, 4] are 
commonly used for GPS point dynamic positioning 
and velocity measurement. As for LS algorithm, the 
approximate initial position of the receiver is 
indispensable because the pseudorange equation 
which depicts the range between the receiver and 
visible satellites should be linearized by Taylor 
series. To avoid searching for the approximate 
initial position and to achieve higher accuracy, 
modified algorithms based on LS have been 
proposed, such as weighted least square (WLS) 
algorithm [5] and iterative least square (ILS) 
algorithm [6]. Both of them can be used to position 
and measure velocity without the receiver’s 
approximate initial position, and thus higher 
accuracy can be obtained than that of LS algorithm. 
However, the accuracy is much lower than that of 
EKF algorithm [5, 7], just because LS algorithm 
only utilizes observation data belonging to the 
current epoch while EKF algorithm utilizes 
observation data of previous epochs as well [8]. As 
for EKF algorithm, the pseudorange equation and 

the Doppler shift equation should also be linearized. 
Consequently, if the initial state vector deviates too 
much from the actual situation, convergence rate of 
filter will be very slow. In other words, it will take 
long time for the first positioning. Therefore, EKF 
algorithm also needs the approximate initial 
position of the receiver.  

A modified EKF algorithm is proposed in this 
paper to position and measure velocity without the 
approximate initial position of the receiver, namely 
delayed update EKF (DU-EKF) algorithm in which 
the state error covariance matrix begins to be 
updated after several calculating epochs. This 
algorithm ensures a fast convergence rate and keeps 
the superior accuracy which EKF algorithm owns. 
To compare with the modified EKF algorithm, 
three kinds of algorithms are used in simulation of 
this paper. They are ILS algorithm, EKF algorithm 
with the Zero initial state vector (ZEKF) and EKF 
algorithm with the initial state vector which is 
Close to the actual situation (CEKF) respectively.  

The paper is organized as follows: Section 2 
provides a description of EKF algorithm for GPS 
point dynamic positioning and velocity 
measurement. Section 3 introduces the modified 
EKF algorithm namely DU-EKF algorithm. Section 
4 shows the performance of DU-EKF algorithm by 
simulation. In the simulation, the Singer model [9] 
is selected to describe the receiver’s uniform 
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motion. And Section 5 presents conclusions. 

2. DESCRIPTION OF EKF ALGORITHM 
FOR GPS POINT DYNAMIC POSITIONING 
AND VELOCITY MEASUREMENT 
 

For GPS point dynamic positioning and velocity 
measurement, two kinds of models are used in EKF. 
One is the dynamic model describing the 
relationship of the receiver’s state vectors 
belonging to two adjacent epochs respectively, and 
the other is the observation model depicting the 
relationship between the observation vector and the 
receiver’s state vector. EKF requests to linearize the 
models which are nonlinear by Taylor series. 

In terms of GPS point dynamic positioning and 
velocity measurement, the dynamic model can be 
CV model [10], CA model [11] or Singer model [9] 
which is linear while the observation model are 
both pseudorange model and Doppler shift model 
which are nonlinear. The basic EKF equations are 
as follows [9]: 

State transition equation:  
               (1) 

Observation equation: 
                            (2) 

State transition equation and observation 
equation correspond to dynamic model and 
observation model respectively. Formula (2) should 
be linearized to Formula (3): 

                         (3) 
In Formula (1)-(3), k denotes epoch number; 

is the state vector at kth epoch, which 
incorporates all the receiver’s motion state 

parameters needed to be solved;  is the state 
transition matrix; is vector of dynamic model 
noise;  is the noise driven matrix;  is vector 
of observation noise;  is the Jacobian matrix of 

,namely observation matrix; ; 
; . 

The steps of EKF algorithm for GPS point 
positioning and velocity measurement are as 
follows ( and are covariance matrices of 

and ): 

1. Reckon the predictive state vector of :  

                            (4) 

Where  is the optimal estimation of 
filtering for . 

2. Reckon  which is the error covariance 

matrix of : 
              (5) 

3. Calculate the Kalman gain matrix : 

        (6) 

4. Get the optimal filtering estimation  of : 

                    (7) 
Where  can be considered as the calculation 
result at kth epoch. 

5. Get the error covariance matrix  of :  
                       (8) 

The process for EKF algorithm at kth epoch can 
be seen in Figure 1 [8]. 

 

 
Figure 1: Caculating steps of EKF at kth epoch 
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3. DELAYED UPDATE EKF (DU-EKF) 
ALGORITHM FOR GPS POINT DYNAMIC 
POSITIONING AND VELOCITY 
MEASUREMENT 
 

When using EKF algorithm for GPS point 
dynamic positioning, assigning  to  and a 
diagonal matrix with large positive elements to  
is an easy way of driving filter. However, as a 
result of the big difference between the zero vector 
and the actual , the slow convergence rate of 
filter elongates the time of first positioning [8]. 
Assigning a vector which is close to the actual  
to can accelerate the convergence rate of filter 
[3], nevertheless, it’s hard to define how close  
is to can make the filter converge fast. In 
addition, it is impossible to obtain the receiver’s 
approximate initial position all the time. 

As seen in Figure 1, in EKF algorithm, the 
optimal filtering estimation of the state vector  
and its error covariance matrix  are updated 
simultaneously at each epoch [1]. After a large 
number of experiments, one regulation is found 
which can accelerate convergence of filter and 
achieve higher accuracy. When using EKF 
algorithm for GPS positioning and velocity 
measurement,  is still assigned to and its error 
covariance matrix  to diagonal matrix with large 
positive elements. However, only  is updated at 
each epoch, while  begins to be updated after mth 
epoch ( ). In other words, only  is 
updated when  while  and  are both 

updated when . Therefore a modified EKF 
algorithm, named DU-EKF algorithm, is proposed 
to utilize this regulation. The process of DU-EKF 
algorithm is shown in Figure 2, specific example of 

is as follows: 

At 1st epoch, input  and , reckon , ,  

and , , ; 

At 2nd epoch, input  and , reckon , ,  

and , , ; 

At 3rd epoch, input  and , reckon , ,  

and , , ; 

At 4th epoch, input  and , reckon , ,  

and , , ; 
 

(Same as at 4th epoch) 
 

After a lot of experiments, it is found that: 
if , the convergence rate of filter can’t be 
improved. If , it takes only 5 epochs for 
the optimal estimation of filtering to approach the 
true value; from 10th epoch to 15th epoch, the 
precision of optimal filtering estimation can be the 
same as that of CEKF algorithm; after 15th epoch, 
the precision will be improved gradually and 
slightly. But if , the optimal estimation of 
filtering will not converge to the true value until a 
dozen of epochs. In other words, the convergence 
rate of  is much slower than that of 

. That’s why the range of m is from 2 to 6 
in DU-EKF algorithm. 

 
Figure 2: Caculating steps of DU-EKF at kth epoch 
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4. SIMULATION 
 

During the simulation of GPS point dynamic 
positioning and velocity measurement, pseudorange 
and Doppler shift are obtained from a simulator 
which produces pseudorange and Doppler data with 
Gauss white noise. The standard deviation of Gauss 
white noise for pseudorange and Doppler shift is 
8m and 0.2m/s respectively. Moreover, the 
requirement of EKF algorithm that the initial 
conditions of the state of system and the priori 
statistical characteristics of error model should be 
zero mean white noise with known variances [1, 8] 
respectively is contented. Simultaneously, the 
simulation environment is close to the actual 
situation. 

In the simulation, the receiver’s actual position 
is [5 ,5 ,0 ]m   in geodetic coordinate system while 
[6329853.79,553790.45,552184.40] m in Earth Centered 
Earth Fixed coordinate (ECEF) [12].The receiver is 
assumed to do uniform motion with a velocity of 
[5,5,5] m/s in ECEF. The initial simulation time is 
2011-6-20 2:00:00 in UTC [13]. The simulation 
step is 1s, which means the interval between two 
adjacent epochs. 

ILS algorithm, ZEKF algorithm and CEKF 
algorithm are all used to compare with DU-EKF 
algorithm. In ZEKF algorithm, CEKF algorithm 

and DU-EKF algorithm, the Singer model [8] is 
chosen as the dynamic model and the quartz clock 
[7] is chosen as the clock model. The clock model 
is considered as the dynamic model of clock. Both 
the pseudorange and Doppler shift equations are 
chosen as observation model. The parameters of 
EKF based on these models are explained as 
follows: 

1. kX  and kP  

[ , , , , , , , , , , ]X u ux ux u uy uy u uz uz u u T
k k k k k k k k k k k kx v a y v a z v a c t c f=  

ˆˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ[ , , , , , , , , , , ]X u ux ux u uy uy u uz uz u u T
k k k k k k k k k k k kx v a y v a z v a c t c f=  

| - | - | - | - | - | - | - | - | - | -

| - | -

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ[ , , , , , , , , ,
ˆˆ , ]

X u ux ux u uy uy u uz uz
k k 1 k k 1 k k 1 k k 1 k k 1 k k 1 k k 1 k k 1 k k 1 k k 1

u u T
k k 1 k k 1

x v a y v a z v a

c t c f

=

 

 

Where [ , , ]u u u
k k kx y z , [ , , ]ux uy uz

k k kv v v , [ , , ]ux uy uz
k k ka a a  are 

the receiver’s position, velocity, acceleration in 
ECEF respectively; u

kt  and u
kf are the receiver’s 

clock error and clock drift separately; X̂k is the 
optimal estimation of filtering for Xk ; | -1X̂k k  is the 
predictive state vector of Xk . 

The error covariance matrix kP  of X̂k  is a 
matrix of 11 11× . 

The 0X̂ and 0P  for each algorithm can be shown 
in Table 1. 

Table 1: The value of 0X̂ and 0P for each algorithm 

Algorithm Value 

ZEKF 
0X̂ =0  

0 [1 1 1 1 1 1 1 1 1 1 1 ]p v a p v a p v a t fP diag ε ε ε ε ε ε ε ε ε ε ε= a 

CEKF 
0

ˆ [6300000,0,0,550000,0,0,550000,0,0,0]X =  

0 [1 1 1 1 1 1 1 1 1 1 1 ]p v a p v a p v a t fP diag ε ε ε ε ε ε ε ε ε ε ε=  a 

DU-EKF 
0X̂ =0  

0 [1 1 1 1 1 1 1 1 1 1 1 ]p v a p v a p v a t fP diag ε ε ε ε ε ε ε ε ε ε ε=  a 

a 14 3 510 , 0.01, 10 , 10p a v t fε ε ε ε ε− − −= = = = =  

b [ , , ]u u u
0 0 0x y z ， [ , , ]ux uy uz

0 0 0v v v ， u
0t and u

0f  are calculated by ILS algorithm, [ , , ] 0ux uy uy
0 0 0a a a =  

2. | -1k kΦ and 1kQ -   

 

| 1

| 1
| 1

| 1

| 1

-

-
-

-

-

x
k k

y
k k

k k z
k k

c
k k

 Φ
 Φ Φ =  Φ
 

Φ  

 

 
2

1
2

1
-1 2

1

1

2
2

2

-

-

-

-

x
x x k

y
y y k

k z
z z k

c
k

Q
Q

Q
Q

Q

α σ
α σ

α σ

 
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 
 
  

 Because the dynamic model is Singer model, 

| 1k kΦ - and -1kQ are depicted as follows. The 
receiver’s motion in X axis is taken as an example.  

http://www.jatit.org/
app:ds:simultaneously


Journal of Theoretical and Applied Information Technology 
 31st March 2013. Vol. 49 No.3 

© 2005 - 2013 JATIT & LLS. All rights reserved.  
 

ISSN: 1992-8645                                                        www.jatit.org                                                         E-ISSN: 1817-3195 

 
989 

 

2
11 12 13

1 1 21 22 23

31 32 33

1 ( 1 )

10 1 (1 )

0 0

| - -

1 x

x

x

T
x

x
x x

Tk k k

x
T

T e
q q q

Q q q qe
q q q

e

α

α

α

α
α

α

−

−

−

 − + +       Φ = =  −     
  

 

-2 -3 3 2 2 5
11

- -2 3
22

-2
33

(1- 2 2 3- 2 - 4 ) 2

(4 - 3- 2 ) 2

(1- 2 ) 2

x x

x x

x

T T
x x x x x

T T
x x

T
x

q e T T T Te

q e e T

q e

α α

α α

α

α α α α α

α α

α

= + +

= +

=
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( 1- 2 2 - 2 ) 2
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  1
y
k kΦ | -  and 1

z
k kΦ | - refer to | 1x kΦ + . -1

y
kQ  and -1

z
kQ refer 

to -1
x
kQ . xα , yα , zα are the reciprocal of the 

maneuver time constant for each axis, 
610x y zα α α= = = . 

2
xσ , 2

yσ , 2
zσ are the variance of 

the target acceleration in X,Y,Z respectively. T=1s, 
2 2 2 100= = =x y zσ σ σ [9]. 
The clock model [7] with white noise input 

comes from a second-order Markov process, as 
follows: 

11 12

1 1 21 22

1
0 1| - -

c c c c
k k k

c c

T q q
Q

q q
  

Φ = =   
   

 11 2 2 30
-1 -2

22
2 3c
hq T h T h Tπ= + +  

 

12 21 2 3
-1 -22c cq q h T h Tπ= = +  

22 20
-1 -2

82
2 3c
hq h h T
T

π= + +  

The parameters 20
0 9.4 10h −= × , 19

-1 1.8 10h −= × , 
21

-2 3.8 10h −= × correspond to values for a typical 
quartz standard. 

3. kH  and kO  

kH  is linearized from 1 1( )X =
Tn n

k k k k k kf R R D D    . 
Where s

kR  and s
kD is respectively the pseudorange 

Formula (9) and the Doppler shift Formula (10) [1] 
between a visible satellite and the receiver, 

1, ,s n=  (n is the total number of visible 
satellites). 

2 2 2( ) ( ) ( )s s u s u s u u
k k k k k k k kR X x Y x Z z c t= − + − + − + ⋅     (9) 

[( ) ( ) ( ) ( )

( ) ( )]

s u sx ux s u sy uy
k k k k k k k k
s u sz uz

s uk k k k
k ks

k

X x V v Y y V v
Z z V vD c f

ρ

− ⋅ − + − ⋅ −

+ − ⋅ −
= + ⋅  (10) 

In Formula (9) and Formula (10), [ , , ]k k k
s s sX Y Z and 

[ , , ]sx sy sy
k k kV V V are position and velocity vector of the 

sth visible satellite in ECEF, s
kρ  is the actual range 

between the sth visible satellite and the receiver, 

2 2 2= ( ) ( ) ( )s s u s u s u
k k k k k k kX x Y y Z zρ − + − + − . 

| | |

| | |

| | | | | |

| | | | | |

1 1 1
1x k 1 y k 1z k

1 1 1
nx k ny k nz k

k 2 1 2 1 2 1
1x k 1x k 1 y k 1 y k 1 y k 1z k

2 1 2 1 2 1
nx k nx k ny k ny k nz k nz k

h 0 h 0 h 0 1 0

h 0 h 0 h 0 1 0
H

h h h h h h 0 1

h h h h h h 0 1

 
 
 
 

=  
 
 
 
  

       

       

 

Elements from Line 1 to Line n of kH  is 
linearized from Formula (9) while from Line n+1 
to Line 2n of kH  is linearized from Formula (10). 

| -
|

| -

ˆ( )u ss s
k k 1 k1 k k

sx k u ux s
k k k k 1

x XR Dh
x v ρ

−∂ ∂
= = =
∂ ∂

 

| - | - | - | -
|

| -

ˆ ˆ( )( ) ( )
( )

ux sx s 2 u s ss
k k 1 k k k 1 k k 1 k k k 12 k

sx k u s 2
k k k 1

v V x X JDh
x

ρ
ρ

− − −∂
= =
∂

2 2 2
| -1 | -1 | -1 | -1ˆ ˆ ˆ( ) ( ) ( )s s u s u s u

k k k k k k k k k k kX x Y y Z zρ = − + − + −  

| -1 | -1 | -1 | -1

| -1 | -1

ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )

ˆˆ( ) ( )

s s u sx ux s u sy uy
k k k k k k k k k k k k k

s u sz uz
k k k k k k

J X x V v Y y V v

Z z V v

= − ⋅ − + − ⋅ −

+ − ⋅ −
 

where |
1
sy kh and |

1
sz kh  refer to 1

sx kh | ; |
2
sy kh and 2

sz kh |  
refer to 2

sx kh | . 

The covariance matrix kO  of the observation 
noise vector is a matrix of 2 2n n× , 

[ ]1 1 2 2=kO diag o o o o  , 1=64o , 2 =0.04o . 

4. kZ  and kZ  

1 1Z =
Tn n

k k k k kr r d d     

| - | - | - | -
ˆ ˆˆ ˆ[ , , ,( ), ,( )]Z 1 1 n n 1 1 n n

k k k k 1 k k k 1 k k k 1 k k k 1r r r r d d d d= − − − −  （ ） （ ） ; 

2 2 2
| -1 1 1 1

1

ˆ ˆ ˆ ˆ( ) ( ) ( )

ˆ

s s u s u s u
k k k k k k k k k k k

u
k k

r X x Y x Z z

c t

= − + − + −

+ ⋅

| - | - | -

| -
; 

| -1 | -1 | -1 | -1

| -1 | -1
| -1 | -1

| -1

ˆ ˆ ˆ ˆ[( ) ( ) ( ) ( )

ˆ( ) ( )]ˆ ˆ

s u sx ux s u sy uy
k k k k k k k k k k k k

s u sz uz
k k k k k ks u

k k k ks
k k

X x V v Y y V v

Z z V v
d c f

ρ

− ⋅ − + − ⋅ −

+ − ⋅ −
= + ⋅

  Where s
kr  and s

kd  are the pseudorange and the 
Doppler shift of sth visible satellite respectively. 

In the simulation, all of the four algorithms (ILS, 
ZEKF, CEKF and DU-EKF) are used for GPS point 
dynamic positioning and velocity measurement. 
The specific process of ILS algorithm can be seen 
at Several Algorithms for GPS Pseudorange 
Absolute Positioning [14]; the process of ZEKF 
algorithm and CEKF algorithm are shown in 
Figure1; the process of DU-EKF algorithm is 
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shown in Figure 2.  

With respect to the result of each algorithm, the 
position and velocity error of X, Y and Z are 
respectively shown in Table 2 and Table 3. 

Table 2: Position error of each axis for different 
algorithms (m) 

Axis Algorithm Mean value Standard 
deviation 

Root mean 
square 

X 
ILS -0.3041 8.9346 8.9397 
CEKF 0.0213 1.4897 1.4898 
DU-EKF -0.0269 1.3784 1.3786 

Y 
ILS 0.4654 5.0010 5.0226 
CEKF -0.0427 0.8759 0.8769 
DU-EKF -0.1841 0.7081 0.7316 

Z 
ILS -0.0109 3.9734 3.9734 
CEKF -0.4672 0.5392 0.7135 
DU-EKF -0.0913 0.4778 0.4864 

Table 3: Velocity error of each error for different 
algorithms (m/s) 

Axis Algorithm Mean value 
Standard  
deviation 

Root mean 
 square 

X 
ILS -0.0038 0.0407 0.0409 
CEKF -0.0071 0.0154 0.0170 
DU-EKF 0.0038 0.0129 0.0134 

Y 
ILS 0.0006 0.0259 0.0259 
CEKF 0.0031 0.0077 0.0083 
DU-EKF -0.0012 0.0084 0.0084 

Z 
ILS -0.0018 0.0184 0.0185 
CEKF -0.0051 0.0073 0.0089 
DU-EKF -0.0011 0.0070 0.0071 
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Figure 3: The position error of Z for different algorithms 
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Figure 4: The velocity error of Z for diffeent algorithms 

Figure 3 and Figure 4 are the position error 
figure and velocity error figure of Z respectively. 
At the beginning 20 minutes of simulation for 
ZEKF algorithm, the position and velocity errors 
are much larger than other algorithms. So they are 
only shown in Figure 5. As shown in Figure 3 and 
Figure 4, combining the statistic data in Table 2 
and Table 3, the position and velocity error of ILS 
algorithm are within 10m and 0.05m/s respectively; 
the position and velocity error of CEKF algorithm 
are within 2m and 0.02m/s respectively; the 
position error of DU-EKF algorithm are within 
1.5m while the velocity error are within 0.02m/s. 
Compared with ILS algorithm, the precision of 
position and velocity of DU-EKF algorithm are 
much higher. Compared with CEKF algorithm, the 
precision of position and velocity of DU-EKF 
algorithm is not improved appreciably. But DU-
EKF algorithm can accelerate the filter’s 
convergence rate without the approximate value of 
the initial state vector.  
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Figure 5: The error of Z for DU-EKF algorithm and ZEKF 

algorithm, a is the position error and b is velocity error 
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As shown in Figure 5, when 0X̂  is far from the 
actual 0X , the slow convergence of filter impedes 
dynamic positioning with extending the time of first 
positioning. Figure 5 demonstrates the 
effectiveness of DU-EKF algorithm in accelerating 
convergence rate of filter. 

5. CONCLUSION 
 

The example of uniform motion receiver is used 
in simulation of this study. By simulation, 
compared with ILS algorithm, CEKF algorithm and 
ZEKF algorithm, the effectiveness of the modified 
algorithm for EKF (DU-EKF algorithm) is 
demonstrated in GPS point dynamic positioning 
and velocity measurement. The results of DU-EKF 
algorithm have much higher precision than that of 
ILS algorithm and slightly higher accuracy than 
that of CEKF algorithm. DU-EKF algorithm solves 
the problem of low filter convergence rate without 
the initial approximate initial position of receiver 
(compared with ZEKF algorithm). DU-EKF 
algorithm sets the initial state vector as 0 which is 
far from the true value. However with the delayed 
updating of state error covariance matrix, the 
optimal estimation of filtering can be close to the 
actual state vector quickly. 

If DU-EKF algorithm is used in actual GPS 
navigator, there is no need of receiver’s initial 
approximate initial position all the time when it 
changes in a wide range. Meanwhile, higher 
precision of positioning and velocity measurement 
and less time consumption of first positioning can 
be reached. However, whether the DU-EKF 
algorithm can be applied in other areas or not 
should be further validated. 
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