
Journal of Theoretical and Applied Information Technology 
 31st March 2013. Vol. 49 No.3 

© 2005 - 2013 JATIT & LLS. All rights reserved.  
 

ISSN: 1992-8645                                                        www.jatit.org                                                         E-ISSN: 1817-3195 

 
919 

 

EFFICIENT TOP-K QUERY PROCESSING IN P2P 
NETWORKS 

 
1HUI WANG, 2 ZHITAO GUAN, 3 YUE XU 

1School of Economy and Management, North China Electric Power University, Beijing 
2,3School of Control and Computer Engineering, North China Electric Power University, Beijing 

E-mail:  1wanghuibd@ncepu.edu.cn, 2guan@ncepu.edu.cn    
 
 

ABSTRACT 
 

Top-k query is widely used in the search engine and gains great success, which perform the cooperative 
query by aggregating the database objects’ degree of match for each different query predicate and returning 
the best k matching objects only. It’s also applied to p2p file-sharing systems. However, top-k query 
processing in p2p systems is very challenging because the potentially large number of peers may contribute 
to the query results, which may induce a huge amount of network traffic and high latency. In this paper, we 
develop a framework that can effectively satisfy the demands. Two algorithms are used for local peer query 
processing and hierarchical join query processing, and two schemes are proposed to deal with the problem 
of peer’s dynamicity and further reduce communication cost. Simulation results show that our algorithms 
and schemes are effective. 

Keywords: Peer-to-peer (P2P), Top-k query, algorithm 
 
1. INTRODUCTION  
 

Peer-to-peer (P2P) networks such as Gnutella, 
KaZaA, and BitTorrent have emerged as a new 
Internet computing paradigm over the past few 
years. However, p2p applications are limited 
because only keyword-based query is supported 
currently. Top-k query scheme is widely applied in 
search engines and gains great success. In some 
famous search engines such as google and baidu, 
for each query, there will be top 10 most matched 
web pages returned. We hope such scheme can also 
be applied to p2p applications. That is, after the 
querying peer sends out a query, top k most 
matched objects can be returned. The user usually is 
only interested in a small percent of the matched 
objects instead of all matched ones in network. 
Applying top-k query in p2p system will be very 
attractive since the network bandwidth will be 
saved, query response time will be shortened and 
the user will also be more satisfied. 

Section 2 presents the related work. In section 3, 
we propose our top-k query model and algorithms. 
Section 4 shows the simulation results. Section 5 
gives a conclusion to the whole paper. 

2. RELATED WORK  
 

Top-k query processing has received much 
attention in a variety of settings such as similarity 

search on multimedia data[1, 2], ranked retrieval on 
text and semi-structured objects in digital libraries 
and on the Web[3, 4, 5], network and stream 
monitoring [6, 7, 8,9], and ranking of SQL-style query 
results on structured data sources in general [10, 

11,12,13,14,15,16].  

In terms of efficiency, the most widely 
recognized algorithm for top-k queries in a 
centralized environment is the Threshold Algorithm 
(TA) [17]. TA starts out by performing a parallel 
sorted access to the k lists. While an object oi is 
seen by the query peer, TA performs a random 
access to the other lists to find the exact score for oi 
(i.e.

1

n
ijj

o
=∑ ). After finding the exact score for each 

object in the current row, it computes a threshold 
value τ  as the sum of all exact scores in the current 
row. The algorithm stops after k objects have been 
found with a score above τ . While the TA 
algorithm uses many round trips as it invokes 
several small random accesses. This would again 
translate into an arbitrary large number of phases, 
which is highly undesirable for a hierarchical 
environment.  

While TA algorithm is not fit for the distributed 
hierarchical environment for it may cause great 
latency. So, many other top-k algorithms have been 
proposed. Bruno [18] discusses the problem of 
answering top-k queries over web accessible 

http://www.jatit.org/
mailto:wanghuibd@ncepu.edu.cn
mailto:guan@ncepu.edu.cn


Journal of Theoretical and Applied Information Technology 
 31st March 2013. Vol. 49 No.3 

© 2005 - 2013 JATIT & LLS. All rights reserved.  
 

ISSN: 1992-8645                                                        www.jatit.org                                                         E-ISSN: 1817-3195 

 
920 

 

databases. The problem of continually providing 
top k answers in a distributed environment is 
discussed in Babcock’s work [19]. The problem is 
tackled by installing arithmetic constraints at each 
peer which define the current top-k scores at any 
point. The problem was later extended to 
hierarchical environments [20]. The TPUT [9] 
algorithm proposed by Cao and Wang, uses three 
phases in order to resolve top-k queries in star 
topologies. The algorithm constructs a bound which 
is uniform for all lists, similarly to FA, which is too 
coarse in practice. Finally the recent work [21] 
examines the problem of approximate top-k queries 
in distributed environments. The paper assumes that 
each peer maintains an approximation of the local 
scores instead of the actual scores. The 
approximation essentially consists of an equi-width 
histogram on the local scores along with a bloom 
filter per histogram bucket which captures object 
identifiers inserted into the specific bucket. 

However, most of these techniques are fairly 
well understood for centralized data management, 
but much less explored for distributed systems such 
as p2p or sensor networks. For example, building a 
p2p Web search engine where thousands of nodes 
collaborate to provide Google functionality in a 
decentralized and self-organizing manner would be 
a great application for distributed top-k query 
processing. And in this paper, we present HPJT, a 
p2p top-k query processing algorithm to tackle this 
problem. 

3. HPJT 
 
3.1. Query model 

It is impossible to model the complete dynamics 
of a p2p system. While our simple models do not 
capture all aspects of reality, we only focus on two 
most important aspects: (1) Network topology; (2) 
Definitions about top-k query in p2p network. We 
hope the model capture the essential features 
needed to understand the fundamental qualitative 
differences between our algorithms and other ones.  

3.1.1. Network topology 
Gnutella is one of the most popular p2p 

applications, so we use the gnutella-like topology in 
our study. For the latest two-tier Gnutella network, 
Stutzbach [22] provided a detailed characterization of 
p2p overlay topologies and their dynamics. As 
shown in figure 1, a small subset of peers becomes 
super peers, be responsible for the management of 
search process for their leaves and forward query 
packets from other super peers. super peers are 
averagely connected to 30 other peers, while leaf 

peers hold only a small number of connections to 
super peers. Leaf peers, on the other hand, 
concentrate on providing files. Information about 
the files the peers share is uploaded to the super 
peer. The average peer connectivity degree of 
modern gnutella is about 30, which is far greater 
than the former result 3.1[23]. Power-law distribution 
is no longer fit for the modern gnutella which 
shows the characteristic of the dense p2p network. 
In this hierarchical network, the query of the leaf 
peer firstly is sent to a super peer, then the super 
peer forwards the query according to the predefined 
rules, finally the super peer collects the results and 
returns them to the leaf peer. Hereafter, a peer 
refers to a super peer. 

Different from former research, we won't assume 
the topology do not change during the simulation of 
our algorithms, but take peer’s dynamicity into 
consideration. 

 

 
Figure 1. Two-tier topology of gnutella 

 
3.1.2 Definitions about top-k query.  

Below is a SQL-like template for expressing top-
k aggregate queries and an example query Q.  

TEMPLATE EXAMPLE 

SELECT DATA, F 
FROM R1, ...,RN 
GROUP BY 

DATA 
ORDER BY F 
LIMIT K 

SELECT O1, O2,…,ON, AGGREGATE(OI) 

AS SCORE 
FROM P1, P2, …,PM 
GROUP BY O1, O2, …, ON 
ORDER BY SCORE 
LIMIT K 

 
That is, the groups are ordered by a ranking 

aggregate F, and the top k groups with the highest F 
values are returned as the query result. For 
simplicity, we assume the sum function as the 
ranking aggregate function in this paper. Now we 
give some basic definitions. 

Definition 1 Aggregate Function F 

For a queried object oi, whose aggregation 
function is 

1 2
1

[ ] ( , ,..., ) * ( )mm j
i i i i j ij

F o F o o o w score o
=

= = ∑    (1) 

http://www.jatit.org/


Journal of Theoretical and Applied Information Technology 
 31st March 2013. Vol. 49 No.3 

© 2005 - 2013 JATIT & LLS. All rights reserved.  
 

ISSN: 1992-8645                                                        www.jatit.org                                                         E-ISSN: 1817-3195 

 
921 

 

where jw  is the weighted factor and we 

assuming it is 1 here. ( )j
iscore o  is the score of oi in 

peer j (pj) for the given query. Usually the query 
and queried objects (text object, multimedia etc.) 
can be expressed as n-attribute vector. Consider one 
top-k query 1 2( , ,..., )nq q q q= , the object 
(document) 1 2{ , ,..., }i i i ino o o o= , ( )j

iscore o  can be 
given as following: 

( ) ( , ) | | | |
i

i i
i

x
j j

x
q o

score o sim q o q o
⋅

= =
×

 

               (2) 

where ( , )
i

jsim q o is the similarity function which 
evaluates the jth attribute of the query q against the 
jth attribute of the object oi and returns a value in the 
domain [0,1] (1 denotes the highest similarity). 
Note that, similarly to research [9, 16], we require the 
score function to be monotone. A function is 
monotone if the following property holds:  

If 1 2( , ) ( , ) ( )i i i isim q o sim q o i n> ∀ ∈ , 
then 1 2( ) ( )F o F o> . This is true 
when 0 ( )j j nθ > ∀ ∈ . Obviously, from formula (1) 
and (2), our aggregation function satisfies such 
acquirement. 

If the local scores of all objects can be collected 
by the querying peer, it will be quite simple to 
compute the exact aggregate score F[oi] for each 
object oi, and then top-k objects can be got directly 
by sorting F[oi] in descend order. However, it will 
induce heavy network traffic. A better approach is 
to make some estimation and only compute the 
score of a few most possible candidate objects. 
Thus, the partial aggregate function and upper-
bound aggregate function are introduced. 

Definition 2 Partial Aggregate Function F 

The partial aggregation function of oi is 

1
[ ] ( ),m j

Partial i Partial ij
F o score o

=
= ∑                  (3) 

( ),
( )

0,

j
j i i

Partial i
score o if o be seen in node j

score o
otherwise

= 


 Definition 3 Upper-bound Aggregate Function F 
The upper-bound aggregation function of oi is 

1
[ ] ( ),m j

Upper i Upper ij
F o score o

=
= ∑                     (4) 

( ),
( )

( ),

j
j i i

Upper i
score o if o be seen in node j

score o
j otherwiseδ

= 


       

( )jδ  is the score of the last seen object in sorted 
access in peer j. 

From the above definitions and statement, for 
any object o, the following inequation stands. 

[ ] [ ] [ ]Partial i i Upper iF o F o F o≤ ≤                            (5) 

The algorithm proposed in this paper will make 
use of inequation (5) as basis. 

3.2. Dynamic query tree 
1. PROCEDURE GENERATEQUERYTREE(PEER P) 
2.   IF P RECEIVES QUERY FROM PEER Q 
3.       IF P RECEIVES THE QUERY FOR THE FIRST TIME 
4.           MARK Q AS PARENT PEER; 
5.       ELSE  
6.            SEND DUPLICATED MESSAGE SIGNAL TO P; 
7.        END IF; 
8.   END IF; 
9.   LOOP FOR EACH NEIGHBOR X OF P 

10.        SEND QUERY TO X, AND MARKS X AS ITS CHILD 
PEER;  

11.   END LOOP; 
12.   IF P RECEIVES DUPLICATED SIGNAL FROM 

NEIGHBOR Y 
13.       REMOVE Y FROM P’S LEAF PEER SET. 
14.   END IF; 
15. END PROCEDURE 

In unstructured p2p networks, query is typically 
processed as follows. The query is sent out from the 
initiator to its neighbors until the TTL (Time-to-live) 
value of the query decreases to 0 or the current peer 
has no peer to forward. The query won’t be 
forwarded when TTL is 0. The query must be 
single-direction to avoid query loop. So the query 
processing flow can be represented as a tree, which 
is called as dynamic query tree.  

Procedure GenerateQueryTree will be executed 
in each peer the query passed through. The peer 
firstly marks the parent peer (line 2-8), and then 
marks children peers (line 9-14). 

3.3. Basic algorithm 
3.3.1. Algorithm statement 

Different from the existed top-k query 
algorithms, one key feature of our algorithm is 
performing computation along the query path 
instead of only centralized processing in the root. 
The algorithm comprises the following four steps.  

Step 1. Get local top-k objects.  

Initialize the query q, and set TTL. According to 
procedure GenerateQueryTree, the dynamic query 
tree with TTL layers is firstly generated, and the 
root of the tree is the querying peer. Each peer in 
query tree gets local top-k objects of which scores 
are highest, and the score of the object is got 
according to formula (2). Then it returns its local 
top-k objects list to its parent peer. The parent peer 
merges all results from its children peers and its 
own top-k results into a new set, as shown in 

http://www.jatit.org/


Journal of Theoretical and Applied Information Technology 
 31st March 2013. Vol. 49 No.3 

© 2005 - 2013 JATIT & LLS. All rights reserved.  
 

ISSN: 1992-8645                                                        www.jatit.org                                                         E-ISSN: 1817-3195 

 
922 

 

formula (6), then forward the set to the upper layer. 
Such merge-and-backward process executes 
recursively until the querying peer gets the final 
result sets List_root. In order to minimize network 
traffic, we do not bubble up the top object items 
(which could be large), only their local scores and 
addresses. A returned list is simply a list of k 
couples (obj, local_score, addr), such that 
local_score is the score of obj in the local peer and 
addr is the address of the peer owning the object 
item. 

( )

( ) _ ( ) _ ( )k k
x children p

List p local list p local list x
∀ ∈

 
= ∪   

 
 (6) 

Step 2. Estimate the lower bound. 

According to the final list List_root, the query 
peer calculates the partial aggregate score of the 
included objects according to formula (3). It sorts 
the objects by partial aggregate score in descending 
order and gets kth score as tempKscore. The lower 
bound KTH is got as: KTH = tempKscore/n, where n 
is the total number of queried peers. 

Step 3. Hierarchical join query. 

The root peer packs the two parameters List_root 
and KTH to a new message and spread it to all peers 
in query tree. After receives the message, each peer 
unpacks it and executes the operation of selecting 
local candidate objects according to the received 
two parameters. This process is detailed stated in 
the following procedure. 

1. PROCEDURE GETLOCALLIST(PEER P) 
2.   LOOP FOR EACH OBJECT O IN LOCAL LIST OF 

PEER P 
3.       IF (O.SCORE>KTH) LIST1.ADD(O); 
4.   END LOOP; 
5.   LOWESTRANK:=0; 
6.   LOOP FOR EACH OBJECT O IN LIST_ROOT_1ST 
7.       IF(LOWESTRANK < O.LOCAL_RANK) 
8.           LOWESTRANK = O.LOCAL_RANK; 
9.       END IF; 

10.   END LOOP; 
11.   LOOP I=1 TO LOWESTRANK 
12.       LIST2.ADD(LOCAL_SORTED_LIST(I)); 
13.   END LOOP; 
14.   LOCAL_LIST=LIST1∩ LIST2; 
15.   RETURN LOCAL_LIST; 
16. END PROCEDURE 

The procedure GetLocalList will be executed in 
each peer. It firstly gets the set list1 which is 
comprised of the objects whose local score is higher 
than KTH. Then finds the min rank of the objects in 
List_root locally, and gets all local objects whose 
ranks are not lower than the min rank as the set list2. 
The local candidate list is got 

as _ 1 2local list list list= ∩ . The result list got from 
the procedure GetLocalList will be called in the 
procedure for the hierarchical computation. 

1. PROCEDURE HIERARCHICALCOMPUTE (PEER 
P) 

2.   DEFINE LIST UP_LIST<OBJ, SCORE, UB_PEERS, 
UB_FLAG> 
//UB_FLAG: BOOL PARAMETER, IF SCORE IS 

UPPER BOUND, 
//IT’S TRUE, ELSE IT’S FALSE. IT’S DEFAULT 

VALUE IS FALSE; 
3.   LET UP_LIST =∅ ; 
4.   UP_LIST = GETLOCALLIST(P); 
5.   IF PEER P IS NOT LEAF PEER 
6.       PEER PEERS[] = P ( )children peers of p∪ ; 
7.      [] _Object objs obj in local list=  

( )

_ ( )
x children p

obj in up list x
∀ ∈

 
∪  
 

 ; 

8.       DEFINE NUMBER AGG_SCORE[],  
LIST<PEER> UB_PEERS[], BOOL 

UB_FLAG[]; 
9.       LOOP I=1 TO SIZE OF OBJS[]  

10.           LOOP J=1 TO SIZE OF PEERS[] 
11.               IF OBJ[I] IS IN UP_LIST[J]( UP_LIST OF 

PEERS[J] ) 
12.                   AGG_SCORE[I] =  

AGG_SCORE[I]+UP_LIST[J
].SCORE; 

13.               ELSE  
14.                   UB_SCORE = MIN(SCORE IN UP_LIST[J]); 
15.                   AGG_SCORE[I] = 

AGG_SCORE[I]+UB_SCORE; 
16.                   UB_FLAG = TRUE; 
17.                   ADD PEER[J] TO LIST UB_PEERS[I]; 
18.               END IF; 
19.               IF UP_LIST[J].UB_FLAG IS TRUE 
20.                   UB_FLAG = TRUE; 
21.               END IF; 
22.           END LOOP; 
23.       END LOOP; 
24.   END IF; 
25.   LOOP M =1 TO SIZE OF OBJS[] 
26.       ADD < OBJS[M], AGG_SCORE[M],  

UB_PEERS[M], UB_FLAG[M] > TO 
UP_LIST;  

27.   END LOOP; 
28.   RETURN UP_LIST; 
29. END PROCEDURE 

If peer p is a leaf peer, the aggregate score of the 
objects in up_list (the result list to upload to its 
parent peer) is only the local score.  

Else if peer p has some children peers, the 
approach to get up_list will take some sub-steps. 

http://www.jatit.org/


Journal of Theoretical and Applied Information Technology 
 31st March 2013. Vol. 49 No.3 

© 2005 - 2013 JATIT & LLS. All rights reserved.  
 

ISSN: 1992-8645                                                        www.jatit.org                                                         E-ISSN: 1817-3195 

 
923 

 

Firstly, all objects are collected from the up_lists of 
peer p and its children peers without duplication 
(line 6). Secondly, the aggregate score of the 
collected objects is computed (line 8 - line23). For 
each object obj, if it has been found in up_list of all 
peers, its exact (partial) aggregate score can be got 
by adding up its score in all lists directly; else if it 
isn’t found in some peer, say M, its score in M can 
be estimated by using upper bound score, which is 
the min score in the ub_list of M. Then the upper 
bound aggregate score of obj can be got according 
to formula (4) in section 3.1.2. We use a Boolean 
flag parameter ub_flag to mark the score in up_list 
is exact score or upper bound score, as shown in 
line 15, the object with upper bound score will be 
marked. And, the address of the peer using upper 
estimated score will be added to the list ub_peers 
(line 16), which will be convenient for the last step 
to verify the true top-k results. 

Step 4. Clean-up process. 

The querying peer has collected a list of objects 
for which either the complete aggregate score or an 
upper bound aggregate score has been computed. It 
sorts the objects in the result list of step 3 by their 
complete score or upper bound in descending order. 
Then 

 If all the scores of the top-k objects in final 
list List_root_2nd are complete aggregate score, 
then get the top-k results directly.  

 Else the querying peer finds those objects 
that have upper bounds higher than the k-th 
complete score and computes the exact scores for 
these by requesting the exact scores from its 
children. Then get the true top-k results. 

3.3.2. Correctness analysis of the algorithm  
The algorithm includes two main query round-

trips, that is, step 1 and step 3. It firstly gets top-k 
local objects from all queried peers in step 1. And 
in step 2, two important parameters, the lower 
bound KTH and list_root are got for the next query 
round-trip. In the second query round-trip, that is, in 
step 3, KTH and list_root are spread out to all 
queried peers. Each executes procedure 
GetLocalList according the received two 
parameters. The returned list in each peer 
undergoes merge-and-backward process by the 
procedure HierarchicalCompute recursively, finally 
to the querying peer.  

At the end of the second round-trip (step 3), the 
querying peer has seen objects in the true top-k set. 
The reason is that the procedure GetLocalList can 

collect the true top-k candidates from queried peers. 
The analysis is as following.  

 For list1. If one object whose score is < KTH in 
all peers, which means that its aggregate score is < 
tempKscore, and hence it can’t be in the top-k set. 
Then the true top-k objects must be included in list1 
of one peer at least.  

 For list2. Each peer receiving list_root, 
searches its local sorted list in order to identify the 
index of the lowest ranked object that belongs to 
list_root. All objects above lowestRank are added to 
list2. Obviously the true top-k objects are also 
included in list2 of one peer at least. 

Then the true top-k objects must be included in 
the list local_list of one peer at least, which is 
returned by procedure GetLocalList, since it is the 
intersection of list1 and list2. The final object list in 
querying peer is the combination of the local_list in 
each peer, hence after the step 3, the querying peer 
has seen objects in the true top-k set. 

In the last step, the querying peer identifies the 
top-k objects. 

3.4. Enhancing the power of HPJT under 
failures 

P2P network a dynamic environment in which 
peers appear to be leaving or joining the network in 
an ad-hoc manner. This might not allow the 
querying node to obtain the correct top-k results 
during its execution. And the connections between 
peers are also unstable, which may induce 
unpredictable delay in query processing.  
3.4.1. Problems from peers’ dynamicity 

Execution of top-k query algorithm in p2p 
network may encounter the following problems. 

1. In case that the message is transferred in 
top down sequence along the query tree. Say there’s 
peer x, whose child peer y leave the network in 
transferring process, which could result in that all 
children peers of peer can’t get the message. 

2. In case that the message is transferred in 
bottom up scheme. Say peer x is the parent peer of 
peer y. 

(a). Peer x leave the network dynamically, which 
induce the merged information in peer y can’t be 
uploaded. 

(b). Late reception of feedback message from 
children peers. In p2p network, usually each peer 
will set a wait time threshold, and after its wait time 
has expired, it will merge its local top list with the 
lists received from its children and send the result 

http://www.jatit.org/


Journal of Theoretical and Applied Information Technology 
 31st March 2013. Vol. 49 No.3 

© 2005 - 2013 JATIT & LLS. All rights reserved.  
 

ISSN: 1992-8645                                                        www.jatit.org                                                         E-ISSN: 1817-3195 

 
924 

 

list to its parent. However, a peer may 
underestimate its wait time which is based, among 
other parameters, on local processing parameters of 
other peers. Thus, it may happen that lists of some 
children arrive late, i.e. after it has sent its list to its 
parent. 

3.4.2. Solution strategies 
1. Strategy 1: Backup-parent peers. When 

generating query tree, each peer will keep a backup-
parent peer.  

 Problem 1 may happen in step 3, that is, in 
case that the root spread KTH and list_root to all 
peers. After step 1, each peer will set its wait time 
threshold. When the wait time expires, it will send a 
test packet to its parent to verify whether the parent 
is online. If its parent is offline, it will send a 
change_parent message to its backup-parent peer. 
And then get message from its new parent. 

 The problem 2.(a) may happen in step 1 
and step 3 of our algorithm. We can make a small 
change to our algorithm by adding a new rule. In 
bottom up scheme, each parent should give back 
responses to its children peers after it receive their 
packets. So, if the wait time of the child peer 
expires, it can verify the connection to the parent to 
decide whether to change parent and upload 
information to its backup-parent peer. From the 
discussion about algorithm HierachicalCompute, 
it’s obvious that change_parent operation won’t 
affect the correctness of the algorithm. 

2. Strategy 2: additional list. The problem 
2.(b) may happen in step 1 and step 3. It can be 
solved by following strategy. When a peer, say p, 
receives the late message list from some child peer. 
It will mark it as additional list. The additional list 
should be bubbled up without wait until arriving to 
a peer, say q, of which wait time has not expired. 
And peer q deals with the additional list as any 
other received list. 

4. PERFORMANCE EVALUATION 
 
4.1 Environment setup 

We experimentally evaluated the performance of 
our proposed algorithm HPJT and related 
algorithms in p2p networks. The topology and data 
settings are set as following. 

⑴ Topology setting.  

Topologies in our simulation are generated by 
BRITE [24], a universal topology generator. To 
verify the scalability of HPJT algorithm, 4 kinds of 

topologies are used, whose size are 1024, 2048, 
4096 and 10240 respectively. 

⑵ Data setting. 

The data sets for simulation were generated for 
performance evaluation as follows. Assume each 
peer has n objects. We assumed that peers exhibit 
different degrees of correlation of each other. 
Firstly n values 1,..., ns s , which follow the Zipf’s 
distribution [23] with a Zipf factorα , are generated. 
These n values are assigned to the n objects as their 
scores in peer 1. Then, a random walk model was 
used to generate the scores of the objects in other 
peers. For peer i, [ ] [ 1] iScore i Score i Var= − + , 
where [ ]Score i is the score of object O at peer i and 

iVar  is a random number in the 
range[ [0], [0]]c Score c Score− × + × , c is a constant. 
By varying α  and c, different scenarios such as the 
scenario in which the object rankings are similar in 
different peers or the scenario in which the object 
rankings vary in different peers can be generated. 
For simplicity, we set c=0.1, 0.3α = . 

We compared the performance of our new HPJT 
algorithm with the following two techniques. 

 C-TPUT: This is an efficient 3-phase 
algorithm for distributed networks as described in 
[9]. 

 H-TPUT: This is a varied TPUT algorithm 
for more efficient top-k query processing in 
hierarchical distributed networks such as p2p 
networks [9]. 

Our implementation of the test-bed was written 
in java. We take response time and bandwidth cost 
as metrics and measured in two conditions: 

 ⑴ Topology varies. 

This is used to verify the scalability of the 
algorithms. We generate 4 kinds of topologies. The 
number of the peers is 1024, 2048, 4096 and 10240 
respectively. K is set as 10 in this condition, that is, 
queries in this condition were for the top-10 results. 

⑵ Parameter K varies. 

This is used to verify the performance of the 
algorithms with different number of results needed. 
We choose eleven K values from [1,100] uniformly. 
Topology size used for this condition is 4096.  

4.2 Results and analysis 
Figure 2(a) shows the bandwidth cost of 

producing the top-10 results in different topology 
scales. It’s seen HPJT algorithm shows better 

http://www.jatit.org/


Journal of Theoretical and Applied Information Technology 
 31st March 2013. Vol. 49 No.3 

© 2005 - 2013 JATIT & LLS. All rights reserved.  
 

ISSN: 1992-8645                                                        www.jatit.org                                                         E-ISSN: 1817-3195 

 
925 

 

performance than the two compared algorithms. H-
TPUT and HPJT are better than C-TPUT. This is 
because H-TPUT and HPJT prune some results in 
query backward phase along the query path, while 
C-TPUT collects all query results back to the query 
peer without pruning. The main reason that HPJT 
consumes less bandwidth than H-TPUT is HPJT 
prunes more potentially useless objects in 
hierarchical join query phase (See step 3 in section 
3.3.1).  

 

 
(a)  Bandwidth cost 

 
(b) Response time 

Figure 2.  Performance comparison in different 
topology scales 

 
Figure 2(b) shows the response time with the 

setting in figure 2(a). HPJT and H-TPUT have 
similar results and both of them are better than C-
TPUT. There are two main reasons. Firstly, in C-
TPUT algorithm, the computation is only 
performed in query peer, while the other two 
algorithms “put computation to the network”. 
Secondly, similar to the explanation to figure 2(a), 
C-TPUT collects all local results in queried peers 
without pruning. This also will cause more delay. 
The reason that HPJT is better than H-TPUT, we 

think it mainly got that HPJT prunes more objects 
and then decreases the delay. 

5. CONCLUSION 
 

In this paper, an efficient p2p top-k query 
processing scheme named HPJT is presented. A 
fully distributed query processing algorithm for top-
k query is proposed, which performs computation 
along the query path instead of only centralized 
processing in the root. And the problem of peer’s 
dynamicity is tackled by some simple but effective 
solutions. The simulation results indicate HPJT 
shows good performance in p2p environment. 

ACKNOWLEDGEMENT:  
This work was supported by Central Government 

University Foundation (Grant No. JB2012087). 

REFRENCES:  
 
[1] S. Chaudhuri, L. Gravano, A. Marian, 

“Optimizing Top-K Selection Queries over 
Multimedia Repositories”, IEEE transactions 
on knowledge and data engine , Vol. 16, No. 8, 
2004, pp. 992–1009. 

[2]    A. Vlachou, C. Doulkeridis, Y. Kotidis, and 
K. Nørvåg. “Monochromatic and bichromatic 
reverse top-k queries”. IEEE transactions on 
knowledge and data engine , Vol. 23, No. 8, 
2011, pp. 1215–1229. 

[3]    M. A. Soliman, I. F. Ilyas, D. Martinenghi, 
and M. Tagliasacchi. “Ranking with uncertain 
scoring functions: semantics and sensitivity 
measures”. Proceedings of SIGMOD 2011, 
Athens, Greece, June 12-16, 2011, pp. 805–
816. 

[4]    M. Theobald, G. Weikum, R. Schenkel. 
“Top-k Query Evaluation with Probabilistic 
Guarantees”. Proceedings of VLDB 2004, 
Toronto, Canada, August 29-September 3, 
2004, pp.648-659. 

[5]    R. Kaushik, et al. “On the Integration of 
Structure Indexes and Inverted Lists”. 
Proceedings of SIGMOD Conference 2004, 
Paris, France, June 3-8, 2004, pp.779-790. 

[6]    M. Wu, J. Xu, X. Tang and WC. Lee, “Top-
k Monitoring in Wireless Sensor Networks”. 
IEEE transactions on knowledge and data 
engine , Vol. 19, No. 1, 2007, pp. 962-976. 

[7]    B. Babcock, C. Olston. “Distributed Top-K 
Monitoring”. Proceedings of SIGMOD 
Conference 2003. San Diego, CA, USA, 2003, 
pp. 28-39. 

http://www.jatit.org/


Journal of Theoretical and Applied Information Technology 
 31st March 2013. Vol. 49 No.3 

© 2005 - 2013 JATIT & LLS. All rights reserved.  
 

ISSN: 1992-8645                                                        www.jatit.org                                                         E-ISSN: 1817-3195 

 
926 

 

[8]    N. Koudas, et al. “Approximate NN queries 
on Streams with Guaranteed 
Error/performance Bounds”. Proceedings of 
VLDB 2004, Toronto, Canada, August 29-
September 3, 2004, pp.804-815. 

[9]    P. Cao, Z. Wang. “Efficient Top-K Query 
Calculation in Distributed Networks”. 
Proceedings of the twenty-third annual ACM 
symposium on Principles of distributed 
computing, Newfoundland, Canada, July 25-
28, 2004,pp.206-215. 

[10] A Vlachou, C Doulkeridis, K Nørvåg, M 
Vazirgiannis. “On Efficient Top-k Query 
Processing in Highly Distributed 
Environments”, SIGMOD Conference 2008. 

[11] R. Akbarinia, V. Martins, E. Pacitti, P. 
Valduriez. “Top-k Query Processing in the 
APPA P2P System”. Proceedings of LNCS, 
Rio de Janeiro, Brazil, June 10-13, 2007, pp. 
158-171. 

[12] I. F. Ilyas, G. Beskales, and M. A. Soliman. A 
survey of top-k query processing techniques in 
relational database systems. ACM Comput-ing 
Surveys, Vol.40, No 4, 2008, pp.1-58. 

[13] S. Chaudhuri, et al. “Probabilistic Ranking of 
Database Query Results”. Proceedings of 
VLDB 2004, Toronto, Canada, August 29-
September 3, 2004, pp.648-659. 

[14] N. Bruno, S. Chaudhuri, L. Gravano. “Top-k 
selection queries over relational databases: 
Mapping strategies and performance 
evaluation”. Proceedings of TODS, 27(2), 
2002 

[15] QH. Vu, BC. Ooi, D. Papadias, AKH. Tung. 
“A Graph Method for Keyword-based 
Selection of the top-K Databases”. SIGMOD 
Conference 2008. , Vancouver, Canada, June 
9-12, 2008 , pp.915-926. 

[16] A. Vlachou, C. Doulkeridis, K. Norvag, M. 
Vazirgiannis. “Skyline-based Peer-to-Peer 
Top-k Query Processing”. Proceedings of 
ICDE 2008. Cancun, Mexico, April 7-12, 
2008, pp. 1421-1423. 

[17] R. Fagin, J. Lotem, M. Naor. “Optimal 
aggregation algorithms for middleware”. 
Journal of Computer and System Sciences 
Vol.66, No.4, 2003, pp. 102-113. 

[18] N. Bruno, S. Chaudhuri, L. Gravano. “Top-k 
selection queries over relational databases: 
Mapping strategies and performance 
evaluation”. ACM Transactions on Database 
Systems, Vol.27, No. 2, 2002, pp.153-187. 

[19] B. Babcock and C. Olston, “Distributed Top-
K Monitoring”, Proceedings of the ACM 
SIGMOD international conference on 
Management of data, San Diego, CA, USA, 
2003, pp.28-39. 

[20] A. Deligiannakis, Y. Kotidis, N. Roussopoulos 
“Hierarchical in-Network Data Aggregation 
with Quality Guarantees”, 9th International 
Conference on Extending Database 
Technology, Heraklion, Greece, March 14-
18,2004, pp. 658-675 

[21] S. Michel, P. Triantafillou, G. Weikum 
“KLEE: A Framework for Distributed Top-k 
Query Algorithms”, 31st conference in the 
series of the Very Large Databases, 
Trondheim, Norway, 2005, pp..637-648 

[22] D. Stutzbach, R. Rejaie, S. Sen. 
“Characterizing unstructured overlay 
topologies in modern p2p file-sharing 
systems”, Proceedings of Internet 
Measurement Conference. Berkeley, CA, 
USA, October 19-21 2005, pp. 49-62. 

[23] B. Yang, H. Garcia-Molina. “Designing a 
Super- peer Network”, Proceedings of IEEE 
International Conference on Data 
Engineering. Bangalore, India, March 5-8, 
2003, pp. 49-60. 

[24] A Medina, A Lakhina, I Matta, J Byers: 
BRITE: an approach to universal topology 
generation. Ninth International Symposium on 
Modeling, Analysis and Simulation of 
Computer and Telecommunication Systems. 
Cincinnati, OH, Aug 15-18,2001, pp. 346-353. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
      

 

http://www.jatit.org/

	1HUI WANG, 2 ZHITAO GUAN, 3 YUE XU
	3.1.1. Network topology
	Figure 1. Two-tier topology of gnutella
	3.1.2 Definitions about top-k query.
	3.3.1. Algorithm statement
	3.3.2. Correctness analysis of the algorithm
	3.4.1. Problems from peers’ dynamicity
	3.4.2. Solution strategies
	Figure 2.  Performance comparison in different topology scales

