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ABSTRACT 
 
Due to adopting the pulse Doppler (PD) system, the blind Doppler zone (BDZ) of airborne early warning 
(AEW) radar is inevitable. This paper focuses on finding a technique with good estimation performance for 
tracking airborne targets flying in AEW BDZ. Consequently, combining with interacting multiple models 
(IMM), extended Kalman filter (EKF) and particle filter (PF), the radar and electronic support measure 
(ESM) joint tracking BDZ target technique based on IMMEPF is put forward. The advantage of IMM 
algorithm is not only error reduction but also model prediction. As far as the nonlinear, non-Gaussian 
problem is concerned, Particle filter is adept usually. For the purpose of overcoming the particle 
degeneracy phenomenon, it relies on EKF state estimation to generate new particle set. The numerical 
simulation results justify that the proposed technique shows high precision performance of tracking target 
buried in BDZ.  

Keywords: Heterogeneous Multi-Sensor, Joint Target Tracking, AEW Radar, Blind Doppler Zone, 
Interacting Multiple Model, Extended Kalman Particle Filter 

 
1. INTRODUCTION 
 

When AEW radar is operated in air surveillance 
mode, a target’s return is often buried in the blind 
Doppler zone which leads to a phenomenon of 
target plots temporal vanishing or tracks 
reduplicative initializing. A track derived from 
same target maybe split into several discontinuous 
segments. Undoubtedly, this phenomenon results in 
the decline of the radar intelligence quality. 
Because AEW radar adopts the PD technology, the 
existence of BDZ problem is inherent and 
inevitable [1,2,3,4]. Therefore, the targets buried in the 
BDZ will be suppressed in company with the clutter 
and the ground moving targets with low radial 
speed.  

In most cases, active and passive sensors are 
mutually independent or complementary to 
detection and tracking. Aimed at the above 
problem, this paper presents a method of joint 
tracking BDZ target by radar and ESM. When the 
target is out of BDZ, the radar and ESM track it 
together. As long as the target is buried in BDZ, 
there are ESM measurements only and the ESM 
will track it alone until it travels out of the BDZ. 

 

In view of non-linear measurement of radar and 
ESM, the traditional filter algorithms are EKF[5] and 
Unscented Kalman Filter[6] (UKF), while both of 
them require that the measurement noise and 
process noise are normal distributed sequences. As 
a matter of fact, it is not the case. Hence the 
applications of algorithms above have limitations in 
practice. In recent years, along with the 
development of computational capabilities and 
statistical theories, PF[7,8,9,10] algorithm has draw 
much attention because it doesn’t impose any 
limitations on the character of process noise. But 
the standard PF takes prior probability density as 
the important sampling function and reckons 
without the new measurement. On the contrary, 
when measurement noise amplitude becomes small, 
the filtering precision will be worse or even 
divergence. In this paper, we propose a novel 
tracking algorithm which combines particle filtering 
with the EKF and IMM[7], to prevent sample 
impoverishment. It leads to remarkable 
performance improvement over the particle filter 
alone and the EKF, as demonstrated by simulation 
results. It uses the output of extended Kalman filter 
to establish proposal distribution function. Further, 
it makes use of measurement innovation to improve 
the performance of filter. 
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The rest of the paper is organized as follows: 
Section II quickly previews Target Doppler shift 
fundamentals and statement of the problem. Section 
III introduces the IMMEPF algorithm when it is 
applied to tracking targets buried in BDZ. 
Numerical examples and conclusion are given in 
Section IV and V respectively. 

2. FUNDAMENTALS AND STATEMENT OF 
THE PROBLEM 
 

2.1 Target Doppler shift and BDZ 
The Doppler shift of moving targets relative to 

the AEW radar is expressed as 

( )2 cos cosa t
d

V V
f

ψ β
λ
+

=                          (1) 

Because of the rapid motion of the radar with its 
platform, some stationary targets, such as the 
ground and the sea, are sure to generate Doppler 
shift, which is given by 
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Figure 1 target track 

 
Where aV  and tV  are the flying speed of AEW 

and target respectively. ψ  is the angle between the 
course of AEW and the line of sight of radar. β  is 
the angle of the course of target and the line of sight 
of radar. θ and ϕ are the azimuth angle and the 
elevation angle of the AEW  radar beam 
respectively. H denotes the altitude of the platform. 
R  is the slant range from the platform to a clutter 
patch. 

The target track is given in Figure 1. It can be 
learned that the radar will lose the target plots 

continuously if d dcf f− ∈Ω  where 

{ }[ , ]dt dt T Tf f f fΩ = ∈ − denote the BDZ space. In 
the whole flight process, the target intends to make 
two BDZs as indicated. 

2.2 Target and sensor modelling 

  

 
Figure 2 the geometry of AEW and target 

 
According to  

Figure 2, suppose that the radar and ESM are 
mounted on the same platform. The constant 
velocity (CV) and constant acceleration (CA) 
modes are most commonly considered to build 
models. In this paper, these two models are used. 
The state space equation is given by 

1 1 1k k k k k− − −= +X F X G W                          (3) 

X  is the state vector of a target defined as 
T[ ]x x x y y y=X      

where x  and y  denote the target position., 
W signifies process noise, which is zero-mean, 
white, and Gaussian with covariance Q(k) . 

The state transition matrices and the noise gain 
matrices for each mode can be written in the 
following forms: 

1 1

1 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0

,
0 0 0 1 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0

T

F G
T

   
   
   
   

= =   
   
   
   
      

     (4)        

and 
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where subscripts 1 and 2 in equations (4) and 
Error! Reference source not found. denote CV 
mode and CA mode, and T is the sampling time. 
Process noise covariance is simplified under the 
assumption that the process noise variance in each 
coordinate is equal and constant. 

The measurement model of radar can be written 
as 

( )rk r k kh= +Z X V                              (5) 

In which,  

( ) ( )
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 (6)        

That indicates the measurement vector at the 
moment k . : x u zn n n

rh ℜ ×ℜ →ℜ is non-linear 
measurement function of radar. V is measurement 
Gaussian noise. 

The measurement model of ESM can be written 
as 

( )ek e k kh= +Z X η                     (7) 

In which,  

( ) ( )
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X
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(8) 

That indicates the measurement vector of ESM at 
the moment k . : x u zn n n

eh ℜ ×ℜ →ℜ is non-linear 
measurement function of ESM. η is ESM 
measurement Gaussian noise. 

3. IMMEPF ALGORITHM 
 

3.1 EKF particle filter 
Particle filter is put forward by Gordon foremost. 

The filter algorithm is not limited by model linear, 
Gauss hypothesis. It is applicable to any non-linear 
non-gauss dynamic system. 

Standard particle filter algorithm is presented  as 
follows: 

(1)Initialization: for 0k = ; 

Set up initial state particle set ( ) ( ){ }0 0 1
,

Ni i

i
w

=
X  

according to prior distribution of state ( )0p X  , in 

which ( )
0

1iw
N

= ; 

(2)for 1, 2, ,k T=  , T is the length of 
measurement set. 

(a)Sampling: get new particle set ( ){ }
1

Ni
k i=

X from 

sampling state transition probability density 
function ( ) ( )( )1

i i
k kp −X X .  

(b)Calculating the weight ( )i
kw  of the particle 

( )i
kX according to the equation 

( ) ( ) ( )
( ) ( ) 1

1 ( ) ( )
1 1:

( | ) ( | )
( | , )

i i i
i i k k k k

k k i i
k k k

p p
q

−
−

−

ω = ω
Z X X X

X X Z
, and 

normalization ( )
( )

( )

1

i
i k

k N
i

k
j

w
w

w
=

=

∑




. In which, 

( )( | )i
k kp Z X can be got from measurement equation, 

and ( ) ( )
1( | )i i

k kp −X X can be confirmed by system 
equation. When measurement noise and system 
noise are both Gaussian distributed, the expression 
are as follows respectively. 

/ 2( ) 1/ 2

1

( | ) (2 ) | |
1exp ( ) ( )
2

zni
k k

Ti i
k k k k

p

h h

p − −

−

=

    ⋅ − − −     

Z X R

Z X R Z X
  (9)     
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In which, R is the error variance matrix of 
measurement, Q is the error variance matrix of 
system. 

(3)Output of state estimation: ( ) ( )

1

ˆ
N

i i
k k k

i
w

=

= ∑X X ; 

(4)Resampling: 

resample N particles ( ){ }
1

Ni
k i=

X from particle 

set ( ) ( ){ }
1

,
Ni i

k k i
w

=
X according to the weight ( )i

kw  of 

particles, and let ( ) 1i
kw

N
=  , then get the new 

particle set ( )

1

1,
N

i
k

iN =

 
 
 

X . 

In standard particle filter, the important 
probability density function is given as 

( ) ( ) ( ) ( )
1 1: 1( | , ) ( | )i i i i

k k k k kq p− −=X X Z X X              (11) 

Hence, ( ) ( ) ( )
1 ( | )i i i

k k k kp−ω = ω Z X , which has no 
consideration of the latest measurements and 
simplified evaluating weights into calculating 
likelihoods. 

And what’s more, after a few iterations of 
prediction, it may leads to degeneracy. Removing 
small weight particles and duplicating the big 
weight particles by way of resampling in order to 
reduce the degeneracy effect. Because generation of 
particle set relies on proposal distribution, the 
ultimate goal is to make the proposal distribution 
close to the posterior probability distribution as far 
as possible, no matter what method is used. 
Subsequently, the key point of relieving the 
degeneracy phenomenon is to choose a suitable 
proposal distribution function. 

Since the EKF is an MMSE estimator, its state 
estimation ( )i

kX and covariance matrix ( )i
kP  of each 

particle at the moment k can be utilized to generate 
new particle set. 

( ) ( ) ( )( )*

~ ,i i i
k k kNX X P                         (12) 

The proposal distribution is expressed as  

( )

( ) ( ) ( ) ( ) ( )* *

/ 2( ) ( ) 1/ 2
1 1:

1

( | , ) (2 ) | |

1exp
2

x ini i
k k k k

T
i ii i i

k k k k k

q p − −
−

−

=

    ⋅ − − −        

X X Z P

X X P X X

     (13) 

3.2 IMMEPF algorithm 
The main idea of the IMM algorithm is to weigh 

the estimates from the filters matched to the 
different models. Different models have different 
state space models. The weights are based on the 
time variant mode probabilities that imply how 
close the estimate from each filter is to the 
corresponding model. Since the IMM algorithm 
mixes the estimates from different models instead 
of choosing which mode is true in each time step, it 
is called a soft switching algorithm, which does not 
include hard decisions. 

To improve the estimation accuracy of IMM, the 
EKF is introduced and the nonlinear manoeuvring 
model are used in this paper. Particles in each 
model are randomly sampled from the prior. Then, 
they are interacted and updated by model matched 
EKF . After that they are resampled to be optimized. 
Finally, particles are combined. This algorithm has 
high estimation accuracy and immunes to nonlinear 
and non-Gaussian problems. 

Prediction and estimation accuracy are 
effectively improved by the fixed multiple models 
and EKF algorithm. The IMMEPF has the 
following main steps: 

(1) Sample the particles randomly: At the 
moment k, particle set of each model are randomly 
sampled according to mean value and variance of 
state variable. The particle number is N. Suppose 
particle state and covariance of each random 
sampled particle of m  models respectively as 

( )ˆn
jx k and ( )ˆ n

jP k .where 
1,2, ,n N=  , 1, 2, ,j m=  . 

(2)Input mixing: Input mixing for corresponding 
particles of each model, when predict probability of 
model is  

( ) ( ) ( )
1

m

ij i ij ii j
i

k k km p m p m
=

= ∑  

and then  

( ) ( ) ( )
1

ˆ
m

n n
j j i j

i
x k x k km

=

= ∑               (14) 
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(3)Model-matched EKF filter:  

Put particles ( ) ( ){ }, , 1, 2, ,n n
j jx k P k n N=  into 

EKF which based on the thj  model, update state at 
the moment 1k + , the state variable of the thn is 

( )1n
jx k + and its covariance is ( )1n

jP k + , 

likelihood function is ( )1n
j kΛ + ,and the 

corresponding weight is ( )1n
jW k + . 

Compute the Jacobians ( )
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i

k jH of the measurement 
models. 
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k
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= 
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(20) 

Identify whether the target Doppler shift  
d dcf f− ∈Ω  or not. 

If d dcf f− ∉Ω , 

( ) ( ) ( )
,1 ,1 ,1;i i i

k rk ek
 =  H H H                            (21) 

( ) ( ) ( )
,2 ,2 ,2;i i i

k rk ek
 =  H H H                           (22) 

 [ ; ]k rk ek=Z Z Z                                  (23) 

( )( ) ( )( ) ( )( ), 1 , 1 , 1;i i i
k k k rk k k ek k kh h h− − −

 =  X X X             (24) 

If d dcf f− ∈Ω , 

( ) ( )
,1 ,1
i i

k ek=H H                                      (25) 

( ) ( )
,2 ,2
i i

k ek=H H                                     (26) 

k ek=Z Z                                         (27) 

( )( ) ( )( ), 1 , 1
i i

k k k ek k kh h− −=X X                      (28) 

Update the states with EKF: 
( ) ( )

, 1 1
ˆi i

k k k− −=X FX  

( ) ( ) ( )
, 1 1

ˆi i T i T
k k k k k k k kG G− −= +P H P H Q  

( ) ( ) ( ) ( ) ( ) 1

, 1 , 1
i T i i i T i

k k k k k k k k k

−

− −
 = + K P H H P H R  

( ) ( ) ( )( ), 1 , 1
i i i

k k k k k k k kh− −
 = + − X X K Z X  

( ) ( ) ( )
, 1

i i i
k k k k k−

 = − P I K H P  

(4) Resampling: Evaluate the importance weights 
of the particles in each model to resample particles, 
which produce a new set of optimized particles with 
the same weights. 

(5)Update model probability: 

( ) ( )

( )
1

1
1

1

n n
j jn

j m
n n
j j

j

k c
k

k c
m

=

Λ +
+ =

Λ +∑
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(29) 

in which ( )
1

m
n n
j ij j

j
c kp m

=

= ∑ . 

(6)Output combination: Combing the 
corresponding particle set of m  models and sum all 
the particles with the weights to obtain the mean 
and covariance of the state ( )1x k +  and ( )1P k + at 
the next moment 1k + . 

( ) ( ) ( )
1

1 1 1
m

n n n
j j

j
x k x k km

=

+ = + +∑                    (30) 

( ) ( )
1

11 1
N

n

n
x k x k

N =

+ = +∑                          (31) 

( ) ( ) ( ){

( ) ( ) }
1 , 1

1
1 1 1

1 1

m
n n n n

k j j k j
j

Tn
j

P k P x k x k

x k x k

m+ +
=

 = + + + − + 

 + − + 

∑

           (32) 

4. NUMERICAL EXAMPLES  

In this section, we show the merits of the 
IMMEPF algorithm when it is applied to tracking 
targets buried in BDZ. 

Suppose that the simulation system is composed 
of radar and ESM. And they are mounted on the 
same platform. Let the radar and ESM sampling 
interval is one second respectively. The radar is 
operated at 0.23mλ =  . The process noises 
are 0.01mx yσ σ= = . The error statistics for radar 
measurements are given in terms of the range 
standard deviation 100mrσ = ,bearing standard 
deviation 0.003radrθσ = ,range-rate standard 
deviation -110m srσ = ⋅ .The error statistics for ESM 
measurements are given in terms of the bearing 
standard deviation 0.005radeθσ = , bearing-rate 
standard deviation -10.001rad sθσ = ⋅ .The limit of 

BDZ is -1
0 46m sL = ⋅ . The number of particle M is 

50. The model sequence is assumed to be a first 
order Markov chain with transition probabilities: 

0.96 0.04
0.04 0.96ijP  

=  
 

                       (33) 

For comparison, the results of tracking targets in 
BDZ using IMMEKF are presented to evaluate the 
performance. The root means square error which is 

used as index to gauge tracking performance and 
defined as 

( ) ( ) ( ) ( )2 2

1

ˆ ˆ1RMSPE
2

N
t t

i

x i x i y i y i
N =

− + −      = ∑     

(34) 

where 100N = is the Monte Carlo simulation 
times, ( )x̂ i and ( )ty i are the filter position 

estimations at time index k in thi Monte Carlo 
simulation.  
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Figure 3 Model Probability  
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Figure 4 Tracking target in BDZ 

 
The typical tracking flight of target is shown in 

Figure 1. And Figure 3 displays the model 
probabilities versus time. The tracking performance 
of BDZ target is given in Figure 4 and Figure 5. 
Tracking with bearing-rate and range-rate,it can be 
seen that the RMSE position error for the typical 
tracking flight of IMMEPF algorithm is obviously 
smaller than that of IMMEKF algorithm on the 
condition of ESM measurement only. The EKF 
based proposal distribution has reduced particle set 
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degeneracy effectively and it also improves the 
tracking precision of BDZ target. 

240 250 260 270 280
0

200

400

600

800

Time(s)

R
M

SE
(m

)

 

 

IMMEPF
IMMEKF

 
Figure 5 RMSE position errors versus time  

 
5. CONCLUSION 
 

Focusing on the BDZ target tracking problem, 
the IMMEPF algorithm is brought forth based on 
combining the active and passive sensors. 
Simulation results prove that the advanced 
technique has outstanding tracking performance. 
The tracking precision of IMMEPF algorithm is 
higher than that of IMMEKF algorithm. IMM, EKF 
and PF can cooperate to provide the optimal 
estimates and be capable of adaptively handling the 
manoeuvring motions. The proposal distribution 
which provided by EKF is effective in reducing the 
particle degeneracy and improve the tracking 
precision. This paper turns to a single target 
tracking problem. However, in many cases, the 
IMM algorithm is commonly used in multi target 
tracking. So the future work should be extended to 
the multiple BDZ targets tracking with multiple 
sensors by using IMMEPF algorithm.  
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