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ABSTRACT 
 

Under the linear approximation model for error diffusion halftoning, a shearlet-based inverse halftoning 
(SIH) algorithm is proposed. The SIH algorithm performs inverse halftoning by first inverting the model-
specified convolution operator and then reducing the residual color noise using scalar shearlet-domain 
thresholding. The optimal thresholds are derived by using the maximum a posteriori rule. Experimental 
results demonstrate that SIH algorithm is competitive with state-of-the-art classical inverse techniques in 
peak signal-to-noise ratio (PSNR) sense. And the SIH algorithm also provides good visual quality. 

Keywords: Error diffusion, inverse halftoning, shearlet transform, maximum a posteriori rule 
 
1. INTRODUCTION  
 

The process of rendition from continuous-tone 
images into a medium on which only two levels can 
be displayed is defined as digital halftoning. The 
rendered bi-level image is referred to as halftone. 
Inverse halftoning is the process of retrieving the 
continuous-tone image from its halftoned version. 
The inverse halftoning algorithms can be classified 
into two categories, the filtering-based algorithm 
and the learning-based algorithm. The typical 
filtering-based algorithms include wavelet-based 
approaches [1], Bayesian methods [2], and human 
visual system-based approaches [3]. The learning-
based algorithm mainly include vector quantization 
methods [4], lookup table-based algorithms [5] and 
neural network-based algorithms [6]. The inverse 
halftoning has been used in rehalftoning, halftone 
resizing, halftone tone correction, and facsimile 
image compression. 

Error-diffused halftoning is a nonlinear system 
because it uses a quantizer to generate halftones. 
Recently, Kite [7] proposed an accurate linear 
approximation model for error diffusion halftoning. 
Under this model, inverse halftoning can be posed 
as the classical deconvolution problem. The gray-
scale image can be obtained from the halftone by 
deconvoluting the filter in the presence of the 
colored noise. Traditionally, the deconvolution is 
performed in the Fourier domain. Unfortunately, the 
Fourier-based deconvolution techniques induce 
ringing and blurring artifacts due to the non-sparsity 
representation of Fourier transform for edge 
discontinuities.  

In contrast, the wavelet transform provides an 
economical representation for images with edges. 
The economy has led to powerful image estimation 
algorithms based on scalar wavelet shrinkage. In [1, 
8], the wavelet was first exploited in inverse 
halftoning. In [9], the redundant wavelet was used 
to improve error-diffused halftones. However, when 
wavelet is used to image inverse halftoning, it will 
lead to oscillatory artifacts along the edges. That is 
why wavelet fails to capture the geometric 
regularity along the singularities of surfaces.  

In order to overcome this limitation of traditional 
wavelet, several image representations have been 
proposed to capture the geometric regularity of a 
given image. They include curvelet, contourlet and 
bandelet. Within recent years, Demerit and his 
collaborator developed a new geometric multiscale 
transform, named shearlet transform [10-12]. The 
shearlet transform breaks the limitation of the 
wavelet transform and provides sparse 
representation for the objects with singularities. 
Now the applications of shearlet are mainly in 
image restoration [13], edge detection [14] and 
image fusion [15]. Its applications in image inverse 
halftoning are still under exploring. 

In this paper, we propose a shearlet-based 
inverse halftoning (SIH) algorithm. The SIH 
algorithm performs inverse halftoning by first 
inverting the model-specified convolution operator 
and then reducing the residual color noise using 
scalar shearlet-domain thresholding. The paper is 
organized as follows. In section 2 we will introduce 
the shearlet transform. Section 3 introduces the 
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proposed Inverse halftoning algorithm. 
Experiments and results will be given in section 4. 
And conclusions are drawn in section 5. 

2. SHEARLET TRANSFORM 
 

The shearlet transform is a multiresolution 
representation with basis functions well localized in 
space, frequency and orientation. It is generated by 
one single function which is dilated by a parabolic 
scaling and a shear matrix and translated in the time 
domain. The shearlet mother function is a 
composite wavelet that satisfies appropriate 
admissibility conditions [10].  

The composite wavelet, recently introduced in 
[11], exhibits the geometric and multiscale 
properties by taking advantage of classical theory 
of affine systems. In dimension 2n = , the affine 
systems with composite dilations are defined as 
follows.  
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are called wavelet if ( )AB yY forms a Parseval 

frame for ( )2 2L ¡ .  

The dilations matrices jA and B l are associated 
with scale transformations and area-preserving 
geometric transformations respectively. The above 
framework can be used to construct Parseval frames 
whose elements, in addition to ranging at various 
scale and location, also range at various 
orientations.  

The shearlet is a special Parseval frame of 
composite wavelets in ( )2 2L ¡ . These are 

collections of the form ( )AB yY   where 0A A=  is 
the anisotropic dilation matrix and 0B B= is the 
shear matrix, which are given by 
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As described in [12], 

the shearlets provide a nonuniform angular 
covering of the frequency plane when restricted to 
the finite discrete setting for implementation. Thus, 
it is preferred to reformulate the shearlet transform 
with restrictions supported in the regions given 
by： 
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for 2ˆx Î ¡ . Thus, we have the following: 
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Theorem 1: Let ( ) ( )k x x kj j= - and ( ) ( ), ,
d

j ky x =l  
( )( )3 22 dj j

d dB A ky x-l , where ,j y are given as 

above. Then the collection of shearlet: { }2:k kj Î È¢  
( ){ }2
, , : 0, 2 2 1, , 0,1d j j

j k j k dy ³ - £ £ - Î =l l ¢ is a 

Parseval frame for ( )2 2L ¡ .  

For each ( )2 2f LÎ ¡ , the shearlet transform is 

the mapping on ( )2 2L ¡ defined by  

( ) ( )
, ,: , , , , 0,1d

j kSH f SH f j k f dy y® = =ll    (7) 

3. INVERSE HALFTONING ALGORITHM 
 

The linear approximation model [8] for error 
diffusion halftoning can be expressed as follows. 

( ) ( ) ( ), , ,y i j x i j Q i jg= R +                  (8) 

Where ( ),y i j is halftone, ( ),x i j and ( ),i jg are 
original image and additive white noise, 
respectively. The linear model is shown in figure 1.  

 
Figure 1. The linear approximation of error diffusion 

halftoning. 

This model approximates the effects of quantization 
using a gain K followed by the addition of white 
noise. For any given error diffusion technique, Kite 
found that the gain K is almost constant for 
different images. The Rand Q are the linear time-
invariant system with respective impulse response 

( ),p i j and ( ),q i j determined by the error diffusion 
technique. 
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From equation (8), it can be seen that the 
deconvolution can be used to inverse halftoning. A 

naïve deconvolution estimate ( )ˆ ,x i j is obtained 

using operator inverse 1-R as 

( ) ( ) ( ) ( )1 1ˆ , , , ,x i j y i j x i j Q i jg- -= R = + R    (11) 

Unfortunately, the variance of the colored noise 
( )1 ,Q i jg-R in ( )ˆ ,x i j is large when R is ill 

conditioned. In such case, the mean-squared error 
between ( ),x i j and ( )ˆ ,x i j is large, making 

( )ˆ ,x i j an unsatisfactory deconvolution estimate. In 
order to simplify the notation, the equation (11) is 
rewritten as follows. 

x̂ = x + γ                                        (12) 
In order to attenuate the colored noise γ , in this 

paper, we focus on simple and fast estimation based 
scalar shrinkage of individual components in 
shearlet transform domain. For t +Î ¡ , define the 
threshold function ( )T xt to be ( )signx xt- if 

x t³ . The naïve estimate ( )ˆ ,x i j from (11) can be 
expressed as  

( )
1 1

, , , , , , , ,ˆ ˆ, ,j k j k j k j k
M M

Tty y y y= +å åx x + γ x + γl l l l% (13) 

Where 1M and 2M are the indices of approximation 
coefficients and shearlet coefficients. The shearlet 
transform is multiresolution and multiscale 
representation. In this paper, the threshold t is 
different in different direction l and scale j . And 
the optimal threshold ,jt l is derived by using 
maximum a posteriori rule. Assuming the color 
noise density is Gaussian with zero-mean and 
variance 2

ns , and ,( )jxr l is the density of ,jx l , then 
the shrinkage threshold 

2
, ,( )j n jxt s x¢=l l                                 (14) 

where ,( ) ln ( )jx xx r= - l . In this paper, we 
assume that the prior distribution of true image 
shearlet coefficients is a normal inverse Gaussian 
distribution. 

( ), , 1 , ,exp ( ) ( ) ( )j j j jf x p x K q x q xad a pé ù é ù é ù= ×ê ú ê ú ê úë û ë û ë ûl l l l  (15) 

where 2 2 2
, ,( ) ( )j jp x xd a b b= - +l l , 2 2

, ,( )j jq x xd= +l l

, 1( )K ×  is the modified Bessel function of the 
second kind with index 1. After substitution of 
equation (15) in equation (14), we get the adaptive 
shrinkage threshold ,jt l . 
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We summarize the main steps of shearlet–based 
inverse halftoning (SIH) algorithm as follows. 

1. Operator inversion 

Invert the convolution operator R to obtain a 
noisy estimate ( )ˆ ,x i j as in (11). 

2. Shearlet-domain thresholding  

2.1 Compute the shearlet transform of 
( )ˆ ,x i j using (7). 

2.2 Apply the shearlet shrinkage to shearlet 
coefficients to obtain estimated coefficients [using 
(14), (15), and (16)]. 

2.3 Apply the inverse shearlet transform to the 
estimated coefficients. 

4. EXPERIMENTAL RESULTS 
 

In this section, we illustrate results of the 
proposed algorithm and compare them with some 
of other inverse halftoning methods. The tested 
images are 512×512 Lena, Peppers, Barbara, and 
Boat halftoned using the Floyd and Jarvis algorithm. 
In the experimental, we set the gain K=2.03.   

PSNR is chosen as the objective evaluation 
criterion. The  PSNR values for implementations 
using different images and different noise levels are 
list in Table 1. From Table 1, it is seen that the 
proposed method consistently gives a larger value 
of PSNR compared to the other methods, which 
indicating a better preservation of structure in the 
denoised images, especially to the textured images 
(such as Barbara). 
Table 1. PSNR of different inverse halftoning algorithms 

 Floyd halftone 

 WInHD [8] SIH 

Lena 31.96 32.59 
Barbara 25.71 27.62 

Boat 29.19 29.47 
Peppers 30.94 31.64 

 Jarvis halftone 
Lena 32.81 33.60 

Barbara 25.33 27.24 
Boat 29.78 30.32 

Peppers 31.13 31.56 
 

Figure 2 and Figure 3 show the inverse 
halftoning results of Floyd halftone and Jarvis 
halftone. From the results we can find that the new 
proposed method yields the best results. Due to the 
sparse representation of shearlet transform for curve 
singularities, the proposed method shows good 
performance for the edge preserving. 

    
(a) Original                       (b) Floyd halftone 

    
(c)WInHD                            (d) SIH 

Figure 2. Visual comparison of various methods for 
Floyd halftone. 

    
(a) Original                         (b) Jarvis halftone 

    
(c)WInHD                               (d) SIH 

Figure 3. Visual comparison of various methods for 
Jarvis halftone 
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5. CONCLUSIONS 
 

In this paper, we proposed a new inverse 
halftoning algorithm based shearlet. In the new 
method, the inverse halftoning is posed as a 
deconvolution problem in the presence of colored 
noise. The new method performs inverse halftoning 
by first inverting the model-specified convolution 
operator and then attenuating the residual colored 
noise using scalar shearlet shrinkage. And the 
optimal threshold is estimated by the maximum a 
posteriori function. Experimental results show that 
the new method yields state-of-the-art performance. 
Recently, Liu [16] has proposed inverse halftoning 
based the Bayesian theorem, which can be 
employed prior to any signal processing over a 
halftone image or the inverse halftoning. In the 
future, we will focus on Bayesian based inverse 
halftoning in shearlet domain.  
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