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ABSTRACT 

 
X–Z inverted pendulum is a new kind of inverted pendulum and it can move with the combination of the 
vertical and horizontal forces. In this paper, the control problem of X-Z inverted pendulum with system 
uncertainties is addressed, and a pair of decoupled adaptive fuzzy sliding mode control method is proposed. 
The fuzzy logic system is employed to approximate the system uncertainties as well as the complicated 
intermediate control functions.  For updating the parameter of the fuzzy system, a proportional-integral 
adaptation law is proposed.  Finally, simulation studies are carried out to show the stabilization of the X-Z 
inverted pendulum under the proposed control method. 
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1. INTRODUCTION  
 

The inverted pendulum is nonminimum phase, 
nonlinear and underactuated complicated system 
which makes it a very difficult problem that 
provides much challenging problem to the 
controller design.  In the last two decades, there are 
many literatures on stabilization and tracking 
control for the conventional inverted pendulum [1]. 
Except the wide research on the conventional 
inverted pendulum, a lot of researchers pay their 
attention to the other kinds of inverted pendulums, 
such as spherical inverted pendulum [2-4], X–Z 
inverted pendulum [1,5-6]. Compared with the 
conventional inverted pendulum, the X–Z inverted 
pendulum, in reality, is more like the real control 
object. In [5], Maravall established a hybrid fuzzy 
control system that incorporates a Takagi–Sugeno 
fuzzy control structure with PD control for 
stabilizing the X–Z inverted pendulum. In [6], the 
PID controllers have been used to the tracking 
control of the X–Z inverted pendulum system. And 
good tracking control performance is obtained. 

As we know, fuzzy logic control is a model-
free method, and it can handle ill-defined and 
complex nonlinear systems, even those with 
significant uncertainties and unknown dynamics. 
Fuzzy rule-based control systems have been 
extensively used in many areas, including cluster 
analysis, the controller design, and image 
processing. The fuzzy control methods have been 
shown to be effective for systems with uncertainties 
[7-9]. The stability analysis is always an important 

aspect in the completeness of controller design. 
With traditional fuzzy control system, the stability 
of the closed-loop system of a Mamdani fuzzy 
structure is very hard to be proved. To guarantee 
the closed-loop stability, some certain hybrid 
control approach is often used [7,10,11]. Among 
those schemes, sliding mode control (SMC) is a 
kind of robust stabilizing control method by driving 
the system states into a predefined sliding surface. 
The main advantages of sliding mode control are 
the system robustness with structured and 
unstructured uncertainties and satisfactory transient 
performance can all be preserved [12-13]. 

Recently, many study results show that 
corporate the SMC with the fuzzy control methods 
not only can alleviate the chattering effects in SMC 
but can decrease the complexity of fuzzy controller 
with reduced number of fuzzy rules [14]. In this 
paper, the adaptive fuzzy sliding mode control 
method is used to control X-Z inverted pendulum. 
The fuzzy logic system is employed to approximate 
the system uncertainties and the complicated 
intermediate control functions.  

 
2. PROBLEM DESCRIPTION AND 

PRELIMINARIES 
 

The X-Z inverted pendulum on a pivot driven by 
vertical and horizontal control forces can be seen in 
Fig.1. The control inputs of the system are based on 
the X-Z vertical and horizontal displacements of the 
pivot.   
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Fig.1: The Structure Of The X-Z Inverted Pendulum. 

The state equations of the X-Z inverted 
pendulum were given in [1] which can be described 
by: 
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where ( , ), ( , ), ( , )x z x z x z    are the position, speed and 
the acceleration of the pivot respectively. l  is the 
distance form the mass center of the inverted 
pendulum to the pivot. And g  is the acceleration 
constant of gravity.  ,M m are the mass of the pivot 
and the pendulum. zF  is the vertical force, and 

xF is the horizontal force. 

2.1. Description Of The Fuzzy Logic System 
The fuzzy logic systems that employs singleton 

fuzzification, sum-product inference and center-off-
sets defuzzification can be modeled by 
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where ( )xα   is the output of the fuzzy system, x   
is the input vector, ( )j

i
iF

xµ is 'ix s  membership of 

thj  rule and jθ  is the centroid of the thj  
consequent set. Eq. (2) can be rewritten as: 
 ( ) ( )Tx xα ϑ ψ=   (3) 
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and the fuzzy basis function can be expressed as: 
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3. CONTROL DESIGN OF THE X-Z 

INVERTED PENDULUM  
 

Define the following transform:    

 1 1sin , cos .x x l z z l lθ θ= + = + −    (4) 

Based on system (1), we have  
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Let 2
1 ( sin cos ) / ( ),x zF F F Mml M mθ θ θ= + − +  

2 ( cos sin ) /x zF F F Mlθ θ= − + , we can obtain 
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 If we define the change of coordinates as tan yθ = , 

1 1 cosu F θ= , 2 2
2 2( 2 tan )secu F θ θ θ= +  ,  and take the 

system uncertainties into consideration, yields  
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where 1 1 1 1[ , , , , , ]x x z z y yξ =   , and ( )f ξ  is unknown 
system uncertainty with unknown bound. 
    Let us define the sliding mode surface as  
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with 0, 1,2i iλ > =  such that the roots of the 
polynomial ( )i i iH s sλ= +  related to the 
characteristic equation of ( ) 0iH s = are all in the 
open-half plane. 
    From (8) and (9) we have  
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    Then the transformed control input 1u  can be 
constructed as  
 1 2 1 2 2 ,u g z k sλ= − −   (11) 

where 2 0k >  is a design parameter.  If we choose 

2λ  and 2k  small enough then we can get 1 0u > . 
Let treat *y y=  as an intermediate control 

function, and form the second equation of (10) we 
have 
 *

1 1 1 1 1,u y x k sλ= − −   (12) 

where 1 0k >  is controller design parameter. Note 

1 0u > , the intermediate control input *y  can be 
described as  

 * 1 1 1 1

1

.
x k sy
u

λ− −
=


  (13) 

To realize y  converges to *y , define *e y y= −  
and the sliding surface  
 3 3 ,s e eλ= +    (14) 

then we have  
 * *

3 3 3 2 ( ) .s y y u f yλ λ ξ= − + + −      (15) 

Since y  and *y have complicated structure, in this 
paper, we employ the fuzzy logic system to 
approximate the unknown function ( )f ξ  
incorporated with y  and *y . Let us define   
 * *

1 3( , ) ( ) ,u y f yα ξ λ ξ= − + −    (16) 

then we can approximate the unknown nonlinear 
function 1( , )uα ξ , through the fuzzy logic system 
(3), as 
 1 1ˆ ( , , ) ( , ).Tu x uα ξ ϑ ϑ ψ=   (17) 

Let us define the ideal parameter of ϑ  as 
 *

1 1ˆarg min sup ( , ) ( , , )u u
ϑ

ϑ α ξ α ξ ϑ=  −  ，  (18) 

and define the parameter estimation error and the 
fuzzy system approximation error as  
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As in literature [8,9], it is reasonable for us to 
assume that the fuzzy logic system approximation 
error is bounded, i.e., there exists some positive 
constant ε , such that 
 1( , ) .uε ξ ε<   (20) 

    From above analysis, we can obtain 
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    Then the controller 2u  can be chosen as 
 2 3 1 3 3 4 3ˆ ( , , ) ( ),u y u k s k sign sλ α ξ ϑ= − − − −   (22) 

where 3 4, 0k k >  are design parameters. The fuzzy 
system parameter is updated by the following 
adaptation PI law: 
 [ ]1 3 1 3 1 20

| | ( , )
t

s s u dϑ σγ ϑ γ ψ ξ τ γ δ= + −∫   (23) 

with  
 3 3 1| | ( , ),s s uδ σ ϑ ψ ξ= −   (24) 

where 1 2, , 0σ γ γ >  are design parameters. `The 
update law (24) this paper designed has a nice 
performance as the statement of the following 
theorem.  

Theorem 1.  The update law (24) can guarantee 
that the fuzzy system parameter Lϑ ∞∈  for 
bounded initial (0).ϑ   
Proof. Define the Lyapunov candidate function as 

 ( ) ( )1 2 2
1

1 .
2
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Then we have 
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If δ  is chosen as (24), one can obtain  
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Noting 1sup ( , ) .c uψ ξ=   Then we can conclude 

that if /cϑ σ> , 1 0V < . Thus we know that 
Lϑ ∞∈ . This ends the proof of theorem 1. 

From above discussion, now we are ready to give 
the following results. 

Theorem 2.  Consider system (1) or the 
equivalent system (8). The sliding mode surfaces 
are defined as (10) and (14), the parameter 
adaptation law is given by (23) and (24), the 
controller is defined by (11)-(13) and (22), then we 
have the following results: 
I. All signals in the closed loop system remain 
bounded. 
II. The system states and their derivatives 
asymptotically converge to zero. 
Proof. Let define the following Lypunov function: 
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From (10) and (11), we have  
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the fuzzy system adaptation law (23) and (24) into 
(25) and by using the inequality  
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Then if we choose that 
2*

4 0.5k ε σ ϑ> +  , form 

(30) and (31) we know 2
3 3 2 3 3s s V k s+ ≤ −  which 

means that 3s  converges to zero, i.e. 0e →  as time 
t →∞ . Then from (10)-(12), we know  
 *

1 1 1 1( ) .s u y e xλ= + +    (31) 

     According to (13) and 0e →  , one can obtain 
that  
 2

1 1 1 1s s k s= −   (32) 

    From above discussion, we can obtain that 
 2 2 2

1 1 2 2 3 3 .V k s k s k s≤ − − −   (33) 

    So, V  is always negative, which means that the 
signals , 1, 2,3is i =  and 2ϑ γ δ+  are bounded. Then 

from (23), we can easily know , Lϑ ϑ ∞∈ .  
Integrating (34) yields: 
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which implies that 2is L∈ . Then form (10) and (15), 
we can easily conclude that .is L∞∈   At last by 
using  Barbalat’s lemma [8], we know 0is → , and 
all the signals in the closed-loop system is bounded, 
and the states of the system converge to zero as 
t →∞ . This ends the proof of the theorem.  
 
 
 

4. SIMULATION RESULTS 
 
      The parameters of the X-Z inverted pendulum 
are chosen as in Table 1. 

Table 1. The parameters of the X-Z 
inverted pendulum. 

 
The parameters of the sliding mode control are 

chosen as 1 3 2 1 3 22, 0.5, 1, 0.2.k k kλ λ λ= = = = = =   
The fuzzy logic system uses ξ  and 1u  as the 

inputs. For each variable of ξ , we define three 
Gaussian membership functions uniformly 
distributed on the interval [ 1,1]− . And with respect 
to 1u , we define five Gaussian membership 
functions uniformly distributed on the interval 
[ 40,40]− .  The Gaussian membership functions of 
ξ  are shown in Fig.2. 

 
Fig.2: Gaussian Membership Functions  

Of ξ  
The initial values of the system are chosen as 
(0) 0.5,x =  (0) 0,x =  (0) 0.7,z =  (0) 0.2,z =  

(0) / 4θ π= ,  (0) 0.θ =  The initial values of the 
fuzzy system are chosen as (0) 0ϑ = .  The system 
uncertainties in (8) are assumed to be: 
 ( ) 0.1 sin .f tξ θ= +   (35) 

The simulation results are shown in Fig.3-Fig.6. 
From the simulation results we can conclude that 
the stabilization of the X-Z inverted system is 
achieved and the system performance is good. 
 
 

M  (kg) m  (kg) l  (m) g  (m/s2) 

1 0.1 0.5 9.8 
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Fig.3: Stabilization Of The X-Z Inverted Pendulum. 

 

 
Fig.4: The Control Inputs. 

 
5. CONCLUSIONS 
     
In this paper, the equivalent transform of the X-Z 
inverted pendulum is given and the adaptive fuzzy 
sliding mode controller is designed for X-Z 
inverted pendulum. The major contributions of our 
work can be summarized as the following points. 
Firstly, we give the equivalent transform of the 
inverted pendulum. Secondly, the fuzzy system is 
employed to approximate the unknown system 
uncertainties as well as the intermediate control 
input functions. The controller we designed can 
guarantee the stabilization of the system and all the 
signals in the closed-loop system keep bounded. 
The simulation results show that good control 
performance is achieved. 
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