
Journal of Theoretical and Applied Information Technology
 31st March 2013. Vol. 49 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

805

 CLOUD DATA MANAGEMENT: SYSTEM INSTANCES AND
CURRENT RESEARCH

1CHEN ZHIKUN, 1YANG SHUQIANG, 1ZHAO HUI, 2ZHANG GE, 2YANG HUIYU, 1TAN

SHUANG, 1HE LI
1Department of Computer Science, National University of Defense Technology, Changsha China
2Senior Engineer, Beijing Aeronautics Engineering Technology Research Center, Beijing China

E-mail: 1zkchen@nudt.edu.cn

ABSTRACT

With the development of Internet technology and cloud computing, cloud data management technology has
emerged while the technology of traditional database management cannot meet the requirement. In this
paper, we will compare the features and analyze the difference among the new cloud data management
systems from data model, data partition schema, fault-tolerant mechanism of system, the load balancing
mechanism of system and the model of data consistency and availability. And then we analyze and verified
the system performance between the two open-source systems. Finally, research statuses of the cloud data
management technology are analyzed and the key technologies in the research of cloud data management
technology are summarized.

Keywords: Cloud Computing, Cloud Data Management, NoSQL, Massive Data Storage, Big Data

1. INTRODUCTION

With the development of information
technologies, the amount of data generated by the
enterprises or companies growth quickly, and the
data size will reach TB or even PB. And how to
manage and analyze the massive data is a large
challenge for many fields, such as medical,
communication and the Internet etc. For example,
the data increased by dozens of GB every day in
2007, but with the increase of participants people
the data is increased by 2TB every day in 2008.
There are some reporter reports that the data is
increased by 20TB every day now. As the concept
of Cloud Computing [1], the researcher proposes
the concept of cloud data management to solve the
massive data management.

The definition of cloud data management is the
storage management technology for massive data in
the cloud environment. So it has to store and
organizes the data in reasonable, and it also has to
ensure the data is highly fault-tolerant and able to
response the queries quickly. There are a lot of
researchers and many enterprises did some works in
cloud data management and they also developed
some system. But there are some researchers have
proposed some doubt in the research of cloud data
management. They thought that there are not any
new substance contents and the research has not
any meaning, it is just a new bottle fill old wine. In
VLDB2010 Divyakant Agrawal [2] has responded

to those questions. Cloud data management
technology is proposed under the cloud computer,
and it has to base on cloud computer. So in the
research of cloud data management will face a lot
of challenges which cannot predict in traditional
data management. In the industry such as Google,
Yahoo! and Facebook have done many research and
development, and they all have developed some
cloud data management system. And some of them
have been used in the actual application. So the
research of cloud data management will be an
important research branch in the field of Cloud
Computer.

In this paper we will analyze the cloud data
management systems which are wide used in the
actual application and we also compare the
differences of those systems, and we also do some
investigation and analyze of cloud data
management in the academic research.

The rest of paper is structured as follows. We
will analyze some cloud data management systems
which are wide used in actual application in section
2. In section 3 we will compare those systems and
summarize the characteristic of them. Then we will
compare the performance of two open source
system with some experiments in section 4. In
section 5 will analyze the relate research of cloud
data management in academic research. Finally,
conclusion appears in section 6.

http://www.jatit.org/
mailto:1zkchen@nudt.edu.cn

Journal of Theoretical and Applied Information Technology
 31st March 2013. Vol. 49 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

806

2. THE ANALYZE OF CLOUD DATA
MANAGEMENT INSTANCE

The traditional database technology seems weak
in massive data store management, therefore
industry and academic have research a lot on it and
develop some management system for actual
application. The main system is: BigTable [3] of
Google, HBase [4] of Apache, PNUTS [5] of
Yahoo!, Dynamo [6] of Amazon, Cassandra [7][8]
of Apache and so on. In this section we will show
detailed analysis on those cloud data management
system from data model, data partition schema, load
balancing strategy, fault-tolerant strategy and data
consistent model.
2.1 BigTable

Most of application program of Google need deal
with massive structure and half structure data, but
the traditional database technology can’t satisfied
demand of store and process. BigTable is developed
by this drive, and it is the large-scale data
management system which has weaker consistency,
and the data store by multi-dimensions sequence
table. The architecture of servers is Master-Slave. It
uses distribute coordinate service-Chubby [9] to
implement the fault-tolerant management. In this
architecture, the service of store (in GFS [10]) and
management are separated, thereby simplify the
difficulty of the management, and it is easy to
maintenance and man-made controlled. But
BigTable is only deployment in cluster, because the
underlying storage is based on the distributed file
system.

 BigTable is a scattered, multi-dimensions and
sequential sparse table. The data model of BigTable
is shown in Figure 1. The data model includes row,
column and timestamp. We can ensure an only
value of key with row, column and timestamp. And
the value in the table is an unexplained byte array.
In BigTable there are some new concepts such as
row key, column family and qualifier. The column
family is made up by a sequence qualifier with the
same properties; column is only defined by prefix
of column family and postfix of qualifier, such as
column family: qualifier; and row key is the only
key that can identification a row in the table;
column family and qualifier could amend according
to the system requirement. Figure 1 is an example
of webtable, the website with inverted order is the
row key; Contents, Anchor and mime are the
column family. There is not any qualifier of
contents and mime, so the column family can
represent the column’s name directly. There are
two qualifiers for Anchor: cnnsi.com and
my.look.ca. So when represent a column we should

use column family and qualifier, and divide with
colon. Finally, there is new concept of timestamp,
which represents the version number of data.
Because there is only insert operation but not
update in BigTable. Then we have to use the
timestamp to represent the version number.

Row Key Time
Stamp

Contents
Anchor

cnnsi.com my.look.ca
Mime

com.cnn.www CNN

CNN.COM

Text/html<html>……

<html>……

<html>……

T9

T8

T6

T5

T3

Figure 1: Data Model of BigTable

The architecture of BigTable is shown in Figure
2, and the architecture of servers is Master-Slave.
The data partition schema of BigTable is range
partition of the row key. BigTable partitions a
certain range rows of data to a small table which is
known as tablet. And the system will allocate the
tablet to a server which is called tablet server.
Master server will monitor the status of tablet at any
time, and Master server is responsible for the
remote management and load allocate of tablet
server, at last it has to respond the request of Client.
BigTable system rely on the distribute task
scheduler of underlying cluster and the distribute
coordinate service-Chubby. BigTable use Chubby
to store the pointer of ROOT table, so the user can
get the concrete position of Root table by Chubby
lock servers. And then we can get the concrete
position of META table from the ROOT table.
After that we can get the concrete position of tablet
server. Finally we can get the concrete data from
the tablet server. At the same time, BigTable can
get the active status of every tablet server, so we
can detect if there are some nodes failure. The data
recovery of failure node is partition into two parts:
one is the data that have been durable store in the
GFS, it can use the replication strategy to
implement fault-tolerant; the other one is the data
that store in the memory, which have to redo the log
to implement fault-tolerant.
2.2 HBase

HBase is a high-reliability, high performance,
column-oriented, scalable, distributed storage
system, it is a sub-project of Hadoop [11] in
Apache. And its full name is Hadoop Database. The
idea of HBase comes from BigTable of Google, and
it is the open source implement of BigTable.

The data model of HBase is similar to BigTable,
and we will not introduce the data model of HBase.
GFS is used to the underlying storage system of
data files in BigTable, which HBase uses HDFS

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 31st March 2013. Vol. 49 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

807

[12] of Hadoop or S3 [13] or EBS [14] of Amazon
as the underlying storage system. The Master-Slave
architecture is used in the services architecture of
HBase, and it used the Zookeeper [15] to
implement collaboration service instead of chubby
service which is used in BigTable. The architecture
of HBase is shown in Figure 3. The data partition
schema of HBase is range partition of row key
which is used in BigTable too. HBase partitions a
certain range rows of data to a small table which is
known as Region, and the server which is maintain
the information of Region is called RegionServer.
The different column families of the same Region is
stored in different files of HDFS in HBase, so the
HBase is column-oriented storage system. The data
access of HBase is depended on the lock services of
Zookeeper, and the process of query in HBase is
similar to the process of BigTable. When some
RegionServer is down the HMaster can found it
because every RegionServer will report its active
situation to HMaster in a regular interval time. Then
the HMaster will get the Regions which are service
by the down RegionServer from Zookeeper and the
HMaster will redistribute those Regions to the
active RegionServers in the system. Finally
HMaster will check if there has undone HLog in
every Region in the down RegionServer, and then
every region will redo the HLog to ensure the
complement of data. HBase also provide a Shell
query language which is similar to SQL. And user
can do some simple operations (such as insert,
delete, query etc.) based on row key use this
interface.
2.3 PNUTS

PNUTS is a massive parallel data management
system which is deployment across data center in
Yahoo!. And it is used in some filed of Yahoo! such
as user database, social applications, content Meta
data, list management and session data etc. The
PNUTS center is composed of multiple cross-
domain data center. And every data center will use
centralized manage architecture which is similar to
the architecture of BigTable. The data partition
schema of PNUTS can support range partition and
Hash partition. And it uses some optimize methods
to ensure users have low-latency access service and
improve the performance of bulk insert. A table of
PNUTS can support tens of thousands to hundreds
of millions of records, and the increasing of data
record will not affect the performance of the
system, so the system has high scalable character. It
uses multi-levels (data, Meta data and service
component) redundancy measures of data to ensure
the high fault-tolerant and availability. The system
use asynchronous replication strategy to update the

data copies and it can ensure the system has high
performance, but it sacrifices the consistency of
data. PNUTS provides a simple relation data model,
and the data stores in the table as tuples. It can
support the standardize data type (such as integer,
string, Boolean and so on), but it also support the
type of Blob. The tuple structure of PNUTS is
flexible. Every property of a tuple does not need a
corresponding value, and you can add a new
property as you need, but it is not affect the
performance of the query or update operation. For
the table query in PNUTS, we also need to specify
the primary key. The most characteristic of PNUTS
is the consistency model of data. The consistency
model is between the generic transaction
serialization and eventual consistency. It provides a
tuple level time consistency which all nodes with
the same tuple must be performed in the same order
in all update operations.

PNUTS will use range partition of hash partition
to split a table, and it will produce many sub tables
which are called tablets. All tablets will be
decentralized to many servers, and every server will
store hundreds to thousands tablets. The allocation
strategy of tablet is flexible too, we can migrate the
heavier load server’ s tablet to the lighter load
server. So the load of the system will be relative
balance. When a server is down, then we can evenly
allocate its tablets to the active servers. The
architecture of PNUTS is shown in Figure 4. The
system is distribution deployed by the domain, but
it is not necessarily located in the different
geographical areas. As shown in Figure 4 we can
know that every domain contains the components of
the system and the all data of every table. The
storage unit is responsible for storing the tablets of
data. Tablet controller is responsible for deciding
when to split and move the tablet, and it also store
the map table of the data with tablets. Router unit is
responsible for storing the partial cache of map
information which is map table of data with tablets,
and it will get the latest map information from the
tablet controller in a regular interval time. So the
system will do the following steps to complete a
data operation. First, we have to get the correspond
tablet of the data from the router unit. If we cannot
find the map information from router unit or there is
not record range of this data, we will do the second
step. Second, the router unit will send a message to
tablet controller to get correspond map information.
At last, when we get the map information of data
with the tablet we will operate the store unit. YMB
(Yahoo! Message Broker) is topic-based messages
publish/subscribe system, which can record the log
of the system and it also provide a reliable message

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 31st March 2013. Vol. 49 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

808

channel to redo log. The asynchronous replication
of data copies and the fault recovery of PNUTS are
implemented by YMB.

PNUTS provides a simple relation data model,
and the data stores in the table as tuples. It can
support the standardize data type (such as integer,
string, Boolean and so on), but it also support the
type of Blob. The tuple structure of PNUTS is
flexible. Every property of a tuple does not need a
corresponding value, and you can add a new
property as you need, but it is not affect the
performance of the query or update operation. For
the table query in PNUTS, we also need to specify
the primary key. The most characteristic of PNUTS
is the consistency model of data. The consistency
model is between the generic transaction
serialization and eventual consistency. It provides a
tuple level time consistency which all nodes with
the same tuple must be performed in the same order
in all update operations.

PNUTS will use range partition of hash partition
to split a table, and it will produce many sub tables
which are called tablets. All tablets will be
decentralized to many servers, and every server will
store hundreds to thousands tablets. The allocation
strategy of tablet is flexible too, we can migrate the
heavier load server’ s tablet to the lighter load
server. So the load of the system will be relative
balance. When a server is down, then we can evenly
allocate its tablets to the active servers. The
architecture of PNUTS is shown in Figure 4. The
system is distribution deployed by the domain, but
it is not necessarily located in the different
geographical areas. As shown in Figure 4 we can
know that every domain contains the components of
the system and the all data of every table. The
storage unit is responsible for storing the tablets of
data. Tablet controller is responsible for deciding
when to split and move the tablet, and it also store
the map table of the data with tablets. Router unit is
responsible for storing the partial cache of map
information which is map table of data with tablets,
and it will get the latest map information from the
tablet controller in a regular interval time. So the
system will do the following steps to complete a
data operation. First, we have to get the correspond
tablet of the data from the router unit. If we cannot
find the map information from router unit or there is
not record range of this data, we will do the second
step. Second, the router unit will send a message to
tablet controller to get correspond map information.
At last, when we get the map information of data
with the tablet we will operate the store unit. YMB
(Yahoo! Message Broker) is topic-based messages
publish/subscribe system, which can record the log

of the system and it also provide a reliable message
channel to redo log. The asynchronous replication
of data copies and the fault recovery of PNUTS are
implemented by YMB.
2.4 Dynamo

Dynamo is a decentralized massive data
management system which is based on distributes
hash. And its consistency model of data is eventual
consistency. The data in Dynamo is organized by
key-value, and it is mainly store the raw data. The
overlay of servers is P2P architecture. Under this
architecture every node of the system can know
each other and they have the ability to self-
management, and there is no single point failure. So
it has the characteristics of high availability, high
scalability and performance.

The consistent hash algorithm (CHA) [16] is
used to partition the data in Dynamo. CHA uses a
hash function to partition the data base on the key
value to N segments, and then connect the range of
hash function end to end to form a ring. For
example, there are S servers, and then we can know
there are N/S data segments stored in every server.
Data segments in the ring are allocate to the node in
the order cycle of nodes. We can take an example
such as Figure 5. The data is partitioned to 12
segments, and there are 3 servers in the cluster. So
we can know every server will responsible for some
range of key value. When there is some operation
(read, insert or update) request, we need computer
the hash value of the key first, and then the first
node in the ring will be the node to complete the
request. When there are new nodes insert into the
cluster, and does the data need to redistribute? The
data redistribute result is show in Figure 6. We can
know that there is only need move 1/4 data to the
new node, and we do not need to redistribute all
data. So the advantages of using consistent hashing
algorithm for data partitioning are as follows.
 We can locate the node through the hash value

of key, so it can partition data automatic.
 The system is high scalable, it can reduce the

amount of data that have been redistributed
when there are node expansion.

Figure 5: Data Split Method of Dynamo

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 31st March 2013. Vol. 49 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

809

Figure 6: Insert one Node to Dynamo Cluster

Dynamo use the technology of virtual node to
solve the load imbalance which is produced by node
heterogeneous and the randomness access by user.
The technology of virtual node split a physical node
into several virtual nodes, and then maps every
virtual node to the hash ring. The technology is
expanding by CHA. The stronger machine will split
into more virtual nodes in general. And the system
will allocate the heavier load virtual node to the
physical machine which has stronger performance.
So the load of system will be balance as possible.

Dynamo implements the concurrent data access
and high availability through redundant storage of
data. The data copy of Dynamo is asynchronous
replication through gossip protocol. And it
implements the data consistent through Quorum
algorithm in the client of users. Quorum
algorithm is the core algorithm of Dynamo, which
is called <N, R, W> model. The N is represent the
replication number of data, R represents how many
replications need to be read a least in a successful
read operation, W is represents how many
replications need to be write a least in a successful
write operation. Finally in order to ensure the
consistent of data the sum of R and W must more
than N (R+W>N). So that there will some
intersection between read and write, and then we
can get the latest data through the version of data.
We can know that this model is a tradeoff between
the efficiency of read and write. If you want to get a
high efficiency of read you should set a low value
of R, otherwise we want to get a high efficiency of
write you should set a low value of W. The
parameters of this strategy are controlled by user, so
it can get a high performance by the application
requirement of users.

Every node in Dynamo can get other nodes active
situation through gossip protocol, then to detect if
there is any node down. Dynamo use different
recovery strategy in different failure (temporary
failure or durable failure). In the situation of
temporary failure, the system will write the data to a
temporary table to an available node. The data of

temporary table will be written back to the
destination node which is recovered from the
failure. In the situation of durable failure, we can
implement the data recovery through the copy of
replication. When a node is failure the Synchronous
of replication is implemented by Merkel tree [20].
Every node will maintain an independent Merkel
tree with its key range. When there is Inconsistent
of data, they will compare those two Merkel tree to
implement the synchronous of data.
2.5 Cassandra

Facebook is the largest social networking
platform in the world, it has tens of thousands of
servers in various data centers around the world,
and it need to provide services to hundreds of
millions of users in the peak. The user of Facebook
in growing quickly and the data is increasing rapid
too, so in order to provide high quality, reliable and
efficient service to users, Facebook must face up to
massive data processing requirements. And
Facebook needs to develop a high degree of
extensibility system to solve the problem which is
produce by the growing number of users and data.
The exception is perfect normal in such large
system; there are some failure of servers and
network component too. The system must use some
failure-tolerance schema to process those failure
instead of process it as the system exception. In
order to solve those problems, Facebook develop
the Cassandra system. The system can provide a
high reliable and scalable service for the social
network platform. The system is contributed to the
open source community-Apache in 2008.

The data model of Cassandra is similar to
BigTable. It uses the concept of class family, but it
does some expansion. The model adds the concept
of super column to expand the model of BigTable.
Every table has a primary key in Cassandra, but the
primary key is a string which does not limit the size
of string. The table of Cassandra is a distribution
multi-dimensions chart which is indexed by primary
key. The data model of Cassandra is similar to the
column family model of BigTable. They will
combine multi columns to form a column set which
is called column family. But Cassandra expands the
concept of column family; it provides two type of
column family: simple column family and super
column family. The simple column family is similar
to the concept of column family, but the super
column family is the set of column family. When
we access a table we should know the following
value: primary key, column family, column and
timestamp. But if the table has super column family
we should specify the super column family too.

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 31st March 2013. Vol. 49 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

810

The data partition schema of Cassandra is similar
to Dynamo-Consistent Hash Algorithm. It can
evenly distribute the data to servers to ensure the
system’s load is balance to avoid the problem of
hot spot. It also make the system high scalable. The
nodes are heterogamous in Cassandra, so the system
’s load will be imbalance. In Dynamo will use the
technology of virtual node to solve this problem.
But in Cassandra we will analyze the load
information in the ring of system, and then move
the position of node which has lighter load to
rebalance the system’s load. The detail we can
find in [17]. We use the data replication to ensure
the data’s reliable in Cassandra, and we will use
the Gossip protocol to asynchronous replication of
data copies. We use the Accrual Failure Detector
[18] base on Gossip protocol to implement failure
detect. The detect schema does not produce a
Boolean value to represent the active situation of a
node; otherwise this component will produce a
suspect level value to represent the failure ratio of
the node. The system’s accuracy and speed are
very good which are proved in the experiment, and
they are also well adapted to different network and
server load environment.

In short, Cassandra is a distributed storage
system which is designed for massive data storage,
data reliable and the query requirement based on
key-value. It cannot support the complex relation
query, but the query performance and response time
of simple query based on key is much better than
relation database. In today's popular online
communities, B2B as well as B2C Web site will
face the challenge of massive data and a large
amount of information throughput per day. The
key-value distributed storage system such as
Cassandra can solve those challenges easier than
relation database, and it will gradually be more
widely applied in the future.

3. COMPARE THE CHARACTERISTICS OF
CLOUD DATA MANAGEMENT SYSTEMS

We discussed and analyzed the detail of some
more popular massive data management database in
section1, and we can know they are all high
scalability, high availability and high fault-tolerant.
But they will have different solution when they face
those problems; because of they have different
application requirements. In this section we will
compare those system from consistent model, data
management method, data model, data partition
schema, the solution of data available, load balance,
failure detect and failure recovery and so on. The

result of compare is shown in table 1 which is based
on the result of [19].

Eric Brewer proposed the famous theory of CAP
[21]. Which C represents the Consistency, A
represents Availability and P represents Tolerance
of network Partition. The theory point out that we
cannot get all CAP in a system, we have to sacrifice
one of them in a system. We can know from table1
that the popular cloud data management system are
all do some sacrifice in CAP. For example, the
Dynamo system improves the A and P, but it
sacrifices the C. The NRW strategy is the tradeoff
between C and A. Once the value of W is increased
then the Consistent of data will be enhanced and the
Availability of data will be less. Otherwise, once
the value of W is reduced then the Consistent of
data will be less and the Availability of data will be
enhanced. The Consistent model of systems such as
BigTable and HBase is weak consistency, but the
availability is sacrifice much more than the
consistent. So those systems do more work on
consistency and tolerance of network partition but
sacrifice the availability of system. In fact, these
three characteristics are relative, they just emphasis
more on a feature but do not completely abandon
other features. In [3] have mentioned that the
average cannot available of "some" data time is
about 0.0047%. And we know that the system is
high availability, but these three characteristics in
comparison availability abandon some more. In
[22] has summarized the location of existing
popular cloud data management systems and
relation database products in the CAP connection.
In Figure 7 we can know the tradeoff of CAP in
every product.

Figure 7: The position of Database System in CAP

4. EXPERIMENTS AND RESULTS
ANALYSIS

Based on the analysis of the above, we will
compare the performance (read, write etc.) of the
system through some experiments. BigTable,

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 31st March 2013. Vol. 49 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

811

PNUTS and Dynamo are not open source, so we
just compare the two open source systems (HBase
and Cassandra) in this section.
4.1 Experiments Environment

The experiments were constructed HBase cluster
and Cassandra cluster, which are all deployed in
Ubuntu system and there are 12 nodes in each
cluster. And the CPU of each node is Intel dual-core
2.4G, and the RAM is 4G, the capability of each
disk is 500G. In the HBase cluster, one node will be
the HMaster and the other 11 nodes will all be
RegionServer. Three of them will be the Zookeeper
node too. The Hadoop and HBase will in the same
cluster. The Cassandra system is decentralized, so
we will deploy the Cassandra system in those 12
nodes.

In the experiments we will use the YCSB [23]
Benchmark which is provided by Yahoo! to
measure the performance of those two systems.
There are some workloads which provided by
YCSB to measure performance of cloud data
management system. But the detail of the
architecture of YCSB and the type of workload are
described in [23]. In our experiments we just do
workload A and workload B. The difference
between workload A and workload B is just the
ratio of read and write. The ratio of workload A is
1:1, but the ratio of workload B is 19:1. And we
will generate 100G data insert into those two
clusters before start our experiments. We will do
5,000,000 operations in every experiment. We will
measure the throughput and read/write latency
when change the degree of concurrency of
operation.
4.2 Experiment Results and Analysis

In the YCSB measures the read/write latency
through change the target throughput, and it also
measures the scalability of the system through
change the number of servers. In this paper we will
measure the performance of the system from
another view. We will measure the relationship
between the degree of concurrency and throughput
of the system. And we also measure the read/write
latency in the particular degree of concurrency. The
experiment of scalability will not redo in this paper,
and the detail of experiment results can see in
Reference [23].
A) Workload A-Update Heavy

The ratio of read and update in workload A is 1:1
and it is called updated heavy workload. The
experiment result is shown in Figure. 8. The
relation between throughput and degree of
concurrency is shown in Figure 8-(a). We can know
that when the degree of concurrency is increasing
then the throughput of both HBase and Cassandra

will increase. But the variant of HBase is small and
the throughput can be in a steady range. The
relation between throughput and degree of
concurrency in Cassandra is complicate. There are
tradeoff relation between throughput and degree of
concurrency. And it is not the relation that you
increase the degree of concurrency then you can get
a higher throughput. There is threshold in the
concurrency. If the concurrency does not over this
threshold, then you can get greater throughput when
increases the concurrency. If the concurrency overs
this threshold, then you can get lower throughput
when increases the concurrency. The throughput of
Cassandra is higher than HBase in workload A,
because of the read latency of HBase is larger than
Cassandra. The cache hit ratio of read operation in
update heavy workload of HBase result in the large
read latency, and it is shown in Figure 8-(c). The
update performances of HBase and Cassandra are
shown in Figure 8-(b). The update operation of
HBase is completed in MemCache, so the update
latency of HBase is lower than Cassandra. If there
are massive concurrency write in HBase then the
write performance of the system will reduce.
Because in the process of writing required to
maintain the consistent of log and the splitting of
Region. But the write performance of Cassandra is
very well too, because the consistency model of
Cassandra is eventual consistency.
B) Workload B-Read Heavy

(a)

(b)

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 31st March 2013. Vol. 49 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

812

(c)

Figure 8: Workload A (Update heavy): (a)
Throughput, (b) Update Latency, (c) Read Latency

The ratio of read and update in workload B is
19:1 and it is called read heavy workload. The
experiment result of workload B is shown in Figure
9. We can know that the read latency of Cassandra
is larger than HBase from Figure 9-(c). The reason
is that Cassandra has to read more than one
replication to determine the value of particular key.
The read operation of HBase is only need to three
times location to find the RegionServer. And the
distribution of operation keys is a Zipfan
distribution, and then the hit rate of the cache of
RegionServer position will be very high. So the
read latency of HBase will be very low. The update
latency has discussed in workload A and the ratio of
update in workload B is very low, so the update
latency is low too, which is shown in Figure 9-(b).
We can get result that the throughput of HBase is
higher than Cassandra, which is concluded from the
read/update latency of two systems. The relation
between throughput and concurrency is shown in
Figure 9-(a).

From the experiments of workload A and
Workload B, we can know that the performance of
HBase is better than Cassandra in the update heavy
load, otherwise Cassandra will better than HBase
when the workload is update heavy. So we have
some conclusion from the experiments. First,
HBase on support for concurrent load is better than
Cassandra. Second, the read performance of HBase
is better than Cassandra when the distribution of
request key is Zipfan distribution. Third, if there are
massive write operations then the performance of
Cassandra is better than HBase. So when we select
a system to actual application should base on the
request of the application.

(a)

(b)

(c)

Figure 9: Workload B (Read heavy): (a) Throughput,
(b) Update Latency, (c) Read Latency

5. CURRENT RESEARCH OF CLOUD
DATA MANAGEMENT

With the development of cloud computing and
requirements of massive data processing on large-
scale application platform in the Internet, it is
necessary to research a system which can
reasonable store and manage the massive data. The
system can respond quickly to users’ requests and
ensure that the system has features of high
scalability, high availability and high fault-tolerant.
Therefore, the researching of cloud data
management is a popular research direction in the
field of cloud computing. The researching and
progress of cloud data management in academic
will be discussed and analyzed in this section.

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 31st March 2013. Vol. 49 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

813

Google proposed BigTable data management
system in 2006 whenever the cloud computing
technology has not really been put forward. The
system is mainly for massive distributed data
storage management and the system has
characteristics of high scalability, high availability
and high fault-tolerant. In 2011, Google proposed
Megastore [24] system which is mainly designed to
face the needs of online interactive services. It can
respond quickly to user’ s requests. Megastore
system is based on BigTable and draws on the
scalability of the NoSQL and the convenience of
the traditional RDBMS, so that the system has a
strong consistency guarantees and high availability.
The system also concerns on consistency (C) and
availability (A). Some other large Internet
companies such as the Amazon, Yahoo! also
developed a corresponding system, Dynamo and
PNUTS. Driven by the prototype which these
companies to developed, there are some companies
develop the open-source system based on the
concept of these systems, such as HBase and
HyperTable [25] are open source implementation of
BigTable and Cassandra is an open source
implementation of Dynamo.

Under the promotion of Google, Yahoo!,
Amazon and other companies as well as the open
source systems, domestic and foreign academic
circles conducted the appropriate research on the
cloud data management system and have formed
their own system. Reference [26] proposed the Epic
system, which is mainly used for storage and
processing of data in the cloud platform. It is able to
handle data-intensive OLAP and OLTP tasks.
Sudipto proposed a flexible transaction data storage
system in the cloud environment-ElasTras in [27].
They proposed a scalable data management system
in a cloud environment to support the Multi-key
transaction-GStore [28] which is based on ElasTras.
A data management system mixed with MapReduce
clouds and the DBMS-HadoopDB is proposed
when the research team from Yale University
Daniel J. Abadi is on the basis of taking into
account the advantages and disadvantages of the
MapReduce architecture and parallel DBMS in
[29][30]. Thereby, it makes the system able to give
full play to the advantages of MapReduce and the
DBMS system to achieve the highest performance.
Reference [31] proposed the Starfish system for the
requirements for the need for timely analysis and
lower cost of large data processing. The system is
implemented on the basis of the Hadoop project. It
is a data management system that has a rapid
analysis of large data and the ability to self-adjust.
The cloud data management project team of

Renmin University of China which is led by
Xiaofeng Meng has developed a TaiJiDB [32]
which is a dual-core cloud database management
system. Its architecture mixes the Master-Slave
architecture of cloud storage and peer-to-peer
architecture. So it can use both advantage of those
two architectures. It supports the SQL language to
manage the massive data in the cloud database
system. Achievements of academic are not only
that, there are many cloud data management
systems. CouchDB [33], MongoDB [34] are the
cloud data management system for document type;
Ceph [35], Sinfonia [36] are designed for the
storage object, and their goal is to get higher
performance in the object-based query so as to
replace the collection-based query.

When the Cloud data management platform is
established, the user's query will be faced with
massive data. How to improve query efficiency and
response quickly to users’ queries also need to be
solved in the cloud data management. By the
inspiration of the relational database to improve
query efficiency, we can know that index
mechanisms of Cloud data management system can
be established to speed up query performance.
Index mechanism in the cloud data management
system also has a lot of research in academia, and
there are some representative research
achievements. References [37][38][39] establish an
one-dimensional index in the cloud data
management system to speed up query
performance. They establish a local index on the
physical node which is the actual storage of data
and establish a global index in the main system
service node. When a user query request, it can
locate the physical node by the global index to
quickly find the corresponding data from the
physical node on the local index, so as to accelerate
the efficiency of query. The index mechanisms of
[38][39] are based on Epic System [26]. The
research team proposed RT-CAN indexing
mechanism for multidimensional queries in the
Epic system in literature [40], and the index is
based on the achievement of the above researches.
It establishes the R-Tree index for local data on
each node. Thus, it selects the best node in the R-
Tree to publish according to a query cost-aware
algorithm. Then save frequently connected nodes
and maintain a global multi-dimensional search
index. So users can find the node containing the
results through the least number of hops, and the
index model can be extended according to the
expansion of the size of the amount of data and the
number of compute nodes. The index mechanism
has been experimented in the Amazon EC2, and the

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 31st March 2013. Vol. 49 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

814

experiments results showed that RT-CAN indexing
mechanism is strong, effective and scalable.
Reference [41] proposed a multidimensional index
structure for the cloud data management system.
The index structure is designed for Master-slave
architecture management platform. It establishes
the KD-Tree index for the local data on each slave
node. Master node will establish an R-Tree index
for Slave nodes ’ index. The literature also
proposed an update strategy based on the cost of
index to update the index structure effective and
improve update efficiency, and the effectiveness of
the index mechanism has been verified by
experiments. Reference [42] proposed a similar
DBMS index framework contains a similar
distribution of B+-Tree index, distributed
multidimensional index mechanism. In order to
speed up the efficiency of data query, which users
only need to select the appropriate index
mechanism to establish for the data. And the index
framework is scalability and effectiveness which
have been varied in Amazon EC2.

The research of cloud data management is not
only concern on the system and index mechanism,
there are a lot of related technologies need to be
researched. Such as the expansion of the data
model, system load balancing strategies, query
processing research and data security and privacy
issues in the cloud data management. Now, both
academia and industry do a lot of researches to
establish the system, data storage and data index,
while little for security issues in query processing
and data management in the cloud. This requires a
lot of researches on the future research of cloud
data management. So the cloud data management
technology is more and more mature, it will be
widely used in the future.
6. CONCLUSIONS

This paper mainly discuss the forward position
technology of cloud data management, the actual
instances of concrete cloud data management
system through the data model, data partition
schema, fault-tolerant mechanism of system, load
balancing technology of system, data consistency,
availability model and other aspects are analyzed
and studied. The paper also Contrast the
performance of two open source system detailed by
experiment. Finally, the current research situation
of cloud data management is investigated. With the
development of cloud compute technology and
internet technology, we believe that the research of
cloud data management technology will be a focus
in the industry and academic.

ACKNOWLEDGEMENTS

This work is supported by Natural Science
Foundation of China (60933005, 91124002);
National High Technology Research and
Development Plan of China ("863"
plan)(2010AA012505, 2011AA010702,
2012AA01A401, 2012AA01A402); The National
Key Technology Research and Development
Program of China (2012BAH38B04,
2012BAH38B06); National 242 Information
Security Program of China (2011A010).

REFRENCES:
[1] Sims K. IBM introduces ready-to-use cloud

computing collaboration services get clients
started with cloud computing [OL].
http://www-
03.ibm.com/press/us/en/pressrelease/22613.w
ss.

[2] Divyakant Agrawal, Sudipto Das, Amr El
Abbadi, Big Data and Cloud Computing: New
Wine or just New Bottles? [J], VLDB
Endowment, 3(1-2), 2010, pp. 1647-1648.

[3] F. Chang, J. Dean, S. Ghemawat, W. C.
Hsieh, et al, “BigTable: A Distributed Storage
System for Structured Data” [C], Proc of the
7th OSDI, ACM, 2006, pp. 205–218.

[4] HBase Development Team. “HBase:
BigTable-like structured storage for Hadoop
HDFS” [OL].
http://wiki.apache.org/hadoop/Hbase/.

[5] Brian F. Cooper, Raghu Ramakrishnan,
Utkarsh Srivastava, et al, “PNUTS: Yahoo!'s
Hosted Data Serving Platform” [J], VLDB
Endowment, 1(2), 2008, 1277-1288.

[6] G DeCandia, D Hastorun, M Jampani, et al,
“Dynamo: Amazon’s highly available key-
value store”, Proc of SOSP: ACM, 2007, pp.
205-220.

[7] A. Lakshman, P. Malik, K. Ranganathan,
“Cassandra: A structured storage system on a
p2p network” [C], Proc of SPAA: ACM, 2009,
pp. 47-47.

[8] A. Lakshman, P. Malik, “Cassandra: a
decentralized structured storage system” [C],
Proc of ACM SIGOPS Operating Systems
Review, 44(2), 2010, pp. 35-40.

[9] Burrows M, “The chubby lock service for
loosely-coupled distributed systems” [C],
Proc of the 7th OSDI: USENIX, 2006, pp.
335−350.

[10] Sanjay Ghemawat, Howard Gobioff, Shun-
Tak Leung, “The Google File System” [C],
Proc of SOSP: ACM, 2003: 29-43.

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 31st March 2013. Vol. 49 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

815

[11] Apache Hadoop [OL],
http://hadoop.apache.org/.

[12] Apache HDFS [OL],
http://hadoop.apache.org/hdfs/.

[13] Amazon S3 [OL],
http://en.wikipedia.org/wiki/Amazon_S3.

[14] Amazon EBS [OL],
http://aws.amazon.com/ebs/.

[15] Apache Zookeeper [OL],
http://zookeeper.apache.org/.

[16] Karger. D, Lehman. E, Leighton. T, et al,
“Consistent hashing and random trees” [C],
Proc of the 29th STOC: ACM, 1997, pp. 654-
663.

[17] Ion Stoica, Robert Morris, David Liben-
nowell, et al, “Chord: a scalable peer-to-peer
lookup protocol for internet applications” [J],
IEEE/ACM Transactions on Networking,
11(1), 2003, pp. 17-32.

[18] Xavier Defago, Peter Urban, Naohiro
Hayashibara, et al, “The φ accrual failure
detector” [C], Proc of the 23rd International
Symposium on Reliable Distributed Systems:
IEEE, 2004, pp. 66-78.

[19] Sijie Guo, Hongfei Jia, Jing Xiong, “The
Technology Survey of Massive Data Storage
and Processing in Internet” [J], Information
Technology Letter, 7(5), 2009, pp. 1-29.

[20] R. Merkle, “A digital signature based on a
conventional encryption function” [C], Proc
of the 7th Crypt.: Springer, 1987, pp. 369-
378.

[21] Eric A. Brewer, “Towards robust distributed
systems” (Invited Talk) [C], Proc of the 19th
Principles of Distributed Computing: ACM,
2000.

[22] Eben Hewitt, “Cassandra: The Definitive
Guide” [M], O’Reilly Media, 2011, pp. 20-
22.

[23] Brian F. Cooper, Adam Silberstein, Erwin
Tam, et al, “Benchmarking Cloud Serving

Systems with YCSB” [C], Proc of the 1st
SOCC: ACM, 2010, pp. 143-154.

[24] Jason Baker, Chris Bond, James C. Corbett, et
al, “Megastore: Providing Scalable, Highly
Available Storage for Interactive Services”
[C], Proc of the 5th CIDR: ACM, 2011, pp.
223-234.

[25] HyperTable [OL], http://hypertable.org/.
[26] Chun Chen, Gang Chen, Dawei Jiang, et al,

“Providing Scalable Database Services on the
Cloud” [C], Proc of the 11th Wise: Springer,
2010, pp. 1-19.

[27] Sudipto Das, Divyakant Agrawal, Amr El
Abbadi, “ElasTraS: An Elastic Transactional
Data Store in the Cloud” [R], UCSB, 2010.

[28] Sudipto Das, Divyakant Agrawal, Amr El
Abbadi, “G-Store: A Scalable Data Store for
Transactional Multi key Access in the Cloud”
[C], Proc of the 1st SoCC: ACM, 2010, pp.
163-174.

[29] Azza Abouzeid, Kamil BajdaPawlikowski,
Daniel Abadi, et al, “HadoopDB: An
Architectural Hybrid of MapReduce and
DBMS Technologies for Analytical
Workloads” [C], Proc of VLDB: ACM, 2009,
pp. 922-933.

[30] Azza Abouzied, Kamil Bajda-Pawlikowski,
Jiewen Huang, et al, “HadoopDB in Action:
Building Real World Applications” [C], Proc
of SIGMOD: ACM, 2010, pp. 1111-1114.

[31] Herodotos Herodotou, Harold Lim, Gang Luo,
et al, “Starfish: A Self-tuning System for Big
Data Analytics” [C], Proc of 5th CIDR: ACM,
2011, pp. 261-272.

[32] X. Hu, J. Zhao, X. Meng, et al, “TaijiDB: A
Dual-Core Cloud-based Database System”
[C], Journal of Computer Research and
Development, Proc of NDBC, 2010, pp. 433-
437.

[33] J. Chris Anderson, Jan Lehnardt, and Noah
Slater, “CouchDB: The Definitive Guide”
[M]. O’Reilly Media，2010.

[34] K. Chodorow, M. Dirolf, “MongoDB: The
Definitive Guide” [M]. O’Reilly Media, 2010.

[35] S. A.Weil, S. A.Brandt, E. L.Miller, et al,
“Ceph: A scalable, high-performance
distributed file system” [C], Proc of the 7th
OSDI: ACM, 2006, pp. 307-320.

[36] M. K. Aguilera, A. Merchant, M. Shah, et al,
“Sinfonia: A new paradigm for building
scalable distributed systems” [C], Proc of 21st
SOSP: ACM, 2007, pp. 159-174.

[37] M. K. Aguilera, W. Golab, M.A.Shah, “A
Practical Scalable Distributed B-Tree” [J],
VLDB Endowment, 1 (1), 2008, pp. 598-609.

[38] S.Wu, K.-L. Wu, “An Indexing Framework
for Efficient Retrieval on the Cloud” [J], IEEE
Data Engineering Bulletin, 32(1), 2009, pp.
77–84.

[39] S. Wu, D. Jiang, B. C. Ooi , et al, “CG-Index:
A Scalable B+-tree Based Indexing Scheme
for Cloud Data Management Systems” [J],
VLDB Endowment, 3(1-2), 2010, pp. 1207-
1218.

[40] Jinbao Wang, Sai Wu, Hong Gao, et al,
“Indexing Multi-dimensional Data in a Cloud
System” [C], Proc of SIGMOD: ACM, 2010,
pp. 591-602.

http://www.jatit.org/
http://hypertable.org/.2009

Journal of Theoretical and Applied Information Technology
 31st March 2013. Vol. 49 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

816

[41] X. Zhang, Z. Wang, J. Ai, et al, “An Efficient
Multi-Dimensional Index for Cloud Data
Management” [C], Proc of CloudDB: ACM,
2009, pp. 17-24.

[42] Gang Chen, Hoang Tam Vo, Sai Wu, et al, “A
Framework for Supporting DBMS like
Indexes in the Cloud” [J], VLDB Endowment,
4(11), 2011, pp. 702-713.

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 31st March 2013. Vol. 49 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

817

Master

Tablet ServerTablet Server

Lock ServiceGFSCluster scheduling Master

Tablet Server

BigTable Client

BigTable Client
Library

BigTable Unit

Performs metadata
ops, load balance

Servers data Servers data Servers data

Handles failover,
monitoring

Store tablet
data,logs

Store Metadata, handles
Master-election

Open()

Figure 2: The Architecture of BigTable

Client HMaster

HFile

… … … …

HLog

MemStore MemStoreStore Store

HRegion

HRegionServer

StoreFile

HFile

StoreFile

HFile

StoreFile

HFile

… … … …

HLog

MemStore MemStoreStore Store

HRegion

HRegionServer

StoreFile

HFile

StoreFile

HFile

StoreFile

…
DFS

Client
…

DFS
Client

Zookeeper

DataNode DataNode DataNode DataNode

…

Figure 3: The Architecture of Hbase

Figure 4: The Architecture of PNUTS

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 31st March 2013. Vol. 49 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

818

Table 1: Features Comparison among Cloud Data Management Systems

System BigTable HBase PNUTS Dynamo Cassandra

Data consistency
model

Weak consistency Weak consistency Record eventual time
consistency

Eventual
consistency

Eventual
consistency

Data management Centralized
management

Centralized
management

Centralized
management

Decentralized
management

Decentralized
management

Data model Multi-dimensions
table

Multi-dimensions
table

Relation table Raw data, key-
value

Multi-dimensions
table

Data partition Range partition Range partition Range and hash
partition

Consistent Hash
partition

Consistent Hash
partition

Data high
availability

Data log and data
replication and

replication
Synchronous

Data log and data
replication and

replication
Synchronous

Data replication and
Master-slave

replication strategy of
record-level

Data replication
and asynchronous

replica strategy
through the

Gossip protocol

Data replication and
asynchronous

replica strategy
through the Gossip

protocol
Load balance Master node schedule Master node schedule Master node schedule Virtual node to

reduce load
Chord protocol to

reduce load
Failure detection Chubby lock service

and master node
monitor the tablet

server’s status
through “heartbeat”

Zookeeper service
and master node

monitor the
RegionServers’ status
through “heartbeat”

master node monitor
every node‘s status
through “heartbeat”

Get every node’s
status by Gossip

schema

Get every node’s
status by Gossip

schema

Failure recovery Redo log and GFS‘
Fault-tolerant strategy

Redo log and HDFS‘
Fault-tolerant strategy

Redo log and remote
replication copy

strategy

Redo log failure
recovery by
Merkel tree

Redo log failure
recovery by Merkel

tree
CAP CP CP AP AP AP

Open Source No Yes No No Yes

Featur

http://www.jatit.org/

