
Journal of Theoretical and Applied Information Technology
 31st March 2013. Vol. 49 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

889

NEW MODEL TRANSFORMATION USING REQUIREMENT
TRACEBILITY FROM REQUIREMENT TO UML

BEHAVIORAL DESIGN

1NURI JAZULI KAMARUDIN, 2NOR FAZLIDA MOHD SANI, 3RODZIAH ATAN,
 4NORAINI CHE PA

Department of Computer Science, Department of Information System
University of Putra Malaysia, 43400 Selangor, Malaysia

E-mail: 1njazuli@yahoo.com , 2fazlida@fsktm.upm.edu.my , 3rodziah@fsktm.upm.edu.my ,
4norainip@fsktm.upm.edu.my

ABSTRACT

Model transformation (MT) has become an important concern in Software Engineering [1], because it is
related to system design. Model transformation can be used in many different application scenarios, for
instance, to provide interoperability between models of different size and complexity [2]. Traditionally,
model transformations are done for purposes such as code generation, refinement, and refactoring [3].
Currently, there are researches on Model Transformation from Requirement to Use Case diagram, Use
Case description to Activity diagram and Use Case to Sequence Diagram and many more. However, the
research is based on only one specific output and not comprehensive as it should be because it only
converts the requirement into one specific Unified Modeling Language (UML) diagram at a time.
Transformation model need one important approach, which is the requirement traceability in order to trace
the keywords as input before automatically converted into UML diagram. In this paper, we propose an
approach and tool to transform the requirement into UML model that are Use Case diagram and Activity
diagram since there are still not exist the transformation which is required from requirement into behavioral
UML diagram called RETRANS. It is different from the existing program because this tool will convert the
requirement into two different UML diagrams at a time which is not provided by the existing tool.. We
have also come out with a framework as the main guidance for developing this project.

Keywords: Model transformation (MT), UML model, Requirement traceability.

1. INTRODUCTION

Unified Modeling Language (UML) diagrams
play an important role in software development.
UML is an object modeling language for
specifying, constructing, visualizing, and
documenting the artifacts of software-intensive
system [4] .Commonly used UML diagrams are the
Use Case, Activity and Class diagrams. Use case
and activity diagrams model the behavioral aspect
of the system, whereas, Class diagrams represent
the static design of a system [5]. During the
standard’s development, the requirements evolved
to include support for model-driven development
(MDD) [6].

The realization of model-driven-software
development requires effective techniques for
implementing code generators for domain-specific
languages [7]. Model transformations are central
components in model-driven software development.

Model transformations can be used in many
different application scenarios, for instance, to
provide interoperability between models of
different size and complexity. As a consequence,
they are becoming more and more complex [2].

The core technique is code generation by
model transformation, that is, the generation of a
structured representation (model) of the target
program instead of plain text [7]. These
transformations are often created manually. A semi
automatic process based on well-defined patterns
brings many advantages: it accelerates the
development time of transformations, diminishes
the errors that may occur in manual coding, and
increases the quality of transformational code [2].

One of the most important approaches in
Model Transformation is Requirement Traceability.
Requirement Traceability (RT) refers to the ability
to describe and follow the life of a requirement in

http://www.jatit.org/
mailto:1njazuli@yahoo.com
mailto:2fazlida@fsktm.upm.edu.my
mailto:3rodziah@fsktm.upm.edu.my
mailto:4norainip@fsktm.upm.edu.my

Journal of Theoretical and Applied Information Technology
 31st March 2013. Vol. 49 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

890

both a forwards and backwards direction [8]. It has
been defined as the ‘ability to follow the life of a
requirement in both a forward and backward
direction’ in order to understand the origins of the
requirement and also to determine how a
requirement has been realized in downstream work
products such as design, code and test cases [9].

As what has been mentioned before, our
objectives are to come out with an approach and
tool to transform the requirement into UML design.
However there are few problems arise. First
problem is to choose the best technique to trace the
keywords from the requirement. The main problem
is, how to make our project to be different with
other project since there are lots of developments in
model transformation.

Our project is to present the initial
development on our project called RETRANS to
facilitate system designer in designing the system.

We explain the field that related in our projects
in section 2. Section 3 describes the framework that
we used in developing our tool and section 4 is
about Java Library and initial result of our project.
The conclusion is summarized in our last section.

2. LITERATURE REVIEW

A. UML

Many new fields in computer science have

been discovered. It has led to the emergence of a
variety of new software. Although the software
world has become advanced, UML still be used in
development. UML is an object modeling language
for specifying, constructing, visualizing, and
documenting the artifacts of software-intensive
system [10]. Commonly used UML diagrams are –
Use case, Activity and Class Diagram. Use case
and activity diagrams model the behavioral aspect
of the system, whereas, Class diagrams represent
the static design of a system [5]. .

 In this research, the result would be only use
case, activity and state diagram. Software design
can be achieved by analysis of functional
requirements. UML is a general-purpose modeling
language that models real-world objects [13]. The
unified Modeling Language (UML) has become a
de-facto standard notation for describing analysis
and design models of object-oriented software
systems [11]. As UML is becoming the de-facto
language for software design, it is important to have
a sufficiently rich linguistic structure to model
security specifications accurately [12].

UML uses graphical notations to describe the
system providing abstraction by suppressing the
lower level details. Graphical models are easy to
understand, and if necessary re-implementation of
design can be done with a minimum knowledge
[13]. However the fact that UML lacks a precise
semantics is a serious drawback of UML-based
techniques. UML, being visual in nature, is easy to
understand and communicate but, it lacks the rigor
of formal modeling languages and hence
verification of a model specified in UML and
ensuring requirement traceability within these
models becomes difficult [5]. The serious
disadvantage of UML is its semiformal syntax and
semantics [4]. Modeling from different viewpoints,
successive refinements and the absence of formal
semantics give rise of vertical, horizontal, syntactic
and semantic consistency problems.

B. MODEL TRANSFORMATION

Model transformations are frequently applied

in business process modeling to bridge between
language on a different level of abstraction and
formality [14]. Model transformations can be used
in many different application scenarios, for
instance, to provide interoperability between
models of different size and complexity .As a
consequence, they are becoming more and more
complex.

The main benefit stemming from a successful
m-transformation (model transformation) [15]. A
few of the benefits that stated in that paper are
better information flow between systems, improved
customer projected image, rapid and dynamic
customization of products and services being
offered by the organization. Model transformation
helps to ensure a repeatable and scientific basis for
product testing gives good coverage of all the
behavior of the product and allow tests to be linked
directly to requirements [3].

The development of transformations involves
many repetitive tasks [2]. As a consequence, there
are an increasing number of model transformations
that are being developed for different applications
scenarios. Many new approaches to model-to –
model transformation have been proposed over the
last two years, but little experience is available to
assess their effectiveness in practical applications
[16]. Figure 2.0 shows the running example of the
model that transforms a textual use case description
using RUCM into UML activity diagram [17].

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 31st March 2013. Vol. 49 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

891

C. REQUIREMENT TRACEABILITY

One of approach that used in this project is

requirement traceability. Requirements traceability
helps developers to control and manage the
development and evolution of a software system. It
has been defined as the ‘ability to follow the life of
a requirement in both a forward and backward
direction’ in order to understand the origins of the
requirement and also to determine how a
requirement has been realized in downstream work
products such as design, code and test cases[9].

Despite a growth in specialized tools, and
inflated claims of RT functionality from tool
vendors, their use is not as widespread in practice
as the importance of RT would suggest [18]. It was
found that traceability problems primarily occurred
as a result of breakdowns in communication
between developers who were hard-pressed for
time [3]. A tool chain that is able to generate and to
follow traceability links across model to model and
model to code transformations, and capable of
providing navigability support along these
traceability links [19]. They also provide the
explanation on how low level requirements to
which a certain source code block traces back to by
selecting the given source code block.

3. PROPOSED FRAMEWORK OF

RETRANS.

As what has been mentioned before, the
objective of this research is to automatically
convert user requirement into UML diagram. In
order to have a well constructed project, we have
come out with a new framework to guide us in
proving the approach and developing the tools that
we proposed. The framework divided into 3
phases. First is Requirement phase, second is
Use case phase, and the lastly is Activity phase.

The framework only covers completely the tool
construction. As the figure 1.0 shows, the tools will
start with the requirement. The tool will trace
keywords from user requirement that will be used
in creating use cases and activity diagram. The tool
only traced keywords that related that is actor and
activity. The tool will specify which keywords are
for the use case(s) and which keyword is for the
actor(s).

Second phase in the framework is use case
part. This phase focused on creating the use case.
The tool will collect the keyword that has been
traced before to be as an input. Using the use case
library technique, the tool will arrange the input as
use case(s) and actor(s). The last step in this phase

is, the tool will connect the use case and actor that
has been arranged earlier.

Lastly is activity diagram part. The input for
this phase is from the use case diagram that has
been drawn before. Using the activity diagram
library, the tool will create activity diagram for
each use case.

4. JAVA LIBRARY NEEDED AND

INNITIAL RESULT

In this research, we are using java libraries
for each output that will be generated. A library is a
reusable software component that saves developers
time by providing access to the code that performs
a programming task. Libraries exist to assist with
many different types of tasks. Use case and activity
diagram will be the main output and each of them
will have their own class libraries. We are creating
the libraries because we want to divide each
output’s class into specific class because we want
each library to be reusable library because it is
related with each others. For example, activity
diagram that will be generated in this research are
depending on each use case form use case diagram.

For use case diagram library, the
components are actor and use case. Use case class
library will be used after the detection of the
keywords form the requirement. The keyword will
first detect the actor and use case(s) for the
requirement, and the library will generated the
diagram by connect the actor and use case(s) from
the keywords. Figure 3.0 shows the illustration of
the process.

For activity diagram, the process will take
part after the use case diagram has been generated.
Firstly, the system will specify each use case that
involved in the use case diagram. Then, it will
generate the activity diagram by connect each
component inside the class library (activity). Figure
3.1 shows the illustration of the process.

As what has been mentioned before, the
name of our model is RETRANS. The initial user
interface is as in Figure 3.2 below.

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 31st March 2013. Vol. 49 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

892

In file menu contains instructions such as
open file and exit. The ‘NEXT’ button at the
bottom of the interface is also included . There will
be added improvements on this tool since this tool
is still in development process.

5. CONCLUSION

In this paper, we present about our approach in

transforming the requirement into UML diagram
(use case and activity diagrams). We have
summarized the fields that are related to our
project. We have also come out with a new
framework and java class library in order to help us
proving our approach. The approach will help
software developer reducing their time in design
process.

Acknowledgement

This work is supported by Research
University Grant Scheme (RUGS) received from
the Universiti Putra Malaysia. The principle
investigator of the research project is Dr. Nor
Fazlida Mohd Sani.

REFERENCES:

[1] M.Kessentini, H.Sahraoui, M.Boukadoum, and
O.B.Omar, “Search-based model
transformation by example”, Software and
Systems Modeling (SoSyM), Vol.11 Issue 2,
May 2012, pp.209-226.

[2] M.D.D.Fabro and P.Valduriez, “Towards the
efficient development of model
transformations using model weaving and
matching transformations”, Software and

Systems Modeling, Vol.8, July 1, 2009, pp.305-
324.

[3] E.G.Aydal and J.Woodcock, “Automation of
Model-Based testing through Model
Transformation”, Testing:Academic and
Industrial Conference- Practice and Research
Technique, September 4-6,2009, pp.63.

[4] B.Roussev, “Generating OCL Specifications
and Class Diagrams from Use Cases: A
Newtonian Approach”, Proceedings HICSS’03
Proceedings of the 36th Annual Hawaii
International Conference on System Sciences
(HICSS’03), Vol 9, 2003, pp.321.2.

[5] J. Chanda, A. Kanjilal, S. Sengupta, and S.
Bhattacharya, “ Traceability of requirements
and consistency verification of UML use case,
activity and Class diagram: A Formal
approach”, Proceeding of International
Conference on Methods and Models in
Computer Science, January 22, 2010, pp. 1-4.

[6] R.B. France, S. Ghosh, T. Dinh-Trong, and A.
Solberg, “Model-driven development using
UML 2.0: promises and pitfalls”, IEEE
Computer Society, Vol.39, issue 2, February
2006, pp. 59-66.

[7] Z. Hemel, L.C.L Kats, D.M. Groenewegen,
and E. Visser, “Code Generation by Model
Transformation: A Case Study in
Transformation Modularity”, Software and
System Modeling, Vol.9, Issue 3, 2010, pp.
375-402.

[8] L. Kong and T. Yuan, “Extension Features-
Driven Use Case Model for requirement
traceability”, International Conference on
Computer Science & Education ICCSE ’09,
July 25-28, 2009, pp. 866-870.

[9] J.C. Huang, “Just Enough Requirements
Traceability”, Computer Software and
Applications Conference COMPSAC ’06,
Vol.1, September 17-21, 2006, pp.41-42.

[10] Object management group, OMG unified
modeling Language specification, Version
1.4,SPET.2001, http://www.omg.org

[11] H. Ledang and J. Souquieres, ”Modeling class
operations in B: Application to UML
behavioral diagrams”, Proceedings 16th Annual
International Conference on Automated

Figure 3.2 Initial User interface of RETRANS

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 31st March 2013. Vol. 49 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

893

Software Engineering (ASE 2001),November
26-29,2001, pp. 289-296.

[12] K. Algathbar, “Enhancement of Use Case
Diagram to Capture Authorization
Requirement”, International Conference on
Software Engineering Advance, ICSEA ’09,
September 20-25, 2009, pp.394- 400.

[13] A. Vemulapalli and N. Subramanian,
“Transforming Functional Requirement from
UML into BPEL to Efficiently Develop SOA-
Based Systems”, OTM ’09 Proceedings of the
Confederated International Workshops, 2009,
pp. 337-349.

[14] M. Fanchao, C. Dianhui and Z. Dechen,
“Transformation from Data Flow Diagram to
UML 2.0 Activity Diagram”, International
Conference on Progress in Informatics and
Computing (PIC), Vol. 2, December 10-12,
2010, pp. 1010-1014.

[15] I. Marmaridis and B. Unhelkar, “Challenges in
mobile transformations: a requirement
modeling perspective for small and medium
enterprises”, International Conference on
Mobile Business ICMB 2005, July 11-13, 2005,
pp.16-22.

[16] K. Czarnecki and S.Helsen,” Classification of
Model Transformation Approaches”, OOPSLA
‘03Workshop on Generative Techniques in the
Context of Model-Driven Architecture, 2003.

[17] T. Yue, L.C. Briand, and Y. Labiche, “An
automated Approach to Transform Use Cases
into Activity Diagrams”, Proceedings 6th
European Conference,ECMFA 2010, Vol.
6138, June 15-18,2010

[18] O.C.Z. Gotel, “An analysis of the requirements
traceability problem”, International
Conference on Requirement Engineering 2004,
April 18-22, 1994, pp. 94-101.

[19] T. Levendovszky, D. Balasubramanian, K.
Smyth, F. Shi and G. Karsai, “ A
transformation instance-based approach to
traceability”, ECMFA-TW-’10 Proceedings of
the 6th ECMFA Traceability Workshop, 2010,
pp. 55-60.

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 31st March 2013. Vol. 49 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

894

APPENDIX

Figure 1 Framework For Tool Developing.

Figure 2.0 Running Examples [17]

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 31st March 2013. Vol. 49 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

895

Figure 3.0 Process Of Generating Use Case Diagram By Using Class Library (Use Case)

Figure 3.1 Process Of Generating Activity Diagram By Using Class Library (Activity)

http://www.jatit.org/

