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ABSTRACT 
 

Clustering is a popular necessity having extensive scope for varied applications. We apply the k-means task 
in a situation where the volume of data is large and puts pressure on the access memory. The objective is to 
use less memory and access data sequentially. This paper proposes a method of making the algorithm more 
effective and efficient; so as to get better clustering with reduced complexity. Our algorithm is based on 
recent theoretical results, with significant improvements to make it application friendly. Our approach 
sufficiently simplifies a recently developed algorithm, both in design and  analysis. We prove that our 
algorithm compares favorably with existing algorithms - both theoretically and experimentally, thus 
providing state-of-the-art performance.  Also these algorithms are tested on two datasets and the result is 
simulated. 
Keywords: Clustering, complexity, K-means, Sequential access. 
 
1. INTRODUCTION  
 
Clustering is the process of organizing data 
instances into groups whose members are similar 
in some way. A cluster is therefore a collection of 
data instances which are “similar” to each other 
and are “dissimilar” to data instances in other 
clusters. In the clustering literature, a data 
instance is also called an object. Like in the real 
world an instance may represent an object. It is 
also called a data point as it is seen as a point in 
an r dimension space, where r is the number of 
attributes in the data. Figure 1 shows a 2-
dimensional data set. We can clearly see three 
groups of data points. Each group is a cluster [4]. 
The task of clustering is to find the three clusters 
hidden in the data. Although it is easy for a 
human to visually detect clusters in a 2-
dimensional or even 3-dimensional space, it 
becomes very hard, if not impossible, to detect 
clusters visually as the number of dimensions 
increases. Additionally, in many applications, 
clusters are not as clear-cut or well separated as 

the three clusters in Figure 1. Automatic 
techniques are thus needed for clustering. Three 
natural groups or clusters of data points after 
seeing the example in Figure 1, a question may 
arise: What is clustering for? To answer it, let us 
see some examples of applications in different 
domains. 
Example: Everyday, news agencies around the 
world generate a large number of news articles. If 
a Web site wants to collect these news articles to 
provide an integrated news service, it has to 
organize the collected articles according to some 
topic hierarchy. The question is: What should the 
topics be, and how should they be organized? One 
possibility is to employ a group of human editors 
to do the job. However, the manual organization 
is costly and very time consuming, which makes 
it unsuitable for news and other time sensitive 
information. Throwing all the news articles to the 
readers with no organization is clearly not an 
option. Although classification is able to classify 
news articles according to predefined topics, it is 
not applicable here because classification needs 
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training data, which have to be manually labeled 
with topic classes. Since news topics change 
constantly and rapidly, the training data would 
need to change constantly as well, which is 
infeasible via manual labeling. Clustering is 
clearly a solution for this problem because it 
automatically groups a stream of news articles 
based on their content similarities. Hierarchical 
clustering algorithms can also organize 
documents hierarchically, i.e., each topic may 
contain sub-topics and so on. Topic hierarchies 
are particularly useful for texts. Our discussion 
and examples above also indicate that clustering 
needs a similarity function to measure how 
similar two data points (or objects) are, or 
alternatively a distance function to measure the 
distance between two data points.  The goal of 
clustering is thus to discover the intrinsic 
grouping of the input data through the use of a 
clustering algorithm and a distance function. We 
review recent work on these topics, presenting 
general frameworks that we use to compare and 
contrast two different approaches. We begin with 
the problem of focusing on technique of k-means 
in section 2; we present and relate several 
important notions (pros and cons) for this task, 
followed by our improved suggested disk versed 
k-means pattern, frame work and general goals 
respectively. In sections 3 and 4, empirical 
evaluation of the algorithm on large as well as 
small datasets are shown; and experimental 
results are discussed. Finally we end up with 
conclusion and future work in section 5. 

 
Figure 1. Three Several Groups Or Clusters Of Data 

Points 
 
2. A. K-MEANS 
 
A simple local search heuristic for the k-means 
problem was proposed in 1957 by Lloyd [10]. 
The algorithm begins with k arbitrarily chosen 
points as facilities. At each stage, it allocates the 
points into clusters (each point assigned to closest 
facility) and then computes the center of mass for 
each cluster. These become the new facilities for 
the next phase, and the process repeats until it is 
stable. Incidentally Lloyd’s algorithm has no 
provable approximation bound, and arbitrarily 
loose examples do exist. Further, the worst-case 

running time is exponential [2]. Despite these 
drawbacks, Lloyd’s algorithm (frequently known 
simply as k-means [5]) remains common in 
practice. The idea is to classify a given set of data 
into k number of disjointed clusters, where the 
value of k is fixed in advance. The k-means 
algorithm is the best known partitional clustering 
algorithm. It is perhaps also the most widely used 
among all clustering algorithms due to its 
simplicity and efficiency. Given a set of data 
points and the required number of k clusters (k is 
specified by the user), this algorithm iteratively 
partitions the data into k clusters based on a 
distance function. 
The algorithm consists of two separate phases: the 
first phase is to define k centroids, one for each 
cluster. The next phase is to take each point 
belonging to the given data set and associate it to 
the nearest centroid. Euclidean distance is 
generally considered to determine the distance 
between data points and the centroids. When all 
the points are included in some clusters, the first 
step is completed and an early grouping is done. 
At this point we need to recalculate the new 
centroids, as the inclusion of new points may lead 
to a change in the cluster centroids. Once we find 
k new centroids, a new binding is to be created 
between the same data points and the nearest new 
centroid, generating a loop. As a result of this 
loop, the k centroids may change their position in 
a step by step manner. Eventually, a situation will 
be reached where the centroids do not move 
anymore. This signifies the convergence criterion 
for clustering. 
Pseudocode for the k-means clustering algorithm 
is listed as 
Algorithm 1 
Algorithm k-means (k, D) 

1. choose k data points as the initial 
centroids (cluster centers) 

2. repeat 
3. for each data point x Є D do 
4. compute the distance from x to each 

centroid; 
5. assign x to the closest centroid // a 

centroid represents a cluster 
6. end for 
7. re-compute the centroid using the current 

cluster memberships 
8. until the stopping criterion is met 

 
Let the set of data points (or instances) D be {x1, 
x2, …, xn}, where xi = (xi1, xi2, …, xir) is a 
vector in a real-valued space X € Rr, and r is the 
number of attributes in the data (or the number of 
dimensions of the data space). The k-means 
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algorithm partitions the given data into k clusters. 
Each cluster has a cluster center, which is also 
called the cluster centroid. The centroid, usually 
used to represent the cluster, is simply the mean 
of all the data points in the cluster, which gives 
the name to the algorithm, i.e., since there are k 
clusters, thus k means. Figure 2 gives the working 
of k-means clustering algorithm. 
At the beginning, the algorithm randomly selects 
k data points as the seed centroids. It then 
computes the distance between each seed centroid 
and every data point. Each data point is assigned 
to the centroid that is closest to it. A centroid and 
its data points therefore represent a cluster. Once 
all the data points in the data are assigned, the 
centroid for each cluster is re-computed using the 
data points in the current cluster. This process 
repeats until a stopping criterion is met. 
 
 

 
 

Figure 2. Working Of K-Means 
Algorithm Through An Example 

B. Cons of K-Means 
 
The k-means algorithm [8] [9] is effective in 
producing clusters for many practical 
applications. But the computational complexity of 
the original k-means algorithm is very high, 
especially for large data sets. Moreover, this 
algorithm results in different types of clusters 
depending on the random choice of initial 
centroids. Several attempts were made by 
researchers for improving the performance of the 
k-means clustering algorithm. This paper deals 
with a method for improving the accuracy and 
efficiency of the k-means algorithm. Several 
attempts were made by researchers to improve the 
effectiveness and efficiency of the k-means 
algorithm [7]. A variant of the k-means algorithm 

is the k-modes [11] method which replaces the 
means of clusters with modes. Like the k-means 
method, the k-modes algorithm also produces 
locally optimal solutions which are dependent on 
the selection of the initial modes. The k-
prototypes algorithm integrates the k-means and 
k-modes processes for clustering the data. In this 
method, the dissimilarity measure is defined by 
taking into account both numeric and categorical 
attributes. 
As shown in Algorithm 1, the original k-means 
algorithm consists of two phases: one for 
determining the initial centroids and the other for 
assigning data points to the nearest clusters and 
then recalculating the cluster means. The second 
phase is carried out repetitively until the clusters 
get stabilized, i.e., data points stop crossing over 
cluster boundaries. One problem with the k-
means algorithm [5] is that some clusters may 
become empty during the clustering process since 
no data point is assigned to them. Such clusters 
are called empty clusters [13]. To deal with an 
empty cluster, we can choose a data point as the 
replacement centroid, e.g., a data point that is 
furthest from the centroid of a large cluster. If the 
sum of the squared error (SSE) is used as the 
stopping criterion, the cluster with the largest 
squared error may be used to find another 
centroid. 
 

C.  Disk Version of K-Means Algorithm 
 
The k-means algorithm may be implemented in 
such a way that it does not need to load the entire 
data set into the main memory, which is useful for 
large data sets. It comes to notice that the 
centroids for the k clusters can be computed 
incrementally in each iteration because the 
summation in line 8 can be calculated separately 
first. During the clustering process, the number of 
data points in each cluster can be counted 
incrementally as well. This gives us a disk based 
implementation of the algorithm, which produces 
exactly the same clusters as that in Figure 2, but 
with the data on disk [3]. In each for-loop, the 
algorithm simply scans the data once. The whole 
clustering process thus scans the data t times, 
where t is the number of iterations before 
convergence, which is usually not very large (< 
50). In applications, it is quite common to set a 
limit on the number of iterations because later 
iterations typically result in only minor changes to 
the clusters. Thus, this algorithm may be used to 
cluster large data sets which cannot be loaded into 
the main memory. Although there are several 
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special algorithms that scale-up clustering [6] 
algorithms to large data sets, they all require 
sophisticated techniques. 
 
Algorithm disk-k-means (k, D) 

1. Choose k data points as the initial 
centroids mj, j = 1, …, k; 

2. repeat 
3. initialize sj ← 0, j = 1, …, k; // 0 is a 

vector with all 0’s 
4. initialize nj ←0, j = 1, …, k; // nj is the 

number of points in cluster j 
5. for each data point x Є D do 
6. j←arg min dist ( x, mi ); iЄ{1,2,... k} 
7. assign x to the cluster j; 
8. sj ← sj + x; 
9. nj ←nj + 1; 
10. end for 
11. mj ←sj/nj, j = 1, …, k; 
12. until the stopping criterion is met 

 
Let us give some explanations of this algorithm. 
Line 1 does exactly the same thing as k-means 
algorithm. Line 3 initializes vector sj which is 
used to incrementally compute the sum in (line 8). 
Line 4 initializes nj which records the number of 
data points assigned to cluster j (line 9). Lines 6 
and 7 perform exactly the same tasks as lines 4 
and 5 in the original k-means algorithm. Line 11 
re-computes the centroids, which are used in the 
next iteration. Any of the three stopping criteria 
may be used here. If the sum of squared error is 
applied, we can modify the algorithm slightly to 
compute the sum of square error incrementally. 

 
3.   EMPIRICAL EVALUATION 
 
A comparison of algorithms on real data sets 
gives a great deal of insight as to their relative 
performance. Real data is not worst-case, 
implying that neither the asymptotic performance 
nor running time bounds claimed in theoretical 
results are necessarily tight. Of course, empirical 
evaluation depends heavily on the data sets 
selected for the experiments. A number of the 
data sets were not particularly large, probably so 
that batch-processing algorithms would terminate 
quickly on those inputs. The main motivation for 
streaming is very large data sets, so we are more 
interested in sets that might be difficult to fit in a 
main memory and focused on the largest 
examples and hence we need disk based modified 
k-means. 
 

 

4.  EXPERIMENTAL RESULT AND 
DISCUSSION 
 
Our goal is to compare the algorithms at a 
common base point. Instead of just comparing the 
same dataset and cluster count, we further inhibit 
each to use the same amount of memory (in terms 
of number of points stored in random access). The 
memory constraints were chosen to reflect the 
usage of small amounts of memory that are close 
to the algorithms’ designers’ specifications, 
where possible. This does produce a drop in 
solution quality compared to running the 
algorithm at their suggested parameters, although 
their approach remains competitive. The 
multivariate iris data set and the census data set 
taken from the UCI repository of machine 
learning databases [1], is used for testing the 
accuracy and efficiency of the enhanced 
algorithm. The same data set is given as input to 
the standard k-means algorithm and the enhanced 
algorithm which uses disk version of k-means. 
The value of k, the number of clusters, is taken as 
2,3,4,5. The results of the experiments are 
tabulated in Table 1.  
The accuracy of clustering is determined by 
comparing the clusters obtained by the 
experiments. The percentage accuracy and the 
time taken for each experiment are computed and 
the mean values are tabulated. For the enhanced 
algorithm, the data values and the value of k are 
the only inputs required since the initial centroids 
are computed automatically by the program. 
 
Table 1. Comparison Of Algorithms On Two Datasets 

Data 
size 

Number 
of 

Clusters 

k-means 
running 
time(ns) 

Disk-k-
means 

running 
time(ns) 

1000K 2 180 - 
 3 140 - 
 4 104 91 
 5 96 83 
100K 2 175 - 
 3 120 - 
 4 101 85 
 5 91 76 
10K 2 110 - 
 3 95 - 
 4 72 33 
 5 41 10 
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It can be observed from Table 1 that the runtime 
of the algorithm is linear with respect to the 
datasets. Table 1 stores the result of datasets of 
variance data size so that our goal can be 
achieved to consider different data and examine 
them carefully. The proposed algorithm appears 
to improve the performance significantly. Figure 
3 and 4 depicts the performances of the standard 
k-means algorithm and the enhanced version of 
the algorithm in terms of the accuracy and 
efficiency. It can be seen from the above 
experiments that the enhanced algorithm 
significantly outperforms the original k-means 
algorithm in terms of accuracy and efficiency 
(Figure 5). 
 

            Figure 3 Runtime for k-means 
 

 
 
        Figure 4. Runtime for   Disk based k-means 
 
 

 
 

Figure 5. Efficiency and Accuracy of the 
algorithms 

 
5.  CONCLUSION 
 
The k-means algorithm effectively handles large 
clusters of data, where as the standard algorithm   
does not always guarantee good results. 
Moreover, the computational complexity of the 
standard algorithm is objectionably high owing to 
the need to reassign the data points a number of 
times, during each iteration of the loop. This 
paper presents an enhanced disk based k-means 
algorithm which combines a systematic method   
and an efficient way for assigning data points to 
clusters. Our simplistic approach exploits the 
latent structure in the data by partitioning the data 
to be stored in disk (for large datasets). This 
method provides scalability for large datasets and 
reduction in pre-processing overheads for in-
database mining. The aggregations of results are 
compared along with their efficiency and 
accuracy for two different data sets. A limitation 
of the proposed algorithm is that the value of k, 
the number of desired clusters, is still required to 
be given as an input, regardless of the distribution 
of the data points. To help evolve better statistical 
methods to compute the value of k, depending on 
the data distribution, future research is suggested. 
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