
Journal of Theoretical and Applied Information Technology
 31st March 2013. Vol. 49 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

711

PERFORMANCE IMPROVEMENT OF DISK BASED K-
MEANS OVER K-MEANS ON LARGE DATASETS

1 SWAGATIKA DEVI, 2 TRILOKNATH PANDEY,3 ALOK KUMAR JAGADEV

1Asstt Prof., Department of Computer Science and Engineering, Institute of Technical Education and

Research, SOA University,
2Asstt. Prof., Department of Computer Science and Engineering, Institute of Technical Education and

Research, SOA University,
3Assoc. Prof., Department of Computer Science and Engineering, Institute of Technical Education and

Research, SOA University,

E-mail: 1sweetsweettalk@gmail.com, 2triloknath75@gmail.com, 3a_jagadev@yahoo.co.in

ABSTRACT

Clustering is a popular necessity having extensive scope for varied applications. We apply the k-means task
in a situation where the volume of data is large and puts pressure on the access memory. The objective is to
use less memory and access data sequentially. This paper proposes a method of making the algorithm more
effective and efficient; so as to get better clustering with reduced complexity. Our algorithm is based on
recent theoretical results, with significant improvements to make it application friendly. Our approach
sufficiently simplifies a recently developed algorithm, both in design and analysis. We prove that our
algorithm compares favorably with existing algorithms - both theoretically and experimentally, thus
providing state-of-the-art performance. Also these algorithms are tested on two datasets and the result is
simulated.
Keywords: Clustering, complexity, K-means, Sequential access.

1. INTRODUCTION

Clustering is the process of organizing data
instances into groups whose members are similar
in some way. A cluster is therefore a collection of
data instances which are “similar” to each other
and are “dissimilar” to data instances in other
clusters. In the clustering literature, a data
instance is also called an object. Like in the real
world an instance may represent an object. It is
also called a data point as it is seen as a point in
an r dimension space, where r is the number of
attributes in the data. Figure 1 shows a 2-
dimensional data set. We can clearly see three
groups of data points. Each group is a cluster [4].
The task of clustering is to find the three clusters
hidden in the data. Although it is easy for a
human to visually detect clusters in a 2-
dimensional or even 3-dimensional space, it
becomes very hard, if not impossible, to detect
clusters visually as the number of dimensions
increases. Additionally, in many applications,
clusters are not as clear-cut or well separated as

the three clusters in Figure 1. Automatic
techniques are thus needed for clustering. Three
natural groups or clusters of data points after
seeing the example in Figure 1, a question may
arise: What is clustering for? To answer it, let us
see some examples of applications in different
domains.
Example: Everyday, news agencies around the
world generate a large number of news articles. If
a Web site wants to collect these news articles to
provide an integrated news service, it has to
organize the collected articles according to some
topic hierarchy. The question is: What should the
topics be, and how should they be organized? One
possibility is to employ a group of human editors
to do the job. However, the manual organization
is costly and very time consuming, which makes
it unsuitable for news and other time sensitive
information. Throwing all the news articles to the
readers with no organization is clearly not an
option. Although classification is able to classify
news articles according to predefined topics, it is
not applicable here because classification needs

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 31st March 2013. Vol. 49 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

712

training data, which have to be manually labeled
with topic classes. Since news topics change
constantly and rapidly, the training data would
need to change constantly as well, which is
infeasible via manual labeling. Clustering is
clearly a solution for this problem because it
automatically groups a stream of news articles
based on their content similarities. Hierarchical
clustering algorithms can also organize
documents hierarchically, i.e., each topic may
contain sub-topics and so on. Topic hierarchies
are particularly useful for texts. Our discussion
and examples above also indicate that clustering
needs a similarity function to measure how
similar two data points (or objects) are, or
alternatively a distance function to measure the
distance between two data points. The goal of
clustering is thus to discover the intrinsic
grouping of the input data through the use of a
clustering algorithm and a distance function. We
review recent work on these topics, presenting
general frameworks that we use to compare and
contrast two different approaches. We begin with
the problem of focusing on technique of k-means
in section 2; we present and relate several
important notions (pros and cons) for this task,
followed by our improved suggested disk versed
k-means pattern, frame work and general goals
respectively. In sections 3 and 4, empirical
evaluation of the algorithm on large as well as
small datasets are shown; and experimental
results are discussed. Finally we end up with
conclusion and future work in section 5.

Figure 1. Three Several Groups Or Clusters Of Data

Points

2. A. K-MEANS

A simple local search heuristic for the k-means
problem was proposed in 1957 by Lloyd [10].
The algorithm begins with k arbitrarily chosen
points as facilities. At each stage, it allocates the
points into clusters (each point assigned to closest
facility) and then computes the center of mass for
each cluster. These become the new facilities for
the next phase, and the process repeats until it is
stable. Incidentally Lloyd’s algorithm has no
provable approximation bound, and arbitrarily
loose examples do exist. Further, the worst-case

running time is exponential [2]. Despite these
drawbacks, Lloyd’s algorithm (frequently known
simply as k-means [5]) remains common in
practice. The idea is to classify a given set of data
into k number of disjointed clusters, where the
value of k is fixed in advance. The k-means
algorithm is the best known partitional clustering
algorithm. It is perhaps also the most widely used
among all clustering algorithms due to its
simplicity and efficiency. Given a set of data
points and the required number of k clusters (k is
specified by the user), this algorithm iteratively
partitions the data into k clusters based on a
distance function.
The algorithm consists of two separate phases: the
first phase is to define k centroids, one for each
cluster. The next phase is to take each point
belonging to the given data set and associate it to
the nearest centroid. Euclidean distance is
generally considered to determine the distance
between data points and the centroids. When all
the points are included in some clusters, the first
step is completed and an early grouping is done.
At this point we need to recalculate the new
centroids, as the inclusion of new points may lead
to a change in the cluster centroids. Once we find
k new centroids, a new binding is to be created
between the same data points and the nearest new
centroid, generating a loop. As a result of this
loop, the k centroids may change their position in
a step by step manner. Eventually, a situation will
be reached where the centroids do not move
anymore. This signifies the convergence criterion
for clustering.
Pseudocode for the k-means clustering algorithm
is listed as
Algorithm 1
Algorithm k-means (k, D)

1. choose k data points as the initial
centroids (cluster centers)

2. repeat
3. for each data point x Є D do
4. compute the distance from x to each

centroid;
5. assign x to the closest centroid // a

centroid represents a cluster
6. end for
7. re-compute the centroid using the current

cluster memberships
8. until the stopping criterion is met

Let the set of data points (or instances) D be {x1,
x2, …, xn}, where xi = (xi1, xi2, …, xir) is a
vector in a real-valued space X € Rr, and r is the
number of attributes in the data (or the number of
dimensions of the data space). The k-means

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 31st March 2013. Vol. 49 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

713

algorithm partitions the given data into k clusters.
Each cluster has a cluster center, which is also
called the cluster centroid. The centroid, usually
used to represent the cluster, is simply the mean
of all the data points in the cluster, which gives
the name to the algorithm, i.e., since there are k
clusters, thus k means. Figure 2 gives the working
of k-means clustering algorithm.
At the beginning, the algorithm randomly selects
k data points as the seed centroids. It then
computes the distance between each seed centroid
and every data point. Each data point is assigned
to the centroid that is closest to it. A centroid and
its data points therefore represent a cluster. Once
all the data points in the data are assigned, the
centroid for each cluster is re-computed using the
data points in the current cluster. This process
repeats until a stopping criterion is met.

Figure 2. Working Of K-Means
Algorithm Through An Example

B. Cons of K-Means

The k-means algorithm [8] [9] is effective in
producing clusters for many practical
applications. But the computational complexity of
the original k-means algorithm is very high,
especially for large data sets. Moreover, this
algorithm results in different types of clusters
depending on the random choice of initial
centroids. Several attempts were made by
researchers for improving the performance of the
k-means clustering algorithm. This paper deals
with a method for improving the accuracy and
efficiency of the k-means algorithm. Several
attempts were made by researchers to improve the
effectiveness and efficiency of the k-means
algorithm [7]. A variant of the k-means algorithm

is the k-modes [11] method which replaces the
means of clusters with modes. Like the k-means
method, the k-modes algorithm also produces
locally optimal solutions which are dependent on
the selection of the initial modes. The k-
prototypes algorithm integrates the k-means and
k-modes processes for clustering the data. In this
method, the dissimilarity measure is defined by
taking into account both numeric and categorical
attributes.
As shown in Algorithm 1, the original k-means
algorithm consists of two phases: one for
determining the initial centroids and the other for
assigning data points to the nearest clusters and
then recalculating the cluster means. The second
phase is carried out repetitively until the clusters
get stabilized, i.e., data points stop crossing over
cluster boundaries. One problem with the k-
means algorithm [5] is that some clusters may
become empty during the clustering process since
no data point is assigned to them. Such clusters
are called empty clusters [13]. To deal with an
empty cluster, we can choose a data point as the
replacement centroid, e.g., a data point that is
furthest from the centroid of a large cluster. If the
sum of the squared error (SSE) is used as the
stopping criterion, the cluster with the largest
squared error may be used to find another
centroid.

C. Disk Version of K-Means Algorithm

The k-means algorithm may be implemented in
such a way that it does not need to load the entire
data set into the main memory, which is useful for
large data sets. It comes to notice that the
centroids for the k clusters can be computed
incrementally in each iteration because the
summation in line 8 can be calculated separately
first. During the clustering process, the number of
data points in each cluster can be counted
incrementally as well. This gives us a disk based
implementation of the algorithm, which produces
exactly the same clusters as that in Figure 2, but
with the data on disk [3]. In each for-loop, the
algorithm simply scans the data once. The whole
clustering process thus scans the data t times,
where t is the number of iterations before
convergence, which is usually not very large (<
50). In applications, it is quite common to set a
limit on the number of iterations because later
iterations typically result in only minor changes to
the clusters. Thus, this algorithm may be used to
cluster large data sets which cannot be loaded into
the main memory. Although there are several

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 31st March 2013. Vol. 49 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

714

special algorithms that scale-up clustering [6]
algorithms to large data sets, they all require
sophisticated techniques.

Algorithm disk-k-means (k, D)

1. Choose k data points as the initial
centroids mj, j = 1, …, k;

2. repeat
3. initialize sj ← 0, j = 1, …, k; // 0 is a

vector with all 0’s
4. initialize nj ←0, j = 1, …, k; // nj is the

number of points in cluster j
5. for each data point x Є D do
6. j←arg min dist (x, mi); iЄ{1,2,... k}
7. assign x to the cluster j;
8. sj ← sj + x;
9. nj ←nj + 1;
10. end for
11. mj ←sj/nj, j = 1, …, k;
12. until the stopping criterion is met

Let us give some explanations of this algorithm.
Line 1 does exactly the same thing as k-means
algorithm. Line 3 initializes vector sj which is
used to incrementally compute the sum in (line 8).
Line 4 initializes nj which records the number of
data points assigned to cluster j (line 9). Lines 6
and 7 perform exactly the same tasks as lines 4
and 5 in the original k-means algorithm. Line 11
re-computes the centroids, which are used in the
next iteration. Any of the three stopping criteria
may be used here. If the sum of squared error is
applied, we can modify the algorithm slightly to
compute the sum of square error incrementally.

3. EMPIRICAL EVALUATION

A comparison of algorithms on real data sets
gives a great deal of insight as to their relative
performance. Real data is not worst-case,
implying that neither the asymptotic performance
nor running time bounds claimed in theoretical
results are necessarily tight. Of course, empirical
evaluation depends heavily on the data sets
selected for the experiments. A number of the
data sets were not particularly large, probably so
that batch-processing algorithms would terminate
quickly on those inputs. The main motivation for
streaming is very large data sets, so we are more
interested in sets that might be difficult to fit in a
main memory and focused on the largest
examples and hence we need disk based modified
k-means.

4. EXPERIMENTAL RESULT AND
DISCUSSION

Our goal is to compare the algorithms at a
common base point. Instead of just comparing the
same dataset and cluster count, we further inhibit
each to use the same amount of memory (in terms
of number of points stored in random access). The
memory constraints were chosen to reflect the
usage of small amounts of memory that are close
to the algorithms’ designers’ specifications,
where possible. This does produce a drop in
solution quality compared to running the
algorithm at their suggested parameters, although
their approach remains competitive. The
multivariate iris data set and the census data set
taken from the UCI repository of machine
learning databases [1], is used for testing the
accuracy and efficiency of the enhanced
algorithm. The same data set is given as input to
the standard k-means algorithm and the enhanced
algorithm which uses disk version of k-means.
The value of k, the number of clusters, is taken as
2,3,4,5. The results of the experiments are
tabulated in Table 1.
The accuracy of clustering is determined by
comparing the clusters obtained by the
experiments. The percentage accuracy and the
time taken for each experiment are computed and
the mean values are tabulated. For the enhanced
algorithm, the data values and the value of k are
the only inputs required since the initial centroids
are computed automatically by the program.

Table 1. Comparison Of Algorithms On Two Datasets

Data
size

Number
of

Clusters

k-means
running
time(ns)

Disk-k-
means

running
time(ns)

1000K 2 180 -
 3 140 -
 4 104 91
 5 96 83
100K 2 175 -
 3 120 -
 4 101 85
 5 91 76
10K 2 110 -
 3 95 -
 4 72 33
 5 41 10

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 31st March 2013. Vol. 49 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

715

It can be observed from Table 1 that the runtime
of the algorithm is linear with respect to the
datasets. Table 1 stores the result of datasets of
variance data size so that our goal can be
achieved to consider different data and examine
them carefully. The proposed algorithm appears
to improve the performance significantly. Figure
3 and 4 depicts the performances of the standard
k-means algorithm and the enhanced version of
the algorithm in terms of the accuracy and
efficiency. It can be seen from the above
experiments that the enhanced algorithm
significantly outperforms the original k-means
algorithm in terms of accuracy and efficiency
(Figure 5).

 Figure 3 Runtime for k-means

 Figure 4. Runtime for Disk based k-means

Figure 5. Efficiency and Accuracy of the
algorithms

5. CONCLUSION

The k-means algorithm effectively handles large
clusters of data, where as the standard algorithm
does not always guarantee good results.
Moreover, the computational complexity of the
standard algorithm is objectionably high owing to
the need to reassign the data points a number of
times, during each iteration of the loop. This
paper presents an enhanced disk based k-means
algorithm which combines a systematic method
and an efficient way for assigning data points to
clusters. Our simplistic approach exploits the
latent structure in the data by partitioning the data
to be stored in disk (for large datasets). This
method provides scalability for large datasets and
reduction in pre-processing overheads for in-
database mining. The aggregations of results are
compared along with their efficiency and
accuracy for two different data sets. A limitation
of the proposed algorithm is that the value of k,
the number of desired clusters, is still required to
be given as an input, regardless of the distribution
of the data points. To help evolve better statistical
methods to compute the value of k, depending on
the data distribution, future research is suggested.

REFRENCES:

[1] Merz C and Murphy P, UCI Repository of

Machine Learning Databases, Available:
ftp://ftp.ics.uci.edu/pub/machine-learning-
databases

[2] Andrea Vattani. k-means requires
exponentially many iterations even in the
plane. Discrete Computational Geometry,
June 2011

[3] Vladimir Braverman, Adam Meyerson,
Rafail Ostrovsky, Alan Roytman, Michael
Shindler, and Brian Tagiku. Streaming k-
means on Well-Clusterable Data. In SODA,
2011.

[4] Marcel R. Ackermann, Christian
Lammersen, Marcus M¨artens, Christoph

http://www.jatit.org/
ftp://ftp.ics.uci.edu/pub/machine-learning-databases
ftp://ftp.ics.uci.edu/pub/machine-learning-databases

Journal of Theoretical and Applied Information Technology
 31st March 2013. Vol. 49 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

716

Raupach, Christian Sohler, and Kamil
Swierkot. StreamKM++: A clustering
algorithms for data streams. In ALENEX,
2010.

[5] Pang-Ning Tan, Michael Steinback and
Vipin Kumar, Introduction to Data Mining,
Pearson Education, 2007.

[6] Tapas kanungo, Natan S, Natanyahu, Angela
Y. Wu. “An efficient K-Means Clustering
Algorithm: Analysis an Implementation”.
IEEE Transactions on Knowledge and Data
Engineering, Vol. 13, NO.3, May/June 2001

[7] Fahim A.M, Salem A. M, Torkey A and
Ramadan M. A, “An Efficient enhanced k-
means clustering algorithm,” Journal of
Zhejiang University, 10(7):1626-1633, 2006.

[8] Jiawei Han M. K, Data Mining Concepts and
Techniques, Morgan Kaufmann Publishers,
An Imprint of Elsevier, 2006.

[9] Margaret H. Dunham, Data Mining-
Introductory and Advanced Concepts,
Pearson Education, 2006.

[10] Stuart Lloyd. Least Squares Quantization in
PCM. In Special issue on quantization, IEEE
Transactions on Information Theory, 1982.

[11] Chaturvedi J. C. A, Green P, “K-modes
clustering,” J. Classification, (18):35-55,
2001.

[12] Anjan Goswami, Ruoming Jin, Gagan
Agrawal, “Fast and Exact Out-of-Core K-
Means Clustering”, Proceedings of the
Fourth IEEE International Conference on
Data Mining, Pages: 83-90, 2004

[13] Carlos Ordonez, “Programming the K-means
Clustering Algorithm in SQL”, 2002.

http://www.jatit.org/

	B. Cons of K-Means
	C. Disk Version of K-Means Algorithm

