
Journal of Theoretical and Applied Information Technology
 31st March 2013. Vol. 49 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

704

 ILP-BASED OPTIMAL CHECKPOINT PLACEMENT IN
MULTICORE PROCESSORS

1ATIEH LOTFI, 2SAEED SAFARI

1M.Sc., School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Iran
2Assistant Prof., School of Electrical and Computer Engineering, College of Engineering, University of

Tehran, Iran

E-mail: 1 a.lotfi@ece.ut.ac.ir , 2 saeed@ut.ac.ir

ABSTRACT

Nowadays multicore processors are increasingly being deployed in high performance computing systems.
As the complexity of systems increases, the probability of failure increases substantially. Therefore, the
system requires techniques for supporting fault tolerance. Checkpointing is one of the prevalent fault
tolerant techniques reducing the execution time of long-running programs in presence of failures.
Optimizing the number of checkpoints in a parallel application running on a multicore processor is a
complicated and challenging task. Infrequent checkpointing results in long reprocessing time, while too
short checkpointing intervals lead to high checkpointing overhead. Since this is a multi-objective
optimization problem, trapping in local optimums is very plausible. This paper presents a novel 0-1 integer
linear programming (ILP) formulation for solving optimal checkpoint placement problem for parallel
applications running on a multicore machine. Our experimental results demonstrate that our solution leads
to a better execution time saving over existing methods.

Keywords: Fault Tolerance; Optimal Checkpoint Placement; Multicore Architectures; Integer Linear
Programming

1. INTRODUCTION

 Recent changes in the high performance parallel
computing make fault tolerant system design
important. The higher number of processors
increases the overall performance, but it also
increases the probability of failures. Moreover,
there are many applications, like some optimization
problems, that take days or even weeks to execute.
As the execution time of a program becomes
longer, the probability of failure during execution as
well as the overhead of such failures increase
considerably. It is possible that the execution time
of the program exceeds the mean time to failure of
the underlying hardware. Therefore, there is a risk
that the application never gets finished.

One of the well-known techniques for making
such applications resilient to failures is
checkpointing [1]. In this technique, the system
state is saved in some intermediate states, so there is
no need to start the application from scratch in the
event of failure; instead, the system rollbacks to one
of its recent checkpoints. Using this technique, the
system can be recovered with hopefully the
minimum loss of computation when a failure

occurs. However, checkpoinitng comes with some
overhead affecting the execution time of the
program. Therefore, it is necessary to avoid useless
checkpoints and keep a balance between the
overhead caused by taking checkpoints and the
amount of work lost when the system fails.

Checkpointing in multicore message-passing
systems poses several challenging issues. We
consider such systems consisting of a number of
processes communicating each other by means of
messages. In fact, the main difference between
sequential and parallel applications in case of
failure recovery is the existence of dependencies
imposed by inter-process communications. If
checkpoints are taken without any coordination, an
inconsistency may occur upon recovery.
Checkpoints on a recovery line should be
consistent. Thus, for every recorded received
message, its corresponding sent message should be
recorded to avoid creating orphan messages [1]. In
order to create consistent recovery lines,
coordination protocols between communicating
processes are needed. In uncoordinated
checkpointing in which each process takes
checkpoints individually without any coordination,

http://www.jatit.org/
mailto:a.lotfi@ece.ut.ac.ir
mailto:saeed@ut.ac.ir

Journal of Theoretical and Applied Information Technology
 31st March 2013. Vol. 49 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

705

domino effect and possibility of creating useless
checkpoints can arise [2]. On the other hand, in
coordinated checkpointing, all processes take
checkpoints simultaneously, which is easy to
implement but often causes significant overhead. In
addition, finding a way to synchronize all processes
may not be always possible. The third existing way
is to take checkpoints according to the messages
passed between processes. In other words, each
process can take its checkpoints individually, and in
case of dependency caused by sending and
receiving messages, a checkpoint will be induced
on the dependent process. This technique can lead
to a better performance. Since taking checkpoints
causes overhead in the application, useless
checkpoints (those checkpoints that do not belong
to a consistent recovery line) should be avoided. A
complete survey of checkpoint/recovery techniques
can be found in [2] and [3].

Determining the optimal number of checkpoints
in a message-passing program which are consistent
and are not useless is a crucial issue. In this paper
we propose a novel optimal checkpoint placement
strategy which minimizes the execution time of the
parallel program. We consider parallel programs
that use message passing communication scheme.
We assume the parallel programs run on a multicore
machine with reliable message delivery system. The
processors in this system can fail any time and there
is a failure detection mechanism that can detect
failures immediately. Furthermore, we consider
transient and intermittent faults, which have
instantaneous duration. Given such system with a
message passing application, and a given error
probability, we make an integer linear programming
(ILP) formulation to find the optimal checkpoint
placement for that parallel application. We also
consider the system failure is a Poisson process.

 The rest of this paper is organized as follows; in
section 2 related works are studied. Section 3
introduces our checkpoint placement strategy.
Experimental results are given in Section 4. Finally,
conclusions are drawn in the last section.

2. RELATED WORKS

There is a trade-off between the overhead
imposed by checkpointing and the amount of works
lost due to the failure. Many different works have
aimed at optimizing this trade-off. Generally, either
the expected completion time of a task ([4], [5]), or
the availability of the system ([6]) is chosen as an
optimization metric. The use of analytical and
stochastical models for serial and parallel
applications to determine suitable checkpoint

intervals has been studied to a large extent (e.g. [4],
[7], [8]). In all of these papers, coordinated
checkpointing is considered, and the effect of
communication and the dependency imposed by
sending and receiving messages are not considered.
They supposed systems without any dependency
and solved their equations for just one processor
and generalized it to the whole system, which is
simple but not realistic. Most works use
equidistance checkpoints, but it has been shown
that for realistic system failures, periodic
checkpointing is not the best choice [9].

In [7], an optimal solution has been proposed for
periodic checkpoint placement problem in parallel
applications. It considers the occurrence of a failure
as a random distribution with constant failure rate,
𝜆. The optimal checkpoint placement interval (𝑇𝑐)
approximated in this paper depends on the
checkpoint overhead (𝑇𝑠: time to save context files
for each checkpoint). The exact formula is:

Tc = �
2Ts
λ
− Ts2. (1)

We compare our proposed method with this model.

Despite the importance of the communication
induced protocols, there is no model to calculate the
optimal checkpoint interval which minimizes the
total execution time of a parallel program using
these protocols. In this paper, we don’t limit all the
processors in our multicore architecture to
checkpoint simultaneously and periodically.
Instead, each core can take its checkpoints
individually and provide coordination in case of
dependency.

3. OPTIMAL CHECKPOINT PLACEMENT
STRATEGY

The problem solved is formally stated as follows:
given a multicore system and a parallel program
running on it; derive the minimum number of
consistent checkpoints that minimizes the overall
execution time of the program in a faulty
environment. We assume the multicore system
consists of a finite set of processes that
communicate only by exchanging messages. Each
process is executed on a core. We assume that
transmission delays are unpredictable but finite. In
a parallel computing system, a local checkpoint is
defined as the local state of one process and a
global checkpoint is defined as a set of local
checkpoints. A consistent global checkpoint is a
global checkpoint that does not include messages

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 31st March 2013. Vol. 49 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

706

received but not sent yet (orphan messages) [11]. It
should be noted that a consistent global checkpoint
can include sent but not received messages. With
this assumption, all the messages that have been
sent but not received must be restored in order to
roll back the system correctly.

Our methodology for solving optimal checkpoint
placement in a parallel program can be divided into
five phases, which is summarized in the figure1.

Step 1: Application Profiling
Firstly, we extract all the messages that are

passed as inter-process communication. The send
and receive messages and their relative order can
simply be obtained by tracing the communication
statements in a message passing application. For
each communication statement we need to find the
sender and receiver processes and its relative order
to other messages passed in the system. In addition,
we assign a logical time to each message.

Step 2: Potential Checkpoint Insertion
In the second phase, for every process, we find

regions (bounds) that taking a local checkpoint
might be suitable. For this purpose, we categorize
applications by their granularity and suggest
different candidate checkpoint insertion method for
them. The first category includes those applications
that are parallelized in a fine-grained way. Recall
that a parallel application is fine-grained if its
subtasks communicate frequently. For this
category, we assume that one checkpoint should be
placed as a candidate between two consecutive
interaction of that process with outside (i.e.
between each two consecutive send or receive
messages). The second category contains those
applications that are parallelized in a coarse-grained
or embarrassing way. The inter-process
communications in this category are usually rare.
For this category, we suppose that at least one
checkpoint should be placed as a candidate between
two consecutive messages. If the distance between
two consecutive messages of a process is more than
a limit, more than one candidate checkpoint is
inserted in that region. We define this limit based
on the failure distribution of the system. We are

going to clarify this phase with an example.
Assume that figure 2 shows a part of a sample
program’s communication behavior that should be
run on multicore machine with two cores. Each line
shows the timeline for a process. We assign a
logical time to each interaction denoted by Ti.
Assuming this program is a kind of fine-grained
parallel program, so we just put one checkpoint
between each consecutive message. The candidate
checkpoints for process P are {CP1, CP2, CP3,
CP4}. Also, the candidate checkpoints for process
Q denotes by {CQ1, CQ2, CQ3, CQ4}. According
to the explanations of this phase, each checkpoint is
bounded between its former and latter messages
time. As an example, checkpoints CP1 and CP2
should satisfy the equations T1≤CP2_time ≤T3
and T4≤CQ3_time ≤T5, respectively.

Step 3: Dependency Extraction
In order to find the best candidates in the parallel

program for checkpoint placement, communication
statements are analyzed to find the existing
dependency between processes. So far, we have
chosen suitable places in each process for inserting
potential local checkpoints and here we find all the
possible consistent recovery lines for each
candidate checkpoint based on their communication
pattern with other processes. When analyzing the
program’s communication pattern, it is important to
note that a rollback to any arbitrary checkpoint
should not create orphan messages. So, if a process
rolls back to a checkpoint before its send message,
the receiver process should roll back to a
checkpoint before its receive time as well. After
finding all the recovery lines, all the useless
checkpoints (those that do not belong to any of the
global consistent recovery lines) will be omitted
from the potential candidate checkpoint list of that
process. Therefore, given a parallel program with a
number of processes, at the end of this phase we
determine all the potential local checkpoints for
each process and a list of consistent recovery lines
for each checkpoint. So, for every checkpoint, a
logical time interval in which it can be placed and
the list of all dependent checkpoints available in
other processes is extracted. List of dependent
checkpoints for checkpoint i of process P are those
checkpoints that other processes should rollback to

Figure 1. Overview Of The Optimal Checkpoint

Placement Methodology

Figure 2. Example Of A Message Passing System

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 31st March 2013. Vol. 49 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

707

them if process P rolls back to its checkpoint i. For
example, in figure 2, CQ2 is in the list of dependent
checkpoints for CP2.

Step 4: ILP-based Optimum Checkpoint Selection
In the fourth phase, an integer linear

programming model selects the optimum number of
checkpoints among all the potential candidate
checkpoints to minimize the execution time in a
faulty environment. The following two subsections
explain the notations, definitions, and ILP
equations.

1) Definitions and Notations
We consider a multicore architecture with n

cores that runs a parallel application consisting of n
processes (in general, there is no restriction that the
number of processes and cores should be the same;
here, we make this assumption for simplicity.)
Suppose that the maximum number of potential
checkpoints for a given process extracted from
previous phases is m. For each checkpoint j in
process i, we use a 0-1 integer variable 𝑖𝑠_𝑡𝑎𝑘𝑒𝑛𝑖,𝑗
to denote whether that checkpoint will be taken in
the final optimum checkpoints or not. If is_takeni,j
is 1, the jth checkpoint of the ith process will be
selected and taken; otherwise, it will be omitted.
Another variable that is needed for every candidate
checkpoint is 𝑐ℎ𝑒𝑐𝑘𝑝𝑜𝑖𝑛𝑡_𝑡𝑖𝑚𝑒𝑖,𝑗, denoting the
time of each checkpoint that previously bounded in
step 2. For each checkpoint j in process i, there is
an array of length n, 𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑦_𝑙𝑖𝑠𝑡𝑖,𝑗[𝑛], that
indicates all the dependent checkpoints for jth
checkpoint of ith process and it contains the output
of step 3. For example, dependency_listi,j[k] holds
the dependent checkpoint number of process k for
jth checkpoint of the ith process. The overhead of
storing each checkpoint extracted from simulation
indicates by CPoverhead variable. We suppose
failures can occur randomly everywhere in the
execution of each process with a predetermined
failure rate.

2) Problem Formulation
The mathematical problem is to compute the

optimum number of checkpoints that minimizes the
completion time of the parallel computation under
various failure assumptions. In the following, we
will outline the ILP model to solve this problem.

The objective is to find the best checkpoint
placement in order to minimize the total execution
time of the parallel program (Equation 2):

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ 𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛_𝑇𝑖𝑚𝑒(𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖) 𝑛
𝑖=1 . (2)

The first limiting equation is related to the output
of step 2, i.e. the bounded interval of each
checkpoint. As explained before, we extract an
acceptable bound for each checkpoint; here, we
denote them by 𝑙𝑜𝑤𝑒𝑟_𝑏𝑜𝑢𝑛𝑑𝑖𝑗 and 𝑢𝑝𝑝𝑒𝑟_𝑏𝑜𝑢𝑛𝑑𝑖𝑗
for the lower bound and upper bound of jth
checkpoint of ith process, respectively. This can be
formulated as the following equation:

∀ 𝑖 ∈ {1, … ,𝑛}, 𝑗 ∈ {1, … ,𝑚} :

𝑙𝑜𝑤𝑒𝑟_𝑏𝑜𝑢𝑛𝑑𝑖𝑗 ≤ 𝑐ℎ𝑒𝑐𝑘𝑝𝑜𝑖𝑛𝑡_𝑡𝑖𝑚𝑒𝑖𝑗 ≤
𝑢𝑝𝑝𝑒𝑟_𝑏𝑜𝑢𝑛𝑑𝑖𝑗.

(3)

If a checkpoint is chosen, all of its dependent
checkpoints should be taken as well. This can be
formulated using equation 4. In simple words, if jth
checkpoint of ith process is selected, it forces all
other checkpoints in its dependency list to be taken:

∀ 𝑖, 𝑙 ∈ {1, … ,𝑛}, 𝑗, 𝑘 ∈ {1, … ,𝑚}, (𝑙,𝑘) ∈
𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑐𝑦_𝑙𝑖𝑠𝑡𝑖,𝑗: 𝑖𝑠_𝑡𝑎𝑘𝑒𝑛𝑖𝑗 ≤ 𝑖𝑠_𝑡𝑎𝑘𝑒𝑛𝑙𝑘 (4)

In order to minimize the total execution time of
the parallel application, we compute the execution
time of each process separately. The execution time
of each process is calculated by adding the
execution time of that process in a non-faulty
environment and the wasted times due to each
checkpoint and failures. We consider both the
overhead caused by inserting each checkpoint
which is the amount of time needed to store the
checkpoint on the stable storage and the rollback
time, which is the time lost between the fault
occurrence time and the last system stable state that
should be executed again. In other words, the
execution time of each process is calculated as
follows: (Please note that equation 5 is not an ILP
equation and just mentioned here for more
clarification, and its equivalent ILP formula is
stated by equation 6)

𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛𝑇𝑖𝑚𝑒(𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖)
= 𝑛𝑜𝑛𝐹𝑎𝑢𝑙𝑡𝑦𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛𝑇𝑖𝑚𝑒(𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖)
+ 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶ℎ𝑒𝑐𝑘𝑝𝑜𝑖𝑛𝑡
× 𝑐ℎ𝑒𝑐𝑘𝑝𝑜𝑖𝑛𝑡 𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑑
+ 𝑟𝑜𝑙𝑙𝑏𝑎𝑐𝑘 𝑎𝑛𝑑 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦 𝑡𝑖𝑚𝑒𝑠

(5)

The last ILP equation computes the execution
time of each process in the event of failure with its
chosen checkpoints. Suppose F random faults are
injected in our system. In this equation, the
execution time of each process is calculated as
explained in equation 5. The rollback time is the
amount of total lost work in all processes caused by
that fault, i.e. the sum of distance between the
failure point and the nearest selected checkpoint
(𝐶𝑃𝑥) in the faulty process and also non-faulty

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 31st March 2013. Vol. 49 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

708

processes which contains dependent 𝐶𝑃𝑥
checkpoints:

∀ 𝑖 ∈ {1, … ,𝑛}:
𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛𝑇𝑖𝑚𝑒(𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖) =
 𝑛𝑜𝑛𝐹𝑎𝑢𝑙𝑡𝑦_𝐸𝑥𝑒𝑐𝑇𝑖𝑚𝑒(𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖) +
∑ 𝑖𝑠_𝑡𝑎𝑘𝑒𝑛𝑖𝑗 ∗ 𝐶𝑃𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑑𝑚
𝑗=1 +

�𝑀𝑖𝑛𝑗=1
𝐶𝑃𝑡𝑖𝑚𝑒(𝑗)<𝐹𝑎𝑢𝑙𝑡_𝑇𝑖𝑚𝑒(𝑘)(𝑖𝑠_𝑡𝑎𝑘𝑒𝑛𝑖𝑗 ∗

𝐹

𝑘=1

[𝑓𝑎𝑢𝑙𝑡_𝑇𝑖𝑚𝑒𝑘 − 𝑐ℎ𝑒𝑐𝑘𝑝𝑜𝑖𝑛𝑡_𝑡𝑖𝑚𝑒𝑖𝑗
+∑ (𝑓𝑎𝑢𝑙𝑡_𝑇𝑖𝑚𝑒𝑘 −

𝑁(𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑦_𝑙𝑖𝑠𝑡(𝑖,𝑗))
𝑙=0

𝑐ℎ𝑒𝑐𝑘𝑝𝑜𝑖𝑛𝑡_𝑡𝑖𝑚𝑒𝑝𝑙𝑐𝑝𝑙)])

(6)

The ILP formulation for optimal checkpoint
placement problem is summarized in Figure 3.

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ (𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛_𝑇𝑖𝑚𝑒(𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖))𝑛
𝑖=1 subject

to:

1. ∀ 𝑖 ∈ {1, … ,𝑛}, 𝑗 ∈ {1, … ,𝑚} : 𝑙𝑜𝑤𝑒𝑟_𝑏𝑜𝑢𝑛𝑑𝑖𝑗 ≤
𝑐ℎ𝑒𝑐𝑘𝑝𝑜𝑖𝑛𝑡_𝑡𝑖𝑚𝑒𝑖𝑗 ≤ 𝑢𝑝𝑝𝑒𝑟_𝑏𝑜𝑢𝑛𝑑𝑖𝑗.

2. ∀ 𝑖, 𝑙 ∈ {1, … ,𝑛}, 𝑗,𝑘 ∈ {1, … ,𝑚}, (𝑙, 𝑘) ∈
𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑐𝑦_𝑙𝑖𝑠𝑡(𝑖,𝑗): 𝑖𝑠𝑡𝑎𝑘𝑒𝑛𝑖𝑗 ≤ 𝑖𝑠𝑡𝑎𝑘𝑒𝑛𝑙𝑘

3. ∀ 𝑖 ∈ {1, … ,𝑛}: 𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛𝑇𝑖𝑚𝑒(𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖) =
 𝑛𝑜𝑛𝐹𝑎𝑢𝑙𝑡𝑦_𝐸𝑥𝑒𝑐𝑇𝑖𝑚𝑒(𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖) +
∑ 𝑖𝑠_𝑡𝑎𝑘𝑒𝑛𝑖𝑗 ∗ 𝐶𝑃𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑑𝑚
𝑗=1 +

∑ 𝑀𝑖𝑛𝑗=1
𝐶𝑃_𝑡𝑖𝑚𝑒(𝑗)<𝐹𝑎𝑢𝑙𝑡_𝑡𝑖𝑚𝑒(𝑘)(𝑖𝑠_𝑡𝑎𝑘𝑒𝑛𝑖𝑗 ∗𝐹

𝑘=1 [
𝑓𝑎𝑢𝑙𝑡_𝑇𝑖𝑚𝑒𝑘 − 𝑐ℎ𝑒𝑐𝑘𝑝𝑜𝑖𝑛𝑡_𝑡𝑖𝑚𝑒𝑖𝑗 +
∑ (𝑓𝑎𝑢𝑙𝑡_𝑇𝑖𝑚𝑒𝑘 −
𝑁(𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑦_𝑙𝑖𝑠𝑡(𝑖,𝑗))
𝑙=0

𝑐ℎ𝑒𝑐𝑘𝑝𝑜𝑖𝑛𝑡_𝑡𝑖𝑚𝑒𝑝𝑙𝑐𝑝𝑙)])

Figure 3. ILP formulation for optimal checkpoint placement in a
parallel application

Step 5: Checkpoint Insertion and Simulation

Finally, in order to evaluate our proposed
method, we model our system and inject random
faults. All the selected checkpoints are inserted in
their determined places and then the execution time
of the program is estimated.
4. EXPERIMENTAL RESULT

In our experiments, we focus on MPI
applications because of its popularity (albeit our
method can be easily mapped on any other message
passing programs). Generally, an MPI application
is decomposed and run among many computing
nodes, where message passing mechanism is used
for subtasks communications. In this section, we
use Fortran/MPI version of NAS parallel
benchmarks (NPB3.3) [12] and three C/MPI

benchmarks to evaluate the performance of our
optimal checkpoint placement strategy and compare
it with optimal coordinated checkpointing. These
programs have been executed on a multicore
machine with 4 cores. The system runs windows 7.
We used a free ILP solver, called lpsolve [10], to
solve the ILP equations for each program.

In MPI applications, routine calls may belong to
one of the following classes:

- Routine calls used to initialize, terminate,
manage, and synchronization.

- Routine calls to create data types.
- Routine calls used to communicate between

exactly two processes, one sender and one
receiver (Pair communication)

- Routine calls used to communicate among
groups of processors (Collective
communication)

We mainly focus on communication calls to
extract the communication model of the system as
explained in step 1 of our method. We run different
NPB benchmarks on a multicore machine in a fault-
free environment and use the MPI timer,
namely MPI_Wtime() routine to extract the time of
each communication. Using these values in hand,
we model our system and trace the dependency of
different processes. Then, having all the necessary
inputs of ILP formulation, we find the optimum
points for checkpoint placement. Table 1
summarized the characteristics of benchmarks that
have been run on a fault-free quad-core machine. In
this paper, we use BT, CG, MG, and FT
benchmarks of MPI NPB 3.3. The number of
messages passed in each benchmark is also shown
in this table.

Table 1. . BENCHMARK CHARACTERISRICS
Benchmark Language Number of

Messages
BT Fortran 192
CG Fortran 117
MG Fortran 123
FT Fortran 120

Matrix
Multiplication C 20
PI Calculation C 12

Matrix Addition C 9

In order to evaluate our proposed model, we
compare our checkpoint placement method with the
model proposed in [7] which solves the optimal
checkpoint placement problem for MPI applications
using a coordinated checkpoinitng protocol
(Equation 1).

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 31st March 2013. Vol. 49 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

709

Table 2 shows the comparison of the average
program execution times. The programs have been
executed under different fault injection scenarios
and the average execution times (in seconds) have
been reported. In each simulation, the failure rate is
changed and faults are injected randomly during the
programs’ execution. As it can be seen, our method
mostly reduces the programs’ execution time. This
is due to the omission of taking unnecessary
checkpoints.

Table 2. AVERAGE EXECUTION TIME OF TEST PROGRAMS
USING TWO DIFFERENT CHECKPOINTING METHODS

(CHECKPOINT OVERHEAD = 5S)
Benchmark Execution time

using
Periodic

Checkpointing([7])
(Second)

Execution time
using

our proposed
Method

(Second)
FT 12665 11896
CG 12770 11975
MG 13946 13668
BT 8517 9031

Matrix
Multiplication 4260 1550

PI Calculation 3347 1730
Matrix

Addition 6057 4903

Figure 4 shows the average execution time of the
chosen benchmarks using the two different
checkpointing placement techniques. As it can be
seen, our proposed checkpointing placement
strategy mostly provides better performance
comparing periodic checkpointing [7]. The only
exception is BT benchmark. This is due to this fact
that when the number of messages increases, the
number of variables and equations in our ILP
formulation grows and consequently the time
needed to solve the ILP formulas grows
exponentially. And, since we set a time limit on the
execution time of ILP solver, it may not find the
global optimum point.

5. CONCLUSION

Homogeneous and heterogeneous multicore
processors are widely deployed in the current and
also the next generation of supercomputers. In this
paper, to the best of our knowledge for the first time
the problem of optimal checkpoint placement in
multicore processors has been solved using integer
linear programming formulation. The second
contribution of this paper is that the solution is not
restricted to coordinated checkpointing rather each
core can take its local checkpoints independently
and force other cores to take a checkpoint in case of

dependency. This is possible due to process’
dependency extraction phase. Experimental results
show that this method leads to better performance
than the other existing models. As the problem size
becomes larger the number of variables and
equations in our ILP formulation grows and
consequently the time needed to solve the ILP
formulas grows exponentially. To overcome this
limitation, we are going to use evolutionary
algorithms in our future works to solve the optimal
checkpoint placement problem.

REFRENCES:

[1] I. Koren, C. Krishna, Fault-Tolerant Systems.
Morgan Kaufmann, San Francisco, 2007.

 [2] E. Elnozahy, L. Alvisi, Y. Wang, D. Johnson,
“A Survey of Rollback-Recovery Protocols in
Message-Passing Systems,” ACM Computing
Surveys, vol. 34, no. 3, pp. 375–408 , 2002.

[3] Y. Liu, R. Nassar, C. Leangsuksun, N.
Naksinehaboon, M. Paun, S. Scott, “A
Reliability-aware Approach for an Optimal
Checkpoint/Restart Model in HPC
Environments,” IEEE International Conference
on Cluster Computing, 2007.

[4] Y. Liu, R. Nassar, C. Leangsuksun, N.
Naksinehaboon, M. Paun, S. Scott, “A
Reliability-aware Approach for an Optimal
Checkpoint/Restart Model in HPC
Environments,” IEEE International Conference
on Cluster Computing, 2007.

[5] J.T. Daly, “A Model for Predicting the Optimum
Checkpoint Interval for Restart Dumps, ” ICCS
, 2003.

[6] J.S. Plank, M.A. Thomason, “The Average
Availability of Parallel Checkpointing Systems
and Its Importance in Selecting Runtime
Parameters,” IEEE Proc. Int’l Symp. On Fault-
Tolerant Computing, 1999.

Figure 4. The Average Execution Time Comparison For
Two Checkpointing Methods

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 31st March 2013. Vol. 49 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

710

[7] Y. Liu, C. Leangsuksun, H. Song, S.L. Scott,
“Reliability-aware Checkpoint /Restart Scheme:
A Performability Trade-off,” IEEE International
Conference on Cluster Computing , 2005.

[8] Y. Ling, J. Mi, X. Lin, “A Variational Calculus
Approach to Optimal Checkpoint Placement,”
IEEE Trans. Computers, vol. 50, no. 7, 699–707
, 2001.

[9] A.J. Oliner, L. Rudolph, R. Sahoo, “Cooperative
Checkpointing Theory,” In Proceedings of the
Parallel and Distributed Processing Symposium
, 2006.

[10]lpsolve,http://lpsolve.sourceforge.net/5.5/index.
htm

[11] J-M. Hélary, R.H.B. Netzer, M. Raynal,
“Consistency Issues in Distributed
Checkpoints,” IEEE Transactions on Software
Engineering, vol. 25, no. 2, pp. 274-281,
1999.

[12] NAS Parallel Benchmarks:
http://www.nas.nasa.gov/Resources/Software/n
pb.html.

http://www.jatit.org/

	1ATIEH LOTFI, 2SAEED SAFARI
	Step 1: Application Profiling
	Step 2: Potential Checkpoint Insertion
	Step 3: Dependency Extraction
	Step 4: ILP-based Optimum Checkpoint Selection
	1) Definitions and Notations
	2) Problem Formulation

	Step 5: Checkpoint Insertion and Simulation
	Finally, in order to evaluate our proposed method, we model our system and inject random faults. All the selected checkpoints are inserted in their determined places and then the execution time of the program is estimated.

