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ABSTRACT 
 

Nowadays multicore processors are increasingly being deployed in high performance computing systems. 
As the complexity of systems increases, the probability of failure increases substantially. Therefore, the 
system requires techniques for supporting fault tolerance. Checkpointing is one of the prevalent fault 
tolerant techniques reducing the execution time of long-running programs in presence of failures. 
Optimizing the number of checkpoints in a parallel application running on a multicore processor is a 
complicated and challenging task. Infrequent checkpointing results in long reprocessing time, while too 
short checkpointing intervals lead to high checkpointing overhead. Since this is a multi-objective 
optimization problem, trapping in local optimums is very plausible. This paper presents a novel 0-1 integer 
linear programming (ILP) formulation for solving optimal checkpoint placement problem for parallel 
applications running on a multicore machine. Our experimental results demonstrate that our solution leads 
to a better execution time saving over existing methods. 

Keywords: Fault Tolerance; Optimal Checkpoint Placement; Multicore Architectures; Integer Linear 
Programming 

 
1. INTRODUCTION  
 

 Recent changes in the high performance parallel 
computing make fault tolerant system design 
important. The higher number of processors 
increases the overall performance, but it also 
increases the probability of failures. Moreover, 
there are many applications, like some optimization 
problems, that take days or even weeks to execute. 
As the execution time of a program becomes 
longer, the probability of failure during execution as 
well as the overhead of such failures increase 
considerably. It is possible that the execution time 
of the program exceeds the mean time to failure of 
the underlying hardware. Therefore, there is a risk 
that the application never gets finished. 

One of the well-known techniques for making 
such applications resilient to failures is 
checkpointing [1]. In this technique, the system 
state is saved in some intermediate states, so there is 
no need to start the application from scratch in the 
event of failure; instead, the system rollbacks to one 
of its recent checkpoints. Using this technique, the 
system can be recovered with hopefully the 
minimum loss of computation when a failure 

occurs. However, checkpoinitng comes with some 
overhead affecting the execution time of the 
program. Therefore, it is necessary to avoid useless 
checkpoints and keep a balance between the 
overhead caused by taking checkpoints and the 
amount of work lost when the system fails. 

Checkpointing in multicore message-passing 
systems poses several challenging issues. We 
consider such systems consisting of a number of 
processes communicating each other by means of 
messages. In fact, the main difference between 
sequential and parallel applications in case of 
failure recovery is the existence of dependencies 
imposed by inter-process communications. If 
checkpoints are taken without any coordination, an 
inconsistency may occur upon recovery. 
Checkpoints on a recovery line should be 
consistent. Thus, for every recorded received 
message, its corresponding sent message should be 
recorded to avoid creating orphan messages [1]. In 
order to create consistent recovery lines, 
coordination protocols between communicating 
processes are needed. In uncoordinated 
checkpointing in which each process takes 
checkpoints individually without any coordination, 
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domino effect and possibility of creating useless 
checkpoints can arise [2]. On the other hand, in 
coordinated checkpointing, all processes take 
checkpoints simultaneously, which is easy to 
implement but often causes significant overhead. In 
addition, finding a way to synchronize all processes 
may not be always possible. The third existing way 
is to take checkpoints according to the messages 
passed between processes. In other words, each 
process can take its checkpoints individually, and in 
case of dependency caused by sending and 
receiving messages, a checkpoint will be induced 
on the dependent process. This technique can lead 
to a better performance. Since taking checkpoints 
causes overhead in the application, useless 
checkpoints (those checkpoints that do not belong 
to a consistent recovery line) should be avoided. A 
complete survey of checkpoint/recovery techniques 
can be found in [2] and [3]. 

Determining the optimal number of checkpoints 
in a message-passing program which are consistent 
and are not useless is a crucial issue. In this paper 
we propose a novel optimal checkpoint placement 
strategy which minimizes the execution time of the 
parallel program. We consider parallel programs 
that use message passing communication scheme. 
We assume the parallel programs run on a multicore 
machine with reliable message delivery system. The 
processors in this system can fail any time and there 
is a failure detection mechanism that can detect 
failures immediately. Furthermore, we consider 
transient and intermittent faults, which have 
instantaneous duration. Given such system with a 
message passing application, and a given error 
probability, we make an integer linear programming 
(ILP) formulation to find the optimal checkpoint 
placement for that parallel application. We also 
consider the system failure is a Poisson process. 

 The rest of this paper is organized as follows; in 
section 2 related works are studied. Section 3 
introduces our checkpoint placement strategy. 
Experimental results are given in Section 4. Finally, 
conclusions are drawn in the last section. 

2. RELATED WORKS 
 

There is a trade-off between the overhead 
imposed by checkpointing and the amount of works 
lost due to the failure. Many different works have 
aimed at optimizing this trade-off. Generally, either 
the expected completion time of a task ([4], [5]), or 
the availability of the system ([6]) is chosen as an 
optimization metric. The use of analytical and 
stochastical models for serial and parallel 
applications to determine suitable checkpoint 

intervals has been studied to a large extent (e.g. [4], 
[7], [8]). In all of these papers, coordinated 
checkpointing is considered, and the effect of 
communication and the dependency imposed by 
sending and receiving messages are not considered. 
They supposed systems without any dependency 
and solved their equations for just one processor 
and generalized it to the whole system, which is 
simple but not realistic. Most works use 
equidistance checkpoints, but it has been shown 
that for realistic system failures, periodic 
checkpointing is not the best choice [9]. 

In [7], an optimal solution has been proposed for 
periodic checkpoint placement problem in parallel 
applications. It considers the occurrence of a failure 
as a random distribution with constant failure rate, 
𝜆. The optimal checkpoint placement interval (𝑇𝑐) 
approximated in this paper depends on the 
checkpoint overhead (𝑇𝑠: time to save context files 
for each checkpoint). The exact formula is: 

Tc =  �
2Ts
λ
− Ts2. (1) 

We compare our proposed method with this model. 

Despite the importance of the communication 
induced protocols, there is no model to calculate the 
optimal checkpoint interval which minimizes the 
total execution time of a parallel program using 
these protocols. In this paper, we don’t limit all the 
processors in our multicore architecture to 
checkpoint simultaneously and periodically. 
Instead, each core can take its checkpoints 
individually and provide coordination in case of 
dependency. 

3. OPTIMAL CHECKPOINT PLACEMENT 
STRATEGY 
 

The problem solved is formally stated as follows: 
given a multicore system and a parallel program 
running on it; derive the minimum number of 
consistent checkpoints that minimizes the overall 
execution time of the program in a faulty 
environment. We assume the multicore system 
consists of a finite set of processes that 
communicate only by exchanging messages. Each 
process is executed on a core. We assume that 
transmission delays are unpredictable but finite. In 
a parallel computing system, a local checkpoint is 
defined as the local state of one process and a 
global checkpoint is defined as a set of local 
checkpoints. A consistent global checkpoint is a 
global checkpoint that does not include messages 
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received but not sent yet (orphan messages) [11]. It 
should be noted that a consistent global checkpoint 
can include sent but not received messages. With 
this assumption, all the messages that have been 
sent but not received must be restored in order to 
roll back the system correctly. 

Our methodology for solving optimal checkpoint 
placement in a parallel program can be divided into 
five phases, which is summarized in the figure1. 

 

 

 

 
 

 

Step 1: Application Profiling 
Firstly, we extract all the messages that are 

passed as inter-process communication. The send 
and receive messages and their relative order can 
simply be obtained by tracing the communication 
statements in a message passing application. For 
each communication statement we need to find the 
sender and receiver processes and its relative order 
to other messages passed in the system. In addition, 
we assign a logical time to each message. 

Step 2: Potential Checkpoint Insertion 
In the second phase, for every process, we find 

regions (bounds) that taking a local checkpoint 
might be suitable. For this purpose, we categorize 
applications by their granularity and suggest 
different candidate checkpoint insertion method for 
them. The first category includes those applications 
that are parallelized in a fine-grained way. Recall 
that a parallel application is fine-grained if its 
subtasks communicate frequently. For this 
category, we assume that one checkpoint should be 
placed as a candidate between two consecutive 
interaction of that process with outside (i.e. 
between each two consecutive send or receive 
messages). The second category contains those 
applications that are parallelized in a coarse-grained 
or embarrassing way. The inter-process 
communications in this category are usually rare. 
For this category, we suppose that at least one 
checkpoint should be placed as a candidate between 
two consecutive messages. If the distance between 
two consecutive messages of a process is more than 
a limit, more than one candidate checkpoint is 
inserted in that region. We define this limit based 
on the failure distribution of the system. We are 

going to clarify this phase with an example. 
Assume that figure 2 shows a part of a sample 
program’s communication behavior that should be 
run on multicore machine with two cores. Each line 
shows the timeline for a process. We assign a 
logical time to each interaction denoted by Ti. 
Assuming this program is a kind of fine-grained 
parallel program, so we just put one checkpoint 
between each consecutive message. The candidate 
checkpoints for process P are {CP1, CP2, CP3, 
CP4}. Also, the candidate checkpoints for process 
Q denotes by {CQ1, CQ2, CQ3, CQ4}. According 
to the explanations of this phase, each checkpoint is 
bounded between its former and latter messages 
time. As an example, checkpoints CP1 and CP2 
should satisfy the equations T1≤CP2_time ≤T3 
and T4≤CQ3_time ≤T5, respectively. 

 

 

 

 

 

Step 3: Dependency Extraction 
In order to find the best candidates in the parallel 

program for checkpoint placement, communication 
statements are analyzed to find the existing 
dependency between processes. So far, we have 
chosen suitable places in each process for inserting 
potential local checkpoints and here we find all the 
possible consistent recovery lines for each 
candidate checkpoint based on their communication 
pattern with other processes. When analyzing the 
program’s communication pattern, it is important to 
note that a rollback to any arbitrary checkpoint 
should not create orphan messages. So, if a process 
rolls back to a checkpoint before its send message, 
the receiver process should roll back to a 
checkpoint before its receive time as well. After 
finding all the recovery lines, all the useless 
checkpoints (those that do not belong to any of the 
global consistent recovery lines) will be omitted 
from the potential candidate checkpoint list of that 
process. Therefore, given a parallel program with a 
number of processes, at the end of this phase we 
determine all the potential local checkpoints for 
each process and a list of consistent recovery lines 
for each checkpoint. So, for every checkpoint, a 
logical time interval in which it can be placed and 
the list of all dependent checkpoints available in 
other processes is extracted. List of dependent 
checkpoints for checkpoint i of process P are those 
checkpoints that other processes should rollback to 

 
Figure 1. Overview Of The Optimal Checkpoint 

Placement Methodology 

 
Figure 2. Example Of A Message Passing System 
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them if process P rolls back to its checkpoint i. For 
example, in figure 2, CQ2 is in the list of dependent 
checkpoints for CP2. 

Step 4: ILP-based Optimum Checkpoint Selection 
In the fourth phase, an integer linear 

programming model selects the optimum number of 
checkpoints among all the potential candidate 
checkpoints to minimize the execution time in a 
faulty environment. The following two subsections 
explain the notations, definitions, and ILP 
equations. 

1) Definitions and Notations 
We consider a multicore architecture with n 

cores that runs a parallel application consisting of n 
processes (in general, there is no restriction that the 
number of processes and cores should be the same; 
here, we make this assumption for simplicity.) 
Suppose that the maximum number of potential 
checkpoints for a given process extracted from 
previous phases is m. For each checkpoint j in 
process i, we use a 0-1 integer variable 𝑖𝑠_𝑡𝑎𝑘𝑒𝑛𝑖,𝑗 
to denote whether that checkpoint will be taken in 
the final optimum checkpoints or not. If is_takeni,j 
is 1, the jth checkpoint of the ith process will be 
selected and taken; otherwise, it will be omitted. 
Another variable that is needed for every candidate 
checkpoint is 𝑐ℎ𝑒𝑐𝑘𝑝𝑜𝑖𝑛𝑡_𝑡𝑖𝑚𝑒𝑖,𝑗, denoting the 
time of each checkpoint that previously bounded in 
step 2. For each checkpoint j in process i, there is 
an array of length n, 𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑦_𝑙𝑖𝑠𝑡𝑖,𝑗[𝑛], that 
indicates all the dependent checkpoints for jth 
checkpoint of ith process and it contains the output 
of step 3. For example, dependency_listi,j[k] holds 
the dependent checkpoint number of process k for 
jth checkpoint of the ith process. The overhead of 
storing each checkpoint extracted from simulation 
indicates by CPoverhead variable. We suppose 
failures can occur randomly everywhere in the 
execution of each process with a predetermined 
failure rate. 

2) Problem Formulation 
The mathematical problem is to compute the 

optimum number of checkpoints that minimizes the 
completion time of the parallel computation under 
various failure assumptions. In the following, we 
will outline the ILP model to solve this problem. 

The objective is to find the best checkpoint 
placement in order to minimize the total execution 
time of the parallel program (Equation 2): 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ 𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛_𝑇𝑖𝑚𝑒(𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖) 𝑛
𝑖=1 . (2) 

The first limiting equation is related to the output 
of step 2, i.e. the bounded interval of each 
checkpoint. As explained before, we extract an 
acceptable bound for each checkpoint; here, we 
denote them by 𝑙𝑜𝑤𝑒𝑟_𝑏𝑜𝑢𝑛𝑑𝑖𝑗 and 𝑢𝑝𝑝𝑒𝑟_𝑏𝑜𝑢𝑛𝑑𝑖𝑗 
for the lower bound and upper bound of jth 
checkpoint of ith process, respectively. This can be 
formulated as the following equation: 

∀ 𝑖 ∈ {1, … ,𝑛}, 𝑗 ∈ {1, … ,𝑚} :  

𝑙𝑜𝑤𝑒𝑟_𝑏𝑜𝑢𝑛𝑑𝑖𝑗 ≤ 𝑐ℎ𝑒𝑐𝑘𝑝𝑜𝑖𝑛𝑡_𝑡𝑖𝑚𝑒𝑖𝑗 ≤
𝑢𝑝𝑝𝑒𝑟_𝑏𝑜𝑢𝑛𝑑𝑖𝑗. 

(3) 

If a checkpoint is chosen, all of its dependent 
checkpoints should be taken as well. This can be 
formulated using equation 4. In simple words, if  jth 
checkpoint of ith process is selected, it forces all 
other checkpoints in its dependency list to be taken: 

∀ 𝑖, 𝑙 ∈ {1, … ,𝑛}, 𝑗, 𝑘 ∈ {1, … ,𝑚}, (𝑙,𝑘) ∈
𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑐𝑦_𝑙𝑖𝑠𝑡𝑖,𝑗:  𝑖𝑠_𝑡𝑎𝑘𝑒𝑛𝑖𝑗 ≤ 𝑖𝑠_𝑡𝑎𝑘𝑒𝑛𝑙𝑘 (4) 

In order to minimize the total execution time of 
the parallel application, we compute the execution 
time of each process separately. The execution time 
of each process is calculated by adding the 
execution time of that process in a non-faulty 
environment and the wasted times due to each 
checkpoint and failures. We consider both the 
overhead caused by inserting each checkpoint 
which is the amount of time needed to store the 
checkpoint on the stable storage and the rollback 
time, which is the time lost between the fault 
occurrence time and the last system stable state that 
should be executed again. In other words, the 
execution time of each process is calculated as 
follows: (Please note that equation 5 is not an ILP 
equation and just mentioned here for more 
clarification, and its equivalent ILP formula is 
stated by equation 6) 

𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛𝑇𝑖𝑚𝑒(𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖)
= 𝑛𝑜𝑛𝐹𝑎𝑢𝑙𝑡𝑦𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛𝑇𝑖𝑚𝑒(𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖)
+ 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶ℎ𝑒𝑐𝑘𝑝𝑜𝑖𝑛𝑡
× 𝑐ℎ𝑒𝑐𝑘𝑝𝑜𝑖𝑛𝑡 𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑑
+ 𝑟𝑜𝑙𝑙𝑏𝑎𝑐𝑘 𝑎𝑛𝑑 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦 𝑡𝑖𝑚𝑒𝑠 

(5) 

The last ILP equation computes the execution 
time of each process in the event of failure with its 
chosen checkpoints. Suppose F random faults are 
injected in our system. In this equation, the 
execution time of each process is calculated as 
explained in equation 5. The rollback time is the 
amount of total lost work in all processes caused by 
that fault, i.e. the sum of distance between the 
failure point and the nearest selected checkpoint 
(𝐶𝑃𝑥) in the faulty process and also non-faulty 
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processes which contains dependent 𝐶𝑃𝑥 
checkpoints: 

∀ 𝑖 ∈ {1, … ,𝑛}:  
𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛𝑇𝑖𝑚𝑒(𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖) =
 𝑛𝑜𝑛𝐹𝑎𝑢𝑙𝑡𝑦_𝐸𝑥𝑒𝑐𝑇𝑖𝑚𝑒(𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖) +
∑ 𝑖𝑠_𝑡𝑎𝑘𝑒𝑛𝑖𝑗 ∗ 𝐶𝑃𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑑𝑚
𝑗=1  +  

�𝑀𝑖𝑛𝑗=1
𝐶𝑃𝑡𝑖𝑚𝑒(𝑗)<𝐹𝑎𝑢𝑙𝑡_𝑇𝑖𝑚𝑒(𝑘)(𝑖𝑠_𝑡𝑎𝑘𝑒𝑛𝑖𝑗 ∗

𝐹

𝑘=1

 

[𝑓𝑎𝑢𝑙𝑡_𝑇𝑖𝑚𝑒𝑘 − 𝑐ℎ𝑒𝑐𝑘𝑝𝑜𝑖𝑛𝑡_𝑡𝑖𝑚𝑒𝑖𝑗 
+∑ (𝑓𝑎𝑢𝑙𝑡_𝑇𝑖𝑚𝑒𝑘 −

𝑁(𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑦_𝑙𝑖𝑠𝑡(𝑖,𝑗))
𝑙=0

𝑐ℎ𝑒𝑐𝑘𝑝𝑜𝑖𝑛𝑡_𝑡𝑖𝑚𝑒𝑝𝑙𝑐𝑝𝑙)]) 

(6) 

The ILP formulation for optimal checkpoint 
placement problem is summarized in Figure 3.  

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ (𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛_𝑇𝑖𝑚𝑒(𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖))𝑛
𝑖=1  subject 

to: 

1. ∀ 𝑖 ∈ {1, … ,𝑛}, 𝑗 ∈ {1, … ,𝑚} :  𝑙𝑜𝑤𝑒𝑟_𝑏𝑜𝑢𝑛𝑑𝑖𝑗 ≤
𝑐ℎ𝑒𝑐𝑘𝑝𝑜𝑖𝑛𝑡_𝑡𝑖𝑚𝑒𝑖𝑗 ≤ 𝑢𝑝𝑝𝑒𝑟_𝑏𝑜𝑢𝑛𝑑𝑖𝑗. 

2. ∀ 𝑖, 𝑙 ∈ {1, … ,𝑛}, 𝑗,𝑘 ∈ {1, … ,𝑚}, (𝑙, 𝑘) ∈
𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑐𝑦_𝑙𝑖𝑠𝑡(𝑖,𝑗):  𝑖𝑠𝑡𝑎𝑘𝑒𝑛𝑖𝑗 ≤ 𝑖𝑠𝑡𝑎𝑘𝑒𝑛𝑙𝑘 

3. ∀ 𝑖 ∈ {1, … ,𝑛}:  𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛𝑇𝑖𝑚𝑒(𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖) =
 𝑛𝑜𝑛𝐹𝑎𝑢𝑙𝑡𝑦_𝐸𝑥𝑒𝑐𝑇𝑖𝑚𝑒(𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖) +
∑ 𝑖𝑠_𝑡𝑎𝑘𝑒𝑛𝑖𝑗 ∗ 𝐶𝑃𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑑𝑚
𝑗=1  + 

∑ 𝑀𝑖𝑛𝑗=1
𝐶𝑃_𝑡𝑖𝑚𝑒(𝑗)<𝐹𝑎𝑢𝑙𝑡_𝑡𝑖𝑚𝑒(𝑘)(𝑖𝑠_𝑡𝑎𝑘𝑒𝑛𝑖𝑗 ∗𝐹

𝑘=1 [
𝑓𝑎𝑢𝑙𝑡_𝑇𝑖𝑚𝑒𝑘 − 𝑐ℎ𝑒𝑐𝑘𝑝𝑜𝑖𝑛𝑡_𝑡𝑖𝑚𝑒𝑖𝑗 + 
∑ (𝑓𝑎𝑢𝑙𝑡_𝑇𝑖𝑚𝑒𝑘 −
𝑁(𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑦_𝑙𝑖𝑠𝑡(𝑖,𝑗))
𝑙=0

𝑐ℎ𝑒𝑐𝑘𝑝𝑜𝑖𝑛𝑡_𝑡𝑖𝑚𝑒𝑝𝑙𝑐𝑝𝑙)]) 

Figure 3. ILP formulation for optimal checkpoint placement in a 
parallel application 
 

Step 5: Checkpoint Insertion and Simulation 

Finally, in order to evaluate our proposed 
method, we model our system and inject random 
faults. All the selected checkpoints are inserted in 
their determined places and then the execution time 
of the program is estimated. 
4. EXPERIMENTAL RESULT 
 

In our experiments, we focus on MPI 
applications because of its popularity (albeit our 
method can be easily mapped on any other message 
passing programs). Generally, an MPI application 
is decomposed and run among many computing 
nodes, where message passing mechanism is used 
for subtasks communications. In this section, we 
use Fortran/MPI version of NAS parallel 
benchmarks (NPB3.3) [12] and three C/MPI 

benchmarks to evaluate the performance of our 
optimal checkpoint placement strategy and compare 
it with optimal coordinated checkpointing. These 
programs have been executed on a multicore 
machine with 4 cores. The system runs windows 7. 
We used a free ILP solver, called lpsolve [10], to 
solve the ILP equations for each program. 

In MPI applications, routine calls may belong to 
one of the following classes: 

- Routine calls used to initialize, terminate, 
manage, and synchronization. 

- Routine calls to create data types.  
- Routine calls used to communicate between 

exactly two processes, one sender and one 
receiver (Pair communication)  

- Routine calls used to communicate among 
groups of processors (Collective 
communication) 

We mainly focus on communication calls to 
extract the communication model of the system as 
explained in step 1 of our method. We run different 
NPB benchmarks on a multicore machine in a fault-
free environment and use the MPI timer, 
namely MPI_Wtime() routine to extract the time of 
each communication. Using these values in hand, 
we model our system and trace the dependency of 
different processes. Then, having all the necessary 
inputs of ILP formulation, we find the optimum 
points for checkpoint placement. Table 1 
summarized the characteristics of benchmarks that 
have been run on a fault-free quad-core machine. In 
this paper, we use BT, CG, MG, and FT 
benchmarks of MPI NPB 3.3. The number of 
messages passed in each benchmark is also shown 
in this table. 

Table 1. . BENCHMARK CHARACTERISRICS 
Benchmark Language Number of 

Messages 
BT Fortran 192 
CG Fortran 117 
MG Fortran 123 
FT Fortran 120 

Matrix 
Multiplication C 20 
PI Calculation C 12 

Matrix Addition C 9 
 

In order to evaluate our proposed model, we 
compare our checkpoint placement method with the 
model proposed in [7] which solves the optimal 
checkpoint placement problem for MPI applications 
using a coordinated checkpoinitng protocol 
(Equation 1). 
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Table 2 shows the comparison of the average 
program execution times. The programs have been 
executed under different fault injection scenarios 
and the average execution times (in seconds) have 
been reported. In each simulation, the failure rate is 
changed and faults are injected randomly during the 
programs’ execution. As it can be seen, our method 
mostly reduces the programs’ execution time. This 
is due to the omission of taking unnecessary 
checkpoints. 

Table 2. AVERAGE EXECUTION TIME OF TEST PROGRAMS 
USING TWO DIFFERENT CHECKPOINTING METHODS 

(CHECKPOINT OVERHEAD = 5S) 
Benchmark Execution time 

using 
Periodic 

Checkpointing([7]) 
(Second) 

Execution time 
using 

our proposed 
Method 

(Second) 
FT 12665 11896 
CG 12770 11975 
MG 13946 13668 
BT 8517 9031 

Matrix 
Multiplication 4260 1550 

PI Calculation 3347 1730 
Matrix 

Addition 6057 4903 

Figure 4 shows the average execution time of the 
chosen benchmarks using the two different 
checkpointing placement techniques. As it can be 
seen, our proposed checkpointing placement 
strategy mostly provides better performance 
comparing periodic checkpointing [7]. The only 
exception is BT benchmark. This is due to this fact 
that when the number of messages increases, the 
number of variables and equations in our ILP 
formulation grows and consequently the time 
needed to solve the ILP formulas grows 
exponentially. And, since we set a time limit on the 
execution time of ILP solver, it may not find the 
global optimum point. 

5. CONCLUSION 
 

Homogeneous and heterogeneous multicore 
processors are widely deployed in the current and 
also the next generation of supercomputers. In this 
paper, to the best of our knowledge for the first time 
the problem of optimal checkpoint placement in 
multicore processors has been solved using integer 
linear programming formulation. The second 
contribution of this paper is that the solution is not 
restricted to coordinated checkpointing rather each 
core can take its local checkpoints independently 
and force other cores to take a checkpoint in case of 

dependency. This is possible due to process’ 
dependency extraction phase. Experimental results 
show that this method leads to better performance 
than the other existing models. As the problem size 
becomes larger the number of variables and 
equations in our ILP formulation grows and 
consequently the time needed to solve the ILP 
formulas grows exponentially. To overcome this 
limitation, we are going to use evolutionary 
algorithms in our future works to solve the optimal 
checkpoint placement problem. 
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