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ABSTRACT 
 

As the allocation of emergency materials in emergency response stage is an irreversible decision and the 
disaster information is continuously observed and updated, this paper brings the determination of 
decision-making time and the formulation of decision scheme into a systematic framework, builds the 
Bayes sequential decision model for the multiple rescue points selection problem, thus making the total 
loss of the affected point be the minimum and the response time be the shortest. Through simulation, this 
paper analyzes the relation among relevant parameters including prior mean value of disaster information, 
prior standard deviation of disaster information, observation standard deviation of disaster information,  
maximum observation frequency and total expected decision loss.   
Keywords: Allocation Of Emergency Material; Rescue Point Selection; Disaster Information Uptade; 

Irreversible Decision; Bayes Sequential Decision   
 
1. INTRODUCTION 
 

In emergency response stage, the uncertainty 
of emergency evolution makes emergency 
logistics decision full of challenges. So the 
emergency logistics plans must have elasticity so 
they can be adjusted [1]-[2]. In current research, 
there are two dynamic methods for emergency 
logistics modeling. One is Scheduling and 
Re-scheduling method and the other is Disruption 
Management method. The Scheduling and 
Re-scheduling method means to firstly build a 
mathematics model and realize global 
optimization according to the original disaster 
information. When getting new information, 
people rebuild the model and realize new global 
optimization with new disaster information 
[3]-[4]. The Disruption Management method 
means that in the beginning, people use a 
optimized model to get a good operation plan. 
During the implement of the plan, the 
interference accidents make the original plan 
infeasible and we need a new plan at the real time. 
The new plan, while considering the original 
optimization object, needs to minimize the 
negative effect brought by the interference [5-7]. 
For both two methods, the precondition for the 
dynamic adjustment of emergency response 

scheme is that the scheme is easy to adjust, or the 
decision is totally or partly reversible [8]-[9].  

The Scheduling and Re-scheduling method 
doesn’t consider any adjustment cost or 
deviation cost. In this case, the emergency 
response scheme is totally reversible and can be 
totally reset under the condition of obtaining new 
information. The Disruption Management method 
considers limited adjustment cost. So the 
emergency response scheme is partly reversible 
and focuses on local adjustment in order to 
minimize the adjustment cost. However, many 
emergency response decisions are usually 
irreversible, which makes them, once carried out, 
unable to adjust [10]. For example, the decision 
of using helicopter to air-drop materials to 
affected points is usually irreversible. As many 
affected points are not suitable for helicopters to 
land, the air-dropped materials to these points 
will be impossible to transfer to other points. 
Even we use cars to transport emergency 
materials, the adjustment cost for emergency 
materials allocation scheme may be very high. As 
in many cases roads are in ruins in disaster and 
cars can only move in one direction. When 
emergency material allocation decision is 
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irreversible, the allocation scheme is hard to 
adjust and it is the only way for us to choose the 
optimal decision-making time [2]. 

Based on the irreversibility of emergency 
material allocation decision in emergency 
response stage, under the condition that the 
disaster information is continuously observed and 
updated, this paper uses the Bayes decision 
theory to establish a mathematic model for the 
rescue points selection problem, which brings the 
solution of emergency material allocation scheme 
and decision-making time into a systematic 
framework.  The rescue points selection 
problem is a kind of the emergency material 
allocation problem. In rescue points selection 
problem, there are one affected point and many 

rescue points, which are selected to provide 
emergency material to the affected point. In each 
decision period, we only make and carry out one 
emergency material allocation scheme and do no 
adjustment later. In each decision period, the 
higher observation frequency of disaster 
information is, the more accurate the material 
demand information is, and the less loss improper 
material allocation decision will cause. However, 
along with the increase of the observation 
frequency, the loss caused by material allocation 
delay will be larger [11]. So in order to reduce the 
total loss, we need to determine the optimal 
decision-making time. The basic framework of 
the Bayes sequential decision model for multiple 
rescue points selection is shown in Picture 1.   

 
 
 

 
 
 
 
 

 
 
 

 
 

Picture 1 Basic Framework Of The Bayes Sequential Decision Model 
 

As shown in Picture1, in the first time after 
disaster, we can only get the prior disaster 
information calculated by the historical data. At 
this time, the decision-maker needs to choose 
whether to make emergency material allocation 
decision right now or to observe disaster 
information for another period of time. If 
decision-maker decides to make emergency 
material allocation decision right now, the loss 
caused by decision delay will be 0 and the loss 
caused by uncertain disaster information will be 
serious. If decision-maker decides to continue to 
observe disaster information, he can get 
posteriori disaster information through 
observation information and prior information. 
So the posteriori disaster information will be 
more accurate and the loss caused by improper 
decision (decision-mistake loss) will be reduced. 
But the emergency material allocation decision 
will be delayed and there will be decision-delay 
loss. When people keep continuous observation 

on disaster information, the posteriori 
information obtained in this observation becomes 
the prior information for the next observation. So, 
the optimal decision-making time depends on the 
trade off between the decision-mistake loss and 
the decision-delay loss to make the total loss 
minimal. After obtaining the optimal 
decision-making time, we can work out the 
optimal emergency material allocation scheme 
with selected rescue points and their material 
supply amount. When there is a serious disaster, 
the observation cost can be ignored compared 
with the loss of affected point, so this paper 
doesn’t consider any observation cost.  

A mathematics model is established in the 
second part. The third part gives the process of 
solving the model. The results are discussed in 
the fourth part. The fifth part gives an application 
example. The sixth part performs numerical 
simulation of the relation among different 
variables, and the seventh part is the conclusion.     
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2 MODEL CONSTRUCTION 
 
2.1 Definition of Symbols 

i ： code for alternative rescue point , 
1, 2, ,i p= ⋅ ⋅ ⋅  

ib ：amount of emergency material reserves in 
rescue point i   

it ：transportation time from rescue point i  to 
affected point 

B ：total population in affected point  

θ ：affected proportion of the population in 
affected point  

µ ：prior mean of affected proportion  

τ ： prior standard deviation of affected 
proportion  

σ ：standard deviation of observation example 
of affected proportion   

d ：quantity-demanded for emergency material 
of each affected people   

n ： observation frequency of disaster 
information  

N ： maximum observation frequency of 
disaster information， 1N ≥  

*n ：optimal emergency material allocation 
decision-making time expressed by observation 
frequency   

*

intn ：integral value of optimal decision-making 
time expressed by observation frequency  

*

T ：actual optimal decision-making time  

S ：amount of emergency materials allocation 
for affected point  

*S ：optimal amount of emergency material 
allocation  

D ：quantity-demanded for emergency material 
of affected point, D d Bθ=  

fL ：decision-mistake loss  

dL ：decision-delay loss  

L ：total decision loss  

r ：Bayes risk  

ρ ：posteriori expected loss  

2.2 Suppose 
（1）Suppose that the affected proportion of 

the population in affected point θ ∈ Θ  has the 
prior distribution  ( )π θ  and obeys the normal 

distribution 2( , )N µ τ , then the prior distribution 

( )Dπ  obeys 2 2 2( , )N dB d Bµ τ .  

（ 2 ） 1( , , )n

nX X= ⋅ ⋅ ⋅Χ  is the observed 
sequential example of affected proportion in 
affected point, and the observation example’s 
conditional distribution ( )f x θ  obeys the 

normal distribution 2( , )N θ σ ， x ∈ Ω . Suppose 
that the posteriori distribution of affected 
proportion θ  after observing the example value 
x  is ( )xπ θ . 

（3）Loss associated with emergency material 
allocation decision only includes the 
decision-delay loss and the decision-mistake loss. 
Suppose that the decision-delay loss dL  is the 
square form of unsatisfied demand amount of 
affected point and calculated according to the 
prior mean of emergency material 
quantity-demanded, 
then ( ) ( )2 20dL dB dBµ µ= − = . Suppose that 

decision-mistake loss fL  is calculated according 
to the posteriori mean of emergency material 
quantity-demanded, then ( ) ( )2,fL S d B Sθ θ= − . 

Suppose that the interval between each 
observation is equal to 1 N . After observing 
disaster information for n  times and 
distributing the material, the total decision loss is 
as follows.   

( ) ( ) ( )

( ) ( )

1 1
, , ,

1
,

f d

f d

L S n N n L S n L
N N

N n L S nL
N

θ θ

θ

= − +

               = − +  

 

2.3 Bayes Risk Function  
The expected total decision loss of this 

problem can be expressed by the Bayes Risk 
Function:   
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( ) ( )( )

( )( )

, ,

,

n

n

n X n

n

X n

f n d

r E E L n

N n n
E E L L

N N

π π

θ

π π

θ

π θ d

θ d

=

−
         = +

  
 
  

Χ

Χ

(1) 

Here, ( )n

n

πδ Χ  is the Bayes decision rule of 

the decision loss ( ), ,L S nθ .  

Suppose 

( ) ( )( ), ,
nX n

n f n

N n
r E E L X

N
π π π

θπ δ θ δ
−

=  
  

, 

which means the expected decision-mistake loss. 

Suppose d

n
DL L

N
=  , which means the 

expected decision-delay loss. Then formula (1) 
can be expressed as:  

( ) ( ),n

nr r DLππ π δ= +       

Define the posteriori expected loss of the 
problem as follows.   

( )( ) ( ) ( ), , , ,x S n L S n x dρ π θ θ π θ θ
Θ

= ∫  

(2)                                  

2.4 Model  
For this problem, we can build a two-stage 

model. The first stage ensures optimal 
decision-making time and optimal total material 
allocation quantity to minimize the expected total 
decision loss. The second stage formulates 
optimal rescue scheme to minimize response 
time.    

The model for the first stage is: 

( )
,

min n

n S
r π                      (3) 

Suppose ф  is one feasible scheme for rescue 
points selection, and expressed as 

( ){
11ф= , ,ii b ′ ( )

22 , ,ii b ′ …, ( )},
mm ii b ′ , where 

0
l li ib b′≤ ≤ ，

*

1
l

m

i
l

b S
=

′ =∑ . 1 2, ,i i … , mi  are a 

permutation of 1, 2, , p⋅ ⋅ ⋅ ’s subsequence.  Ξ  

represents the set of feasible schemes, and *ф  
represents the optimal rescue scheme.  

The response time is the time for the last 
emergency material to arrive at the affected point, 
and then the response time can be expressed as: 

( )
1,2, ,

ф max
lil m

t
= …

Τ =  

Model for the second stage is:  

( )
ф

min ф
∈Ξ

Τ                      （4） 

3 SOLUTION 
 

The Bayes decision model in the first stage can 
be solved by Bayesian analysis. The multiple 
rescue points selection model in the second stage 
can be solved by combinatorial optimization 
algorithm. The specific steps are as follows.  

Step 1. Using Bayes formula to get the 
posteriori distribution of affected proportion 

( )xπ θ  and the posteriori distribution of 

material demand ( )D xπ .  

Theorem 1. Suppose the prior 
distribution ( )π θ  of random variable θ  

follows 2( , )N µ τ , µ  and 2τ are known, the 

conditional distribution ( )f x θ  of the 

observation example X  is 2( , )N θ σ ，here, θ is 

unknown, 2σ  is known. According to Bayes 
formula, set the sequential example nΧ  down, 
the posteriori distribution ( )xπ θ of θ  obeys 

( )( ),nn nN xµ φ ，

where ( )
2 2

2 2 2 2
n nn

n
x x

n n

σ τ
µ µ

σ τ σ τ
= +

+ +
，

2 2

2 2n n

σ τ
φ

σ τ
=

+
， and nx  is the mean of the 

observed value of sequential example [12]. 

According to theorem 1，the posteriori variance 
obeys the rules 1n nφ φ −< ，which means that 
using observed value to update the original 
disaster information can reduce the uncertainty of 
disaster information. At the same time, we can 
get that the posteriori distribution of the 
emergency material demand ( )D xπ  obeys 

( )( )2 2,nn n
dB x d BN µ φ . 

Step 2. Minimizing the Bayes risk to get the 
Bayes decision rule.   

By minimizing the Bayes risk or the posteriori 
expected loss, we can get the Bayes decision rule 
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[12]. In this problem, it is easier to use the 
posteriori expected loss to solve the Bayes rule. 
Put ( ), ,L S nθ  into formula (2), then we get： 

( )( ) ( ) ( ) ( )2 2, , d
N n n

x S n d B S dB x
N N

ρ π θ θ µ π θ θ
Θ

−
= − + 

  ∫

set 
d

0
d S

ρ
= ， then we get： 

( )2 d 2 0dB x Sθ π θ θ
Θ

−  + =∫  

The Bayes decision rule of this problem can be 
solved out.   

( ) ( ) ( ) ( )n x
nn nX dBE dB xπ π θd θ µ=  = (5） 

So the Bayes rule is equal to the posteriori 
mean of material demand.   

Step3. Put Bayes decision rule into the Bayes 
risk function, then minimize the Bayes risk, and 
we can get the optimal decision-making time and 
the optimal material allocation quantity.    

Put ( ) ( )n
nn nX dB xπd µ=  into formula (1) 

and get the Bayes risk of material distribution 
decision.  

( ) ( )
2 2

22 2

2 2

n N n n
r d B dB

N n N

σ τ
π µ

σ τ

−
= +

+
(6

) 

At the same time, we can get the expression of 
expected decision-mistake loss.  

( )
2 2

2 2

2 2
, n

N n
r d B

N n
π σ τ

π d
σ τ

−
=

+
    (7) 

Suppose n  is a continuous variable. Set 

( )d
0

d

nr

n

π
=  to get the optimal decision time.  

( )1 2* 1 2 2 2 2n Nµ τ στ σ τ µσ− −= + − 
  (8) 

Calculate the second derivative of ( )nr π  to 
n  and get: 

( )
( )

2 2 2
2 2 2 2

32 2 2

d
2

d

nr N
d B

n N n

π σ τ
σ τ

σ τ

+
=

+
 

( )2

2

d
0

d

nr

n

π
> ， so *n  is the observation 

frequency when ( )nr π  is minimum, i.e. the 

optimal decision-making time. When * 0n ≤ , set 
* 0n = ; when *n N> , set *n N= . When 

* 0N n> > and *n  is a decimal, set the former 
integer of *n  as *n[ ] . The integer value of 

optimal observed frequency *

intn  is *n[ ] or 
*n[ ] +1 which makes ( )nr π  smaller. 

It is necessary to emphasize that *n or *

intn  is 
the optimal decision time expressed by the 
observation frequency. The actual optimal 

decision time
*

T is： 

( )1 21 2 2 2 2

* *

int

1 N
T n

N N

µ t σt σ t µσ− − + −
= × =

 
  (

9) 

In formula (9), the unit of 
*

T is one decision 
period.  

Put *n  or *

intn  into the Bayes decision rule in 
formula (5), and we can get the optimal material 
distribution quantity： 

 

( ) ( ) ( )* *

1 2* * 1 2 2, n
n nS n X dB x N xστ µ σ τ µ

−−= + + − 
 

                

(10) 

( )
*
int

2 * 2
* * int

int 2 * 2

int

,
nn n x

S n X dB
n

σ µ t

σ t

+
=

+
  (11) 

Formula（10） can be seen as the approximate 
value of formula（11）. 

Step4. According to the optimal material 
distribution quantity *S  calculated out in the 
first stage model, we can make a decision on 
rescue points selection and their material supply 
to get the optimal rescue scheme *ф . 

Set 1 2 pt t t≤ ≤ ⋅ ⋅ ⋅ ≤  

Definition 1. For sequence  
1 2
, , ,

mi i ib b b⋅ ⋅ ⋅ , if 
q  exists, which satisfies the condition that 

1 q m p≤ ≤ ≤ and 
1

*

1 1
l l

q q

i i
l l

b S b
−

= =

≥ >∑ ∑ ， we call 

q  as the critical subscript of this sequence, 
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relative to *S .    

Theorem 2. The necessary and sufficient 
condition for feasibility of scheme ф is that 

sequence
1 2
, , ,

mi i ib b b⋅ ⋅ ⋅  has the critical subscript 
q  [13]. 

Proof： 

If q  is the critical subscript of sequence 

1 2, , , pb b b⋅ ⋅ ⋅  in relative to *S , it will optimize 
the emergency material allocation scheme by 
taking 1, 2, , q⋅ ⋅ ⋅  as the rescue points, which 

makes ( )*

1,2, ,
ф max l q

l q
t t

= …
Τ = = . The characteristics 

of this scheme are as follows. Firstly choose 
rescue point 1 for rescue, which is the nearest to 
the affected point. If the entire emergency 
material supply 1b in this point is less than the 

optimal material distribution quantity *S ，then 
choose rescue point 2 for rescue, which is the 
second nearest to the affected point. If the sum of 
emergency material supply in point 1 and 2 

1 2b b+ is still less than *S , then choose point 
3,4,5……till the total material supply of selected 
rescue points is not less than *S . This is all.  

Theorem 3. The scheme which choose 
1, 2, , q⋅ ⋅ ⋅  as rescue points will make the 

response time shortest. ( )*

1,2, ,
ф max l q

l q
t t

= …
Τ = = . 

When l q< ，the emergency materials supply 

in the rescue point l  *
l ls b= and When l q= ， 

1
* *

1

q

q l
l

s S b
−

=

= − ∑ .  

4 RESULTS ANALYSIS 
 
4.1 Economical meaning of observation 
frequency and decision-making time  

As 
( ) ( )

( )

2 22 2 2 2

22 2

d ,

d
nr Nd B

n N n

ππ d σ τσ τ

σ τ

+
= −

+
, 

we can see that the expected decision-mistake 
loss is a decreasing function of the observation 
frequency of disaster information. Set 

( )d ,

d
nr

MR
n

ππ d
= − , which means the marginal 

benefit of the observation decreasing along with 
increasing of observation frequency.    

As 
2 2 2d

d

DL d B

n N

µ
= , we can see that the 

decision-delay loss is an increasing function of 
the observation frequency of disaster information. 

Set the marginal cost of observation
d

d

DL
MC

n
= , 

which doesn’t change with observation 
frequency.   

When the marginal benefit of observation is 
equal to the marginal cost, i.e. MR MC= , we 
can get the optimal decision-making time *n . 
The result is the same as formula (6). 

4.2 Optimal decision-making time  
（1）relation between optimal decision-making 

time and maximum observation frequency of 
disaster information   

1）relation between optimal decision-making 
time  expressed by observation frequency *n and 
maximum observation frequency N  

( )
*

1 21 2 2d 1

d 2

n
N

N
µ στ σ τ

−−= + .
*d

0
d

n

N
> , 

which shows that optimal decision-making time 
*n  is an increasing function of maximum 

observation frequency N . 
When ( )2 2 2 20 1N τ σ µ τ− −< ≤ − , * 0n = ; when 

( )2 2 2 2 1N τ σ µ τ− −> − , * 0n > . Specially, 

when µ τ< ， ( )2 2 2 20 1N τ σ µ τ− −> > − ， and 
* 0n > . That is to say, when the prior mean of 

affected proportion is smaller than its prior 
standard deviation, we need to observe disaster 
information before we make emergency material 
distribution decision.  

2) relation between actual optimal 

decision-making time 
*

T and maximum 
observation frequency N  

( ) 1 21 2 2 2 2 1 2 2*

2

1
2d 2

d

N NT

N N

µ στ σ τ τ σ µ τ µσ
−− − − −+ + +

= −
  

. 
*

d
0

d

T

N
<  , which shows that the actual optimal 
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decision-making time
*

T  is a decreasing function 

of N . Specially, when N → ∞ ，
*

lim 0
N

T
→∞

= . 

That is to say, if we do uninterrupted observation 
of disaster information, the actual optimal 
decision-making time is almost equal to 0. In this 
situation, disaster information is updated so 
quickly that the uncertainty of the information 
decreases in short time. So we can make decision 
right now.   

Along with the increase of maximum 
observation frequency of disaster information, 
though the optimal decision-making time 
expressed by observation frequency will increase, 
as the observation interval decreases, the actual 
optimal decision-making time will still decrease. 
So, after disaster, we can use the uninterrupted 
observation skills including remote sensing to 
improve decision-making speed and efficiency.    

（2）relation between optimal decision-making 
time and the prior mean value of affected 
proportion  

( )
*

1 22 1 2 2d

d

n
Nµ τ σ σ τ

µ
− −= − + .

*d
0

d

n

µ
< , 

which shows that the optimal decision-making 
time is a decreasing function of the prior mean 
value of affected proportion. The bigger the prior 
mean value of affected proportion is, the more 
serious the disaster situation known according to 
the prior information is, the higher the marginal 
cost of delaying decision is, and the shorter time 
for distributing emergency material should be. 

When ( )1 21 2 20 Nµ σ τ σ τ−< < + , * 0n > . When 

( )1 21 2 2Nµ σ τ σ τ−≥ + , * 0n = 。 

（3）relation between optimal decision-making 
time and the prior standard deviation of affected 
proportion   

( )
*

1 22 2 1 1 2 2d
2

d

n
Nσ τ τ µ σ σ τ

τ

−− − −= − + 
  .wh

en 2 24 0N µ σ−− ≥ ，

*d
0

d

n

τ
> . 

While 2 24 0N µ σ−− < ， the relation as follows 
exits.  

( )

( )

( )

*
12 2 2

*
12 2 2

*
12 2 2

d
0 4 4 : 0

d

d
4 4 : 0

d

d
4 4 : 0

d

n
N

n
N

n
N

τ σ µ σ
τ

τ σ µ σ
τ

τ σ µ σ
τ

−−

−−

−−

< < − >

= − =

> − <











 

It can be seen that relation between optimal 
decision-making time and the prior standard 
deviation of affected proportion is varied.   

（4）relation between optimal decision-making 
time and the observation standard deviation of 
affected proportion 

( ) ( )
*

1 21 1 2 2 2 2 2d
2 2

d

n
N Nµ τ σ τ σ τ τ σ

σ

−− − −= + + −

. When µ τ< ，

*d
0

d

n

σ
> . Suppose 

( )( ) 12 2 2 2 2 22 2A N µ τ µ µ τ µ τ
−−= − − − − , 

when µ τ> ： 

*
2

*
2

*
2

d
0 : 0

d

d
: 0

d

d
: 0

d

n
A

n
A

n
A

σ
σ

σ
σ

σ
σ

< < >

= =

> <











 

It can be seen that the relation between optimal 
decision-making time and the observation 
standard deviation of affected proportion is 
varied. 

4.3 Optimal materials distribution quantity 
The optimal material distribution 

quantity ( )* *

int ,
nS n X in formula (11) is obtained 

according to the posteriori information of 
affected proportion. In addition, we can directly 
use the prior information of affected proportion to 
distribute emergency material, signed as ( )S µ , 
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and ( )S dBµ µ= . We can also directly solve 
out material distribution quantity according to the 
mean of observed sequential example of affected 

proportion *
intnx , signed as ( )*

intnS x , and 

( )* *
int intn nS x dBx= . Formula（11） can be written 

as： 

( ) ( ) ( ) ( )( )*

int

* 2

* * int

int 2 * 2

int

, n
n

n
S n X S S x S

n

t
µ µ

σ t
= + −

+

                  (12) 

( ) ( ) ( ) ( )( )* *

int int

2

* *

int 2 * 2

int

, n
n nS n X S x S S x

n

σ
µ

σ t
= + −

+

                (13) 

Combine formula(12) and (13)，we can get the 
relation among ( )* *

int ,
nS n X , 

( )S µ and ( )*
intnS x , 

( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )

* *
int int

* *
int int

* *
int int

* *

int

* *

int

* *

int

: ,

: ,

: ,

n
n n

n
n n

n
n n

x S x S n X S

x S n X S S x

x S S n X S x

µ µ

µ µ

µ µ

> < <

= = =

< < <







 

It can be seen that ( )* *

int ,
nS n X is always 

between ( )S µ  and ( )*
intnS x . The posteriori 

information, combining the prior information and 
the posteriori information, makes the emergency 
material allocation decision more reasonable.    

5 NUMERICAL EXAMPLE  
 
5.1 Emergency scenario  

Suppose that in a certain area P1, there has an 
earthquake. The prior distribution of affected 
proportion of population θ obeys 

2(0.27, 0.32 )N . Suppose the observation 

example obeys 2( , )N θ σ ， and 0.4σ = . The 
disaster information is observed and updated 
every two hours and will be told to the 
emergency headquarters, who is responsible for 
emergency material distribution decision. The 
decision must be made in each day, so 12N = . 
The object of the rescue program is to minimize 
the total expected decision loss of emergency 
material distribution.   

Suppose the total population in the affected 
point P1 is 795 thousands. Each person needs 6 L 
of drinking water every day, i.e. 6d = . There 
are 7 rescue points: P1-P7. The arriving time it  
from each rescue point to P1 and the reserves of 
drinking water ib in each rescue point are shown 
in Tab. 1.    

Tab. 1 Arriving Time it  (Hour) From Each Rescue 

Point To P1 And Reserves Of Drinking Water ib (Ten 
Thousand L) 

 P1 P2 P3 P4 P5 P6 P7 

it  0 2.17 1.92 1.82 2.47 3.3 3.52 

ib  80 50 30 60 25 10 10 

 
5.2 Solution of the example  

（1）optimal decision-making time  

According to formula (8), we can get the 
optimal decision-making time * =3.8934n ，and 
the integer value of optimal decision-making time 

*

int 4n = . According to formula (9), we can get the 

actual optimal decision-making time 
*

8T =
（hour）. When the earthquake has happened for 
8 hours, the emergency headquarters make the 
optimal emergency allocation distribution 
decision. At this time, the expected total decision 
loss is minimal.   

（2）optimal emergency material distribution 
quantity  

In MATLABR2007b, use random() function to 
produce quantities who obey 2(0.27, 0.4 )N . 
Choose the first 12 quantities which are bigger 
than 0 and smaller than 1 as the observed 
sequential example of affected proportion in P1, 
and we can get 12 =X (0.2463, 0.5158, 0.4731, 
0.9470, 0.5065, 0.0126, 0.4221, 0.2622, 0.2507, 
0.2700, 0.1429, 0.7080). When the optimal 
decision time is 4, mean of the sequential 

example 4 0.5455x = ，and the posteriori mean 

of affected proportion ( )44 0.4681xµ = . 

According to formula（11）,  we can get the 
optimal emergency material distribution quantity  

( )* 44, 223.3049S X = . And we can also get 

( ) 128.7900S µ = ，  ( )4 260.2248S x = . As 
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4x µ> ， ( ) ( ) ( )* 4
44,S S X S xµ < < . 

（3）optimal rescue scheme  

The steps for calculating out the critical 
subscript of rescue points sequence in relative to 
the optimal emergency material distribution 
quantity ( )* 44,S X  are shown in Tab.2. As 220

＜223.3049＜245, we can know that the critical 
subscript is 5，and the rescue points are P1、P4、
P3、P2、P5，with the following emergency 
material supply respectively ：80, 60, 30, 50 and 
21.6951。 

Tab.2 Steps For Calculating Critical Subscript  
Step Rescue sequence Total material 

supply  
1 P1 80 
2 P1、P4 140 
3 P1、P4、P3 170 
4 P1、P4、P3、P2 220 
5 P1、P4、P3、P2、P5 245 
 
6. NUMERICAL SIMULATION 
 

This part does data simulation of the relation 
between some variables and the expected total 
decision loss r  in MATLABR2007b.    

（1）simulation of the relation among σ , N  
and r   

Suppose 2(0.27, 0.32 )Nθ � ,σ  belongs to[0, 
1] and N  belongs to[1, 24]. The relation among 
σ , N  and r  is shown in picture 2. 
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4
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Picture 2 Simulation Of The Relation Among σ , N  

And r  
 

From picture 2 we can see that when σ  is 
invariable, basically, the expected total decision 
loss r is a decreasing function of the maximum 
observation frequency of disaster information N . 
The bigger the maximum observation frequency 
is, the smaller the expected total decision loss is. 
To reduce the loss in the affected point, we need 
increase the maximum observation frequency and 
decrease the observation intervals. When N  is 
invariable, the expected total decision loss r  is 
basically an increasing function of the 
observation standard deviation of affected 
proportion σ （when 1N = ，the expected total 
decision loss is invariable）.The bigger σ  is, the 
larger the expected total decision loss is. To 
reduce the loss in the affected point, we should 
use more precise observation method.   

（2）simulation of the relation among µ , τ  
and r   

Suppose 0.4σ = , 12N = , 2( , )Nθ µ τ� , 
µ belongs to [0, 1]，and τ  belongs to [0, 1]. The 
relation among µ , τ  and r  is shown in picture 
3. 

From picture 3 we can see that when µ  is 
invariable, basically, the expected total 
decision loss r  is an increasing function of 
the prior standard deviation of affected 
proportion τ . The bigger the prior standard 
deviation is, the smaller the expected total 
decision loss is. That is to say, the more 
uncertain the prior disaster information is, the 
more loss the affected point will suffer. At the 
same time. when τ  is invariable, the 
expected total decision loss r  is basically an 
increasing function of the prior mean of 
affected proportion µ . The bigger the prior 
mean of affected proportion is, the larger the 
expected total decision loss is. That is to say, 
the more serious the prior emergency situation 
is, the more loss the affected point will suffer. 
In order to reduce the loss, we should establish 
emergency database, keep updating the data, 
and divide emergency situation into different 
scenarios, so that we can get more precise prior 
disaster information. 
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Picture 3 Simulation Of The Relation Among µ , τ  

And r  
 

（3）relation simulation among τ , σ  and 
r  

Suppose 12N = , 2( , )Nθ µ τ� , 0.27µ = ， τ  
belongs to [0, 1] and σ belongs to[0, 1]. The 
relation among τ , σ  and r  is shown in picture 
4.  
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Picture 4 Simulation Of The Relation Among τ , σ  

And r  

From picture 4 we can see that when σ is 
invariable, basically, the expected total decision 
loss r is an increasing function of the prior 
standard deviation of affected proportion τ . At 
the same time, when τ  is invariable, the 
expected total decision loss r  is basically an 
increasing function of the observation standard 
deviation of affected proportion σ . This 
simulation results are the same as the former 
ones. 

7. CONCLUSIONS 
 

The model built in this paper can be applied 

into emergency rescue program in natural 
disasters. It can help decision-makers to 
determine optimal decision-making time and 
optimal rescue plans. The research results can 
offer guidance to the enrichment of emergency 
preparation system and emergency plans. Of 
course, this paper only does research into the 
rescue points selection problem with one decision 
period and one affected point. The future study 
may consider the emergency material distribution 
problem for multiple decision periods and 
multiple affected points.    
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