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ABSTRACT 
 

Isomorphic elliptic curves are the same in the point of cryptographic view. Recent research activity has 
focused on counting distinct elliptic curves over finite field (up to isomorphism over the algebraic closure 
of the ground field or ground field) in various curves families. Jacobi quartic curve is an important curve 
family for elliptic curve cryptography. This paper presents explicit formulas for the number of isomorphism 
classes (up to isomorphism over ground field) of Jacobi quartic curves and generalized Jacobi quartic 
curves defined over finite fields. These results also can be used in the elliptic curve cryptography and 
classification problems. 
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1. INTRODUCTION  
 

Elliptic curves were independently introduced to 
cryptography in 1985 by Victor Miller [1] and Neal 
Koblitz [2]. Elliptic curve cryptography (ECC) is 
an efficient public key cryptosystem which rely on 
the difficulty of discrete logarithmic problem on 
elliptic curves. The one of advantages of ECC is 
that for suitably chosen curves there is no known 
subexponential algorithm like the number field 
sieve algorithm for integer factorization, to solve 
the elliptic curve discrete logarithm problem. 
Consequently, this leads to smaller key length in 
ECC to achieve the same level of security as in 
public key systems based on factorization and the 
discrete logarithm problem in finite fields. Hence 
elliptic curves are widely applied in many aspects 
of cryptography including elliptic curve based 
protocols, data encryption and digit signature. In 
particular, Weil pairing and Tate pairing on elliptic 
curves can be utilized in identity based encryption 
[3]. Further, elliptic curves can be applied in prime 
testing [4-5] and factoring integers [6]. 
 

Efficient elliptic curve arithmetic is crucial for 
ECC. The most expensive part is the computation 
of kP for an integer k and a point P on the curve. 
For an elliptic curves in Weierstrass form, the 
formulas of adding two distinct points and doubling 
a point are different, which makes ECC vulnerable 
to side channel analysis. One countermeasure 
protecting against these attacks is use a coordinate 

system that allows point additions and doublings to 
be performed with the same formulas. Namely, 
addition formulas are said to be unified if they also 
allow doubling of non-zero points, and complete if 
the allow addition of any pair of points, identical or 
not, zero or not. Hence it is preferable to find 
elliptic curves in other form with unified addition 
formula [7-12].  

 
The Jacobi quartic curves is one of the most 

important curves in cryptography. Jacobi quartic 
curves, with equation 2 4 22 1y x ax= + + , are 
unified [7-8] and have an addition formula costs 
7M+3S [9-10]. Not all elliptic curves transform to 
the Jacobi quartic forms. Such curves were first 
proposed by Chudnovsky and Chudnovsky [8] in 
1986. After that, Billet and Joye [7], Duquesne [9], 
Hisil et al. [13] gave more improvements for the 
arithmetic on Jacobi quartic curves. 

 
In order to study the elliptic curves cryptosystem, 

we first need to answer how many curves there are 
up to isomorphism, because two isomorphic elliptic 
curves are the same in the point of cryptographic 
view. So it is natural to count the isomorphism 
classes of some kinds of elliptic curves. Recent 
research activity has focused on counting distinct 
elliptic curves over finite field (up to isomorphism 
over the algebraic closure of the ground field) in 
various families using explicit computation of the j-
invariant, for example in the families of Doche-
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Icart-Kohel and Edwards [14], Jacobi quartic 
curves [15]. We note that counting the number 
distinct elliptic curves over finite fields qF , up to 

isomorphism over qF  , is a natural question which 
has cryptographic interests. This has been done for 
Weierstrass curves [16-17], Hessian curves [18] 
and 3-torstion curves [19], Legendre curves [20], 
Edwards and twisted Edwards curves [21], and 
Huff curves [12], et al. In this paper, we give the 
explicit formulas for the number of isomorphism 
classes of Jacobi quartic curves and generalized 
Jacobi quartic curves over a finite field, up to 
isomorphism over finite field qF .  
 

2. PRELIMINARIES 
 

A curve means a projective variety of dimension 
one. There are several ways to define elliptic 
curves. In this paper, an irreducible curve is said to 
be an elliptic curve if it is birationally equivalent to 
a non-singular plane cubic curve.  

It is well-known that every elliptic curve E  over 
a field K  can be written as a Weierstrass equation 

2 3 2

1 3 2 4 6
E Y a XY a Y X a X a X a: + + = + + +  with 

coefficients 1 2 3 4 6a a a a a K, , , , ∈ . Two projective 

varieties 1V  and 2V  are isomorphic if there exist 

morphisms 1 2V Vϕ : →  and 2 1V Vφ : → , such that 
φ ϕ  and ϕ φ  are the identity maps. Two elliptic 
curves are said to be isomorphic if they are 
isomorphic as projective varieties. Assume that the 
characteristic of field is different from 2 and 3, Let 

2 3 2
1 2 4 6E Y X a X a X a: = + + +  and 

2 3 2

2

' ' '
2 4 6E Y X a X a X a: = + + +  be two elliptic 

curves defined over K . It is known that 1E  and 

2E  are isomorphic over K  if and only if 

1 2( ) ( )j E j E= , where K  is the algebraic closure 

of K . 1E  and 2E  are isomorphic over K  if and 
only if there exist u r K, ∈  and 0u ≠  such that 

the change of variables  2 3( ) ( )X Y u X r u Y, → + ,  
maps the equation of 1E  to the equation of 2E   

[23]. Hence,  1E  and 2E  are isomorphic over K  if 

and only if there exist u r K, ∈  and 0u ≠  such 

that       

2 '
2 2

4 ' 2
4 4 2

6 ' 2 3
6 6 4 2

3 ,

2 3 ,

.

u a a r

u a a ra r

u a a ra r a r

= +

= + +

= + + +







     (1) 

It is well known [17] that the number of elliptic 
curves which are qF -isomorphic to a given curve 

2 3y x ax b= + +  equals to  

1
, 0, 1 mod 3

6
1

, 0, 1 mod 4
4

1
, .

2

q
a q

q
b q

q
others

−
= ≡

−
= ≡

−










           (2) 

For the remainder of the paper, we assume that the 
characteristic of qF  is greater than 3. 

 

3. ENUMERATION JACOBI QUARTIC 
CURVES 

 
Let 2 4 22 1aE y x ax: = + +  ( 2 1a ≠ ) be a 

Jacobi quartic curve defined over a finite field qF  

with characteristic of qF  is greater than 3. Note that  

the j-invariant of aE  is 2 3 2 216( 12) / ( 4)a a+ − . 
Recall the Legendre elliptic curve are of the form  

2 ( 1)( )y x x x λ= − − . We have the following 
lemma: 
Lemma 3.1.  The curve  2 4 22 1aE y x ax: = + +  
is  birationally equivalent to the Legendre elliptic 
curve ( )2

(1 )/2 ( 1) (1 ) / 2a v u u u aL − : = − − −  via the 

change of variables ( ) ( )x y u vφ , = , , where 
2 2( 1) / 2 ( ) / 2u x y v x x y a= − + , = − + . The 

inverse change is ( ) ( )u v x yψ , = , where 
22 / (2 1) 2 1x v u a y x u= + − , = − + .  

Proof   To prove aE is isomorphic to Legendre 

curve ( )2

(1 )/2 ( 1) (1 ) / 2a v u u u aL − : = − − −  , it is 

sufficient to prove 22 ( 1)(2 (1 ))v u u u a= − − − .  

Since 22 (1 )u a x y a− − = − + and 
2 2 2 264 4 (2 2 2 )v x x y a= − + , it is sufficient to 
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show that 2 2( ) 2 ( 1)x x y a u u− + = − . The result 
then follows immediately from  

2 2 4 2 2( )x x y a x x y ax− + = − +  and  
2 2

4 2 2

4 ( 1) ( 1)( 1)
2 2 2 ,

u u x y x y
x x y ax
− = − + − −

= − +
  

which complete the proof. 
 

By the above theorem, the family of Jacobi quartic 
curves is the same as the family of Legendre curves 
in the sense of isomorphism. Hence, by the 
Theorem 6 of [20], we get the following theorem: 

Theorem 3.2: Suppose qF  is the finite field with 

q  elements and char( qF ) > 3. Let qN  be the 

number of qF -isomorphism classes of Jacobi 

quartic curves 2 4 22 1aE y x ax: = + +  defined 

over qF  with 2 1a ≠ . Then 

7 17 , 1 mod 24
24

7 13 , 5 mod 24
24

2 , 7,19 mod 24
3

2 , 11,13 mod 24
3

7 29 , 13 mod 24
24

7 1, 17 mod 24
24

qN

q if q

q if q

q if q

q if q

q if q

q if q

+ ≡


+ ≡
 + ≡
=  − ≡

 + ≡

 +

≡


 

 

4. ENUMERATION FOR GENERALIZED 
JACOBI QUARTIC CURVES 

 

In this section, we consider the generalized Jacobi 
quartic curve. The generalized Jacobi quartic curve 
is the curve form 2 4 2

a bE y x ax b, : = + +  with 
2( ) 0a b b− ≠  defined over qF  of characteristic 

3> . A Jacobi quartic curve is a special one of 

a bE ,  with 1b = . The j-invariant of a bE ,  is 
2 3 2 264( 3 ) / ( ( ) )j a b b a b= + − . The following 

lemma can be proved by a direct computation 
similar as that in Lemma 3.1.  
 

Lemma 4.1.  The generalized Jacobi quartic curve 
2 4 2

a bE y x ax b, : = + + is birationally equivalent 

to the curve  2 2 2( 4 4 4 )a bW v u u au a b
,
: = − + − via 

the change of variables 22 2 2u x y a= − +  and 
24 ( )v x x y a= − + . 

Note that when ,a b  run over the finite field qF , 

4a− and 24 4a b− run over the finite field, too. 
Hence, the family of generalized Jacobi quartic 
curves is the same as the family of elliptic curves 
with at least a 2-order point in the sense of 
isomorphism. 

For the elliptic curve a bE , , The j-invariant  

,( ) 0a bj E =  if and only if 2 3 0a b+ = . Moreover, 

we have the following proposition. Since a bE ,  is 
birationally equivalent to the Weierstrass elliptic 
curve 2 3 2 24 (4 4 )a bW y x ax a b x, : = − + − , and 

a bW ,  is isomorphic to the short form Weierstrass 

curve  
2 32 3 4 16 16

3 27 3( 8 ) ( )a a ab
a bS y x a x, : = + − − + − . 

It is clear that the j -invariant of a bS ,  is equal to 

1728 if and only if 
316 16

27 3 0a ab− = , that is 
2( 9 ) 0a a b− = . Thus ( ) 1728a bj E , =  if and only 

if 2( 9 ) 0a a b− = .   

Lemma 4.2.  Let 2 4 2

, :a bE y x ax b= + + be a 
generalized Jacobi quartic curves defined over  a 
finite field qF  with 2( ) 0b a b− ≠ . Let N  be the 
number of generalized Jacobi quartic curves form 

,a bE  with 0 1728j ≠ , . If b  is a square element, 

then 
( 1)( 7) / 2, 1, 7 mod 12,

(q 1)(q 5) / 2, 5,11 mod 12,

q q if q
N

if q

− − ≡
=

− − ≡





  

If b  is a non-square element, then 
2( 1) / 2, 1, 7 mod 12,

(q 1)(q 3) / 2, 5,11 mod 12.

q if q
N

if q

− ≡
=

− − ≡





 

Proof Assume first that b  is a square in qF . Then 

the equation 2 0a b− =  has two roots in finite field. 
Hence the number of curves of the form a bE

,
 over 

qF  is ( 1)( 2) 2q q− − / . Since ( ) 0a bj E
,

= if and 

ony if 2 3 0a b+ = , and 2 3 0a b+ =  has two roots 
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in qF when 1 7 (mod 12)q ≡ , , but it has no root 

when 5 11 (mod 12)q ≡ , . Hence, the number of 

curves of the form a bE ,  over qF  with 0j =  is 
1

22 1q q−⋅ = −  when 1 7 (mod 12)q ≡ , , and is 0 

when 5 11 (mod 12)q ≡ , . If ( ) 1728
a b

j E
,

= , then 

0a =  or 2 9a b= . Thus the number of curves form 

a bE ,  with ( ) 1728
a b

j E
,

=  is 1 1 3( 1)
2 2 22q q q− − −+ ⋅ = . By 

subtraction, when 1 7 (mod 12)q ≡ , , we get that 

( 1)( 2) 3( 1) ( 1)( 7)
( 1)

2 2 2

q q q q q
qN

− − − − −
− − − == , 

and when 5,11 (mod 12)q ≡ , we get  

0 ( 1)( 5) / 2( 1)( 2) / 2 3( 1) / 2N q qq q q= − − = − −− − − . 
Secondly, assume that b  is a non-square element 
Then the number of generalized Jacobi quartic 
curves form  a bE ,  is ( 1) 2q q − /  . For this case, 

the number of curves of the form a bE ,  over qF  

with 0j =  is 1q −  when 5 11 (mod 12)q ≡ , , and 
is 0 when 1 7 (mod 12)q ≡ , . And the number of 

curves form a bE ,  with ( ) 1728
a b

j E
,

=  is ( 1) / 2q − . 

By subtraction, when 1 7 (mod 12)q ≡ , , we get 

that 
2( 1) ( 1) ( 1)

2 2 2

q q q q
N

− − −
− == , and when 

5,11 (mod 12)q ≡ , we get  
( 1) ( 1)( 3) / 2( 1) / 2 ( 1) / 2N q q q qq q= − − − = − −− − . 

This complete the proof of the lemma. 

Let 0N  and 1728N be the number of generalized 

Jacobi quartic curves form ,a bE with 0j = and 

1728j = . If b  is a square element, then  

0

1, 1,7 mod 12,
0, 5,11 mod 12.

N
q q

q
− ≡

=  ≡
 

and 1728 3( 1) / 2N q= − . If b  is a non-square 
element, then   

0

0, 1,7 mod 12,
1, 5,11 mod 12.

N
q

q q
≡

=  − ≡
 

and 1728 ( 1) / 2N q= − . 

By the Lemma 4.1, curve 2 4 2
a bE y x ax b, : = + +  

is birationally equivalent to the Weierstrass elliptic 
curve  2 2 2( 4 4 4 )a bW v u u au a b

,
: = − + − . It is clear 

that ,a bW has at least a 2-order point. Furthermore, 

if b is a square in qF , then ,a bW has three 2-order 

points (0,0) , (2 2 ,0)a b+ and (2 2 ,0)a b− . 

Therefore, the generalized Jacobi quartic a bE ,  has 

three points of order 2 if and only if b is a square in 

qF . The generalized Jacobi quartic a bE ,  has only a 

point of order 2 if and only if b is a non-square in 

qF .  

By the Lemma 4.1, the Weierstrass curve ,a bW  is 
isomorphic to the short Weierstrass elliptic curve 

2 32 3 4
3 27

9(8 ) 16( )a a
a b

abS y x a x
,

−: = + +− . Every point 
of order 2 admits such a change, By the formula 
(2),  we can get  the number N of elliptic curves 
which are qF -isomorphic to a given generalized 

Jacobi quartic curve 42 2y x ax b= + +  equals to  

1
, 0 1 mod 3,

6
1

, 1728 1 mod 4,
4

1
, .

2

ns

q
if j and q

q
if j and q

q
others

N

−
= ≡

−
= ≡

−

=










 

when b is a non-square element in finite field qF . 

If b is a square element in finite field qF , then 

,a bE has three order 2 points, the number of elliptic 

curves which is qF -isomorphic to ,a bE  equals to 

1
, 0 1 mod 3,

2
3( 1)

, 1728 1 mod 4,
4

3( 1)
, .

2

s

q
if j and q

q
if j and q

q
others

N

−
= ≡

−
= ≡

−

=










 

By the argument of above and Lemma 4.2, for the 
generalized Jacobi quartic curve form the ,a bE  with 

b is a non-square element in finite field qF , let  

sqN  be the number of qF -isomorphism classes. 

Then if 1 mod 12q ≡ , we can get 
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2( 1) / 2 ( 1) / 2
0 1

( 1) / 4 ( 1) / 2nqN
q q

q
q q
− −

= + + = +
− −

. 

If 5 mod 12q ≡ , then 

( 1) / 2 ( 1)( 3) / 2
( 1) / 4 ( 1) / 2

1.

( 1)
( 1) / 2nqN

q q q
q q

q

q
q

− − −
= + +

− −

= +

−
−   

If 7 mod 12q ≡ , then 

2( 1) / 2 ( 1) / 2
.

( 1) / 2 ( 1) / 2
0nqN

q q
q

q q
− −

= + + =
− −

 

If 11 mod 12q ≡ , then 

( 1) / 2 ( 1)( 3) / 2
.

( 1) / 2 ( 1) / 2
( 1)

( 1) / 2nqN
q q q

q
q q

q
q

− − −
= + + =

− −

−
−

Therefore, we can get the following theorem: 

Theorem 4.3: Suppose qF  is the finite field with 

q  elements and char( qF ) > 3. Let nqN  be the 

number of qF -isomorphism classes of Jacobi 

quartic curves 2 4 2

, 2a bE y x ax b: = + +  defined 

over qF  with b is a non-square element in finite 

field and 2( ) 0b a b− ≠ . Then 

1, 1,5 mod 12,
, 7,11 mod 12.nqN

q if q
q if q
+ ≡

=  ≡
 

Similarly, if b is a square element in finite field qF , 

let  sqN  be the number of qF -isomorphism classes. 

Then if 1 mod 12q ≡ , we can get 

3( 1) / 2 ( 1)( 7) / 2
3( 1) / 4 3( 1) / 2

5

1
( 1) / 2

3

sqN
q q q
q q

q

q
q

− − −
= + +

− −

+
=

−
−

. 

If 5 mod 12q ≡ , then 

3( 1) / 2 ( 1)( 5) / 2
3( 1) / 4 3( 1) / 2
1

0

3

sqN
q q q
q q

q

− − −
= + +

− −

+
=

  

If 7 mod 12q ≡ , then 

3( 1) / 2 ( 1)( 7) / 2
3( 1) / 2 3( 1) / 2

2

1
( 1) / 2

3

sqN
q q q
q q

q

q
q

− − −
= + +

− −

+
=

−
−

 

If 11 mod 12q ≡ , then 

3( 1) / 2 ( 1)( 5) / 2
3( 1) / 2 3( 1) / 2
2

0

3

sqN
q q q
q q

q

− − −
= + +

− −

−
=

 

Therefore, we can get the following theorem: 

Theorem 4.4: Suppose qF  is the finite field with 

q  elements and char( qF ) > 3. Let nqN  be the 

number of qF -isomorphism classes of Jacobi 

quartic curves 2 4 2

, 2a bE y x ax b: = + +  defined 

over qF  with b is a square element in finite field 

and 2( ) 0b a b− ≠ . Then 

5 , 1 mod 12,
3

1, 5 mod 12,
3

2 , 7 mod 12,
3

2 , 11 mod 12.
3

sqN

q if q

q if q

q if q

q if q

+ ≡


+ ≡
=  + ≡

 − ≡


 

Summing up the numbers in Theorems 4.3 and 4.4, 
we get the number of isomorphism classes of  
generalized Jacobi quartic curves in the following 
theorem. 

Theorem 4.5: Suppose qF  is the finite field with 

q  elements and char( qF ) > 3. Let qN  be the 

number of qF -isomorphism classes of Jacobi 

quartic curves 2 4 2

, 2a bE y x ax b: = + +  defined 

over qF  with 2( ) 0b a b− ≠ . Then 
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4 8 , 1 mod 12,
3

4 4 , 5 mod 12,
3

4 2 , 7 mod 12,
3

4 2 , 11 mod 12.
3

qN

q if q

q if q

q if q

q if q

+ ≡


+ ≡
=  + ≡

 − ≡


 

 

5. CONCLUSIONS 
 

In this work we answered a question posed in 
[14]. That is, we presented the explicit formulas for 
the number of qF isomorphism classes of Jacobi 
quartic curves and generalized Jacobi quartic curves 
over a finite field qF . A natural and related question 
is to find a formula for the number of distinct 
isogeny classes for a given family of elliptic curves. 
It is an open problem to find explicit formulas for 
most families of curves, such as twisted Edwards 
curves and Huff’s curves, etc. 
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